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Abstract. Irreducible sigma models, i.e. those for which the partition function does
not factorise, are defined on Riemannian spaces with irreducible holonomy groups.
These special geometries are characterised by the existence of covariantly constant
forms which in turn give rise to symmetries of the supersymmetric sigma model
actions. The Poisson bracket algebra of the corresponding currents is a J^-algebra.
Extended supersymmetries arise as special cases.

1. Introduction

It has been known for many years that the geometry of the target space of two
dimensional supersymmetric sigma models is restricted when there are further
supersymmetries; in particular, N = 2 supersymmetry requires that the target
space be a Kahler manifold [1], and N = 4 supersymmetry requires that it be
a hyperkahler manifold [2]. More exotic geometries arise in heterotic sigma
models with torsion and in one-dimensional models [3, 4, 9]. More recently it has
been realised that sigma models can admit further symmetries which are non-linear
in the derivatives of the sigma model field. The prototype of this type of symmetry
is the non-linear realisation of supersymmetry using free fermions [5]; further
instances have been given in the context of supersymmetric particle mechanics [6,
7] and in N = 2 two-dimensional models, where it has been realised that it is not
necessary to impose the vanishing of the Nijenhuis tensor [9, 10]. In [8] a prelimi-
nary investigation into non-linear symmetries of other two-dimensional supersym-
metric sigma models was presented. A related type of symmetry occurs in bosonic
sigma models, the so-called J^-symmetry [12, 13].

In this article we combine the issues of the geometry of the target spaces and the
non-linear symmetries of two dimensional supersymmetric sigma models. In the
case of N = 2 and N = 4 supersymmetries, for example, the additional structures
on the (Riemannian) target spaces reduce the holonomy groups from O(n) to

U ί - 1 and Sp ί - I respectively, where n = dim M, M being the target space. We
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shall investigate the symmetries associated with other holonomy groups, restricting
our study to manifolds which are not locally symmetric spaces and which have
irreducible holonomy groups. Irreducibility here means that the n-dimensional
representation of O(n) remains an irreducible representation of the holonomy
group G cz O(n). In the case that the connection is the Levi-Civita connection, the
irreducibility of the holonomy implies that M is an irreducible Riemannian mani-
fold (if πt (M) = 0) [14], i.e. M is not a product M1 x M2 x such that the metric
can be written as a direct sum with each component depending only on the
co-ordinates of the corresponding factor of the target manifold. In field-theoretic
terms, sigma models on metrically reducible spaces factorise into sigma models on
factor spaces in the sense that the partition function factorises. However, interest-
ing symmetries can arise on reducible manifolds in which the factors transform into
each other; an example of this behaviour occurs in the case of ^-symmetry where
the target spaces are reducible (for non-locally symmetric spaces).

The irreducible holomony groups associated with Levi-Civita connections
on Riemannian manifolds have been classified by Berger [15]. The possible

holonomy groups that can arise are SO(n\ [ / ( - ) , Sul-L ^P\j

Sp(l)' Spi - j = Sp(l) x Z2 Sp I - I together with the exceptional cases, G2 (n = 7)

and Spin(7) (n = 8). In each case there is an associated covariantly constant (with
respect to the Levi-Civita connection) totally antisymmetric tensor, and it is this
fact which implies the existence of an associated symmetry of the corresponding
supersymmetric sigma model [11, 8]. We call such Riemannian geometries special.
This classification is not strictly applicable to models with torsion for which the
corresponding analysis has not been done. Nevertheless, irreducible holonomy is
a useful restriction to impose and the covariantly constant tensors are the same as
in the torsion-free case. In many cases of interest we shall in any case set the torsion
to zero. Indeed, for both the exceptional cases, G2 and Spin(7), it turns out that the
torsion must vanish. The Riemannian (i.e. torsion-free) case is the most interesting
one from the point of view of the algebraic structure of the non-linear symmetries
under consideration, since in this case, as we shall show, the corresponding
currents, together with the (super) energy-momentum tensor, generate super W-
algebras via Poisson Brackets. These algebras are extensions of the (classical)
superconformal algebra by additional currents which are, in general, of higher spin.
It is of interest to note that the field theory models which provide realisations of
classical PF-algebras presented here are highly non-trivial field theories. This fact
makes the analysis of the corresponding quantum algebras more complicated and
we shall not pursue this topic in this paper.

In Sect. 2 we discuss the general form of symmetries generated by covariantly
constant antisymmetric tensors. At the classical level these symmetries are of
semi-local (superconformal) type, i.e. the parameters depend on some, but not all, of
the coordinates of superspace, and in general generate an infinite number of
symmetries of this type. However, there are examples of finite dimensional semi-
local symmetry algebras, for example on manifolds with G = SO (n). In some cases
it is possible to get a finite-dimensional Lie algebra by restricting the parameters
to be constant; an example of this type is given by Calabi-Yau manifolds

G = SUI - } ). When the torsion vanishes, as we remarked above, we obtain
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finite-dimensional ^-algebras, i.e. ^F-algebras generated by a finite number of
currents. For some purposes it is useful to regard the invariant antisymmetric
tensors associated with the special geometries as vector-valued forms, and we
include in this section a brief review of the way such vector-valued forms give rise to
derivations of the algebra of differential forms on the target space [16, 17]. In Sect.
3, we introduce Poisson Brackets and compute them for the currents of the type we
are interested in. In Sect. 4 we study the various cases listed above, and in Sect. 5 we
make some concluding remarks.

2. General Formalism

Let Σ denote the (1,0) (or N = 1) superspace extensions of two-dimensional
Minkowski space, with real light-cone co-ordinates (y + , y =, θ +) (resp. (y φ , y =, θ +,
θ~)). The supercovariant derivatives D+ (D + , D_) obey

D2

+=id^ (2.1)

and
D 2

+ = ί d ^ ; D l = ί d = ; { ί ) + , L > _ } = 0 (2.2)

respectively. Let (M, g) be a Riemannian target space (metric g) equipped if
necessary with a closed three-form H = 3db, where b is a locally defined two form.
Local co-ordinates on M will be denoted x\ i = 1, . . . , n, and the sigma model
superfield by X\ The (1, 0) action is

S = J d2ydθ+(gij + bij)D + Xi c=Xj , (2.3)

and the (1, 1) action is

S = J d2yd2θ(gij + biJ)D + XiD.Xi . (2.4)

Let ωL be an (/ + l)-form on M

ωL = L f l...i I + 1 dxh Λ -Λdxil{1 . (2.5)

We introduce a vector-valued /-form, L\ and a Lie(O(π)) valued (/ — l)-form S£'\ by
defining

Lι = VLdxL, (2.6)

^) = L)L2dxL\ (2.7)

where

dxL:=dxhΛ Λ dxiι (2.8)

dxL2:= dxί2 Λ Λ dxίι . (2.9)

If ωL is covariantly constant, i.e. if

V ί + ) L / l . . . i l + 1 = 0 (2.10)

with

^ ^ ^ Γ ^ + i ί ί ^ , (2.11)
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then the transformation

δLXi = a-tLiD + X1 , (2.12)

where

D + XL:=D + Xiί . . . D + Xiι (2.13)

is a symmetry of the (1,0) action if the parameter a-X satisfies 3 = α_/ = 0 and
a symmetry of the (1, 1) action if D_α_/ = 0. The notation for the parameter
indicates that it has Lorentz weight — 1/2 and is thus Grassmann even or odd
according to whether / is an even or odd integer. The (1, 1) action is also invariant
under

bLXl = a + ιL
ι

LD-XL ( 2 . 1 4 )

if
V ί . - ) L f l . . . i l + 1 = 0 ( 2 . 1 5 )

and D + a + ι = 0.
The above symmetry transformations are associated with derivations of the

algebra of forms, Ω on M. Let Ωp denote the space of p-forms, so that
Ω = @n

p = oΩp, and Ωj the space of vector-valued /-forms. We recall that a deriv-
ation D of degree r satisfies the following properties:

a) D(aω + bp) = aDω + bDp\ a,beR Linearity

c) DΩp^Ωp+r; Degree r

d) D(ω A p) = Dω A p + ( — l)prω A Dp, ωeΩp; Leibniz property. (2.16)

The commutator of two derivations Dr and Ds of degrees r and s is defined by

lDr,Ds-]:=DrDs-(-ψDsDr (2.17)

and the Jacobi identity

[Z)r, [Z)s, A ] ] + ( - Ψr+S) [Pu lDr, DSJ] + ( - l) ' ( s + t ) [D s, [A, DrJ] = 0

(2.18)

holds for any three derivations. Thus the space of derivations is a Z-graded super
Lie algebra.

There are two types of derivation, both of which are defined by vector-valued
forms. If v is a vector field, i.e. a vector-valued 0-form, then the interior product of
v with a p-form, denoted ιυω is a derivation given by

ιvω = pviωiP2dxP2 . (2.19)

Since d is also a derivation we can generate another one from its commutator
with ιv,

ιvd + dιv = dv . (2.20)

This is just the Lie derivative, normally denoted as 5£υ. A similar construction can
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be carried out for a general vector-valued form. If L e Ω] and ω e Ωp we define their
interior product ιLω by

ιLω:= pωίP2 ULdxL A dxP2 . (2.21)

Another notation for this construct is ω A L [17]; we shall use both. It is easy to
check that ιL is a derivation. Taking the commutator of ιL with d we get a new
derivation dL which generalises the Lie derivative,

ιLd+(-l)ιdιL = dL. (2.22)

It has the property that it commutes with d,dLd = (— l)ιddL, and is determined by
its action on Ώ o ,

dLf=dfλL. (2.23)

On a p-form ω,
dLω = dωλ L + {- l)ιd(ωλ L) . (2.24)

The Nijenhuis tensor (concomitant) [L, M ] of two vector-valued forms L and M of
degrees / and m is defined by

[_dLidM-]=d[LtMΊ. (2.25)

The Nijenhuis tensor can be worked out by observing that

dLxl - U (2.26)

so that

= dVλ M + (- lYdiΪΛ M)

- ( - l)Zm(^M ι'Λ L + ( - I Γ ^ M ' Λ L ) ) , (2.27)

where Lι is regarded as an /-form for each value of i. In more detail,

= (LίdjM^ - MiMdjLL - lL)L2dhMJM + mM\M2dmιUL)dxLM . (2.28)

It is straightforward to verify that [/, /] is the usual Nijenhuis tensor, N(I), for the
case L = M = /, an almost complex structure. Hence the integrability condition for
an almost complex structure to be complex, N(I) = 0, is equivalent to the condi-
tion dj = 0.

The other commutators are

[*L, dM] = dMλL + (- l)m/[L,M] (2.29)

and

I A , ' M ] = IMM. + ( " l)' + m + /m*LAM , (2.30)

where
(MλLy: = m Mi

jMl Lj

L dxL A dxM2 . (2.31)

From the Jacobi identity one can derive a number of identities for the tensors
which arise in the commutators, for example,

[L, [M, N ] ] + ( - l)"(ί + m) [JV, [L, M ] ] + ( - l)^m + "̂  [M, [JV, L]] - 0

(2.32)



472 P.S. Howe and G. Papadopoulos

and

[LλM,ΛΓ] + ( - l)(ffl + 1 ) ![L,iVAM] - [ L , Λ Γ | Λ M

= ( - l ) n ( l + 1 ) Lλ[M,iV] + ( - l)1 + 1 iVA[M,L]. (2.33)

We can now compute the commutator of two transformations of the type (2.12).
It is

[<5L, δMW = δ^X1 + δΐύ + <5& , (2.34)

where

and

*XkD + XL2D + XM2 . (2.35)

In general the three terms on the right-hand side of (2.34) are not symmetries by
themselves, so that a much larger and more complicated algebra of transformations
will be generated.

In the case that the torsion vanishes it is straightforward to show that [L, M ]
also vanishes, given that L and M are covariantly constant. For (1, 1) models it is
straightforward to show that the left and right transformations (2.12) and (2.14)
commute up to the equations of motion.

3. Poisson Brackets

Let {jA} be the currents of a set of symmetries of a two-dimensional field theory.
The Poisson Bracket algebra

{JΛJB}PB = PAB({JA}) (3.1)

of these currents forms a W algebra provided that PAB is a polynomial in the
currents {jA} and their derivatives.

The currents of the symmetries (2.12) of the action (2.3) (or (2.4)) are

JL = j ^ r j L i l . . Λ ι + ί D + X i > . . . D + X i > ^ . (3.2)

These currents are conserved, D-jL = 0 (or d = j L = 0), subject to the equations of
motion of the action (2.3) (or (2.4)). The form ωL (2.5) satisfies Eq. (2.10).

To get a complete set of currents, it is necessary to include the (super) energy-
momentum tensor T, given by

XidφXj . (3.3)

T generates left-handed supersymmetry transformations and translations.
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In the rest of this section we shall assume that the torsion vanishes, H = 0, and
we shall also focus only on left-handed currents having the form (3.2) or (3.3); any
dependence on the right-handed co-ordinates (y = , Θ~) will be suppressed.

To calculate the Poisson brackets of the currents j L (3.2), we introduce the
Poisson bracket

{D + X^zJ, D + Xj(z2)} = gijV + 1δ(zuz2) , (3.4)

where z = (y + ,Θ+). This Poisson bracket is constructed from light-cone con-
siderations where the co-ordinate y= of the flat superspace is taken as "time."

Next we define the "smeared" currents jL(aι) by

h(aι) = Sdy*dθ+ a-tjL9 (3.5)

where ax is a function of z with Grassmannian parity ( — l)z. The Poisson bracket of
two currents of the form (3.5) is

^ (3.6)

where

(3.7)

and

(3.8)

In the examples we shall see tha t ; L j M can be written as a product of the original
currents, the energy-momentum tensor T and their derivatives.

The Poisson bracket of T with j L is

{T(a = ),jL(a-ι)}pB = (l+ 1)A(5 * a= α_, + 2α = δ * a_,) + -jL(D + (D + a = a-,)) .

(3.9)

This formula reflects the fact t h a t j L has Lorentz weight j(l + 1).

4. Applications

4.1. SO(n). The simplest case to analyse is SO(n). The corresponding invariant
tensor is the ε-tensor, ε^...^. The symmetry transformation is

δXι = a1-nε
i

h...jn_1D + XJi . . . D + X ^ . (4.1)

This is a bosonic symmetry for n odd, and it is easy to see that the commutator
of two such transformations is zero. Comparing with (2.34), we observe that the
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first and third terms in the right-hand side vanish automatically when L = M and
the symmetry is bosonic. The second term is trivially zero for n ̂  5, and for n = 3
can been seen to be zero by a short explicit computation. When n is even (3.1)
defines a fermionic symmetry which is also nilpotent, except in the case n = 2. The
first and second terms on the right-hand side of (2.34) vanish trivially unless n = 2
or 4. In the case n = 4, the properties of the ε-tensor imply that both terms are
again zero. In the case n = 2, the ε-tensor defines an almost complex structure on
M which is integrable (the torsion vanishes identically); hence, the first term in
(2.34) is zero, the second is a first supersymmetry transformation and the third is
a translation.

Thus, for n ^ 3, sigma models with SO(n) holonomy can be characterised by the
existence of an Abelian (super)conformal symmetry. In the case n = 2, this becomes
N = 2 (or (2, 0) supersymmetry).

4.2. ϋί - I = U(m). In this case the antisymmetric tensor is derived from an

almost complex structure Γj, I2 = — 1. Models with U(m) holonomy have been
extensively studied in the literature, including the case where / is not complex, i.e.
N(I) φ 0 [9-11]. The commutator of two transformations defined by / is

i a-x)d Φ X1 . (4.2)

The second and third terms correspond to first supersymmetry transformation and
translations, while the Nijenhuis tensor term defines a new symmetry of the type
(2.12). Since the second and third terms are symmetries by themselves, so is the first
term and this implies that Nijk must be totally antisymmetric and covariantly
constant.

One can now investigate the algebra generated by δu i.e. compute [δu δN~], etc.
Referring again to Eq. (2.34), the third term on the right-hand side can be shown to
vanish by virtue of the identity

ΓiN'jt + N^V^O. (4.3)

The second term gives a contribution

LδIiδN]Xi= -(a-1D+a-2 + 2a-2D+a-1)Ni

jkD + XjD+Xk + . , (4.4)

where N = I λ N. Nijk is again totally antisymmetric and covariantly constant so
we have a new symmetry of type (2.12).

Finally the first term gives rise to a transformation involving the Nijenhuis
concomitant of / and N, [/, A/"]. This is the Slebodzinski tensor introduced in
reference [18]; however, it has been pointed out that this tensor is identically zero
[19]. This can been seen very easily from the Jacobi identity (2.32), since
[/,iV] = [/,[/,/]].

We can continue to compute commutators (or Poisson brackets), but it seems
that this not a finitely-generated ^-algebra [11]. However, if the transformations
are restricted to be rigid, then the N symmetry will not be generated starting from
δI and the algebra generated by δI and δN closes. This is therefore a finite-
dimensional rigid symmetry algebra.
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In the case of zero Wess-Zumino term H = 0, this case reduces to N = 2
superconformal symmetry.

4.3. SU( - I = SU(m). In the case of SU(m) we have, in addition to the almost

complex structure /, an m-form ωL which is the sum of an (m, 0) and a (0, m) form,
ωL = ε + ε. In a unitary basis εαi.. . f lw is the usual ε-tensor in m-dimensions. We also

have another m-form ω£ = -(c — έ). We shall suppose that / is a complex struc-

ture. There are thus three transformations to consider, δu δL and δ£, where

a>L = Lh...im
dχh A Λ dxim , (4.5)

/ = (m — l)in the notation of Sect. 2, and L\ = lljLJ

L. The algebra generated by δj
closes as N = 0. In the commutator of δj with δL one finds that the terms involving
Ilj ££\ + J£ljlj

k and [/, L~\ are zero using the fact that ωL = ε + ε. Thus we are left
with

lδl9 SAX* = - ((m - ί)aί-mD+a-1 + a^D + a1.m)Li

LD + XL . (4.6)

In the commutator of δj and δ£ the third term vanishes because L is the sum of
an (m, 0)-form and a (0, m)-form. The first term can be shown to be zero by using the
Jacobi identity (2.33) and the fact that the Nijenhuis tensor [/, L] vanishes. Finally

= ((m - l)ai-mD+a-1 + a_1D+a1^m)Li

jί^Jm_1D + Xh • . D + Xim~ι (4.7)

closes to a δL transformation. The commutator of two δL transformations yields

Xj2m-

) + A' / l D + Xj2m-4 . (4.8)

For m odd the first and last terms vanish, but the second term does not vanish for
any m. In general, therefore, the algebra generated by / and L is very complicated
and leads to an infinite number of (super)conformal symmetries. We can get
a finite-dimensional P^-algebra by taking the Wess-Zumino H term to vanish. In
this case we recover the W-algebra presented in ref. [8]. If in addition we assume
that the parameters of^the δj and δL are rigid and m is an odd number,
[<5L> δL~]Xι = 0 and the L transformations are not generated as the parameters are
restricted to be constant. This subset of cases includes six- (real) dimensional
Calabi-Yau spaces. The Poisson bracket algebra of the currents of the symmetries
of sigma models with target manifold M with SU(m) holonomy and without
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Wess-Zumino term closes as a PΓ-algebra. Indeed

{ji(a-ι)Ji(a'-i)}pB = ~ iT(a-ίa
f-ί) ,

{j{ji(a-i)Jda-ι)}pB= ~JL

For I odd

ά^a-t + D + ίά-^-,)};/'- 1) , (4.9)

and for / even

£(ώ-Z), A(«-I)}PH = - i//! Γ(ώ_ / f l _J/- 1 ) . (4.10)

4.4. SpI - I = Sp(m); Sp(l) Sp(m). If the holonomy group can be reduced to

there are almost complex structures I r, r = 1, . . . 3, which satisfy the algebra
of imaginary unit quaternions,

I r I s = - δ r s + ε r s t l t . (4.11)

The corresponding covariantly constant forms are obtained by lowering an index
with the metric, which is hermitian with respect to all three complex structures.
These structures can be used to define three additional supersymmetries, in the
usual way,

δyX1 = ar-1Ir

ijD + Xj . (4.12)

The commutator of the algebra closes, except for the terms involving the Nijenhuis
tensors [/ r j / s ]. These generate new symmetries as in the N = 2 case discussed
above.

In the case of zero Wess-Zumino term, the algebra of currents of the above
transformations is the N = 4 superconformal algebra.

In the case Sp(l) Sp(m) the three complex structures are not globally defined on
the target space. The symmetry transformations (4.12) may be defined only in the
case of local supersymmetry [20, 10]. However, there is a covariantly constant
four-form ωL given by

3

ωL = Σ ω r Λ ω n (4.13)



Holonomy Groups and ^-Symmetries 477

where ωr is the two form corresponding to Ir. This can be used to define a trans-
formation of the type (2.12). The Poisson algebra (3.6) of the current j L of the
corresponding symmetry is

{JL(a-3)JL(a'-3)}PB = ^jL(ci-3a'-3T) . (4.14)

4.5. G2 and Spin(7). These two cases are closely related. We begin with G2. It is the
subgroup of SO(Ί) which leaves the antisymmetric three-index tensor defined by
the structure constants of the imaginary unit octonions invariant. If ea is a basis of
orthonormal frames on M the corresponding three-form, φ, is

φ = e
123
 + e

145
 + e

16Ί
 + e

246
 - e

25Ί
 - e

356
 - e

3 4 7
 , (4.15)

where

eabc = eaAebAec . (4.16)

We also write
φ = ωL = LίjkdxiAdxiAdxk . (4.17)

We observe that the covariant constancy of Lijk with respect to the connection Γ ( + )

implies that the torsion H must vanish. The equation of covariant constancy can be
written in the form

ViLjkl-^Hm

ilJLkl]m = 0, (4.18)

where V is the Levi-Civita connection. Using (4.15) one observes that

V,L^ = 0 (4.19)

and

Hm

iuLkl]m = 0 (4.20)

are valid separately. Finally one can show that (4.20) implies the vanishing of Hijk.
A second invariant tensor can be defined as the dual of ωL,

*ω L = MiM dx{ A Λ dxι . (4.21)

Therefore we have an algebra generated by δL and δM. The commutator of two
L-transformations gives an M-transformation, the parameter of which vanishes in
the rigid case,

{δLiδ'L-\X1^ - 2 ( a L 2 D + a - 2 - a - 2 D + a ^ 2 ) M ) k l D + Xj . . . D + Xι . ( 4 . 2 2 )

Thus, if we take the parameters to be constant there is an Abelian symmetry
algebra generated by L alone.

In general, the Poisson bracket algebra of these symmetries closes as a W alge-
bra. Indeed,

)jLiβ'-2)}pB = -2jM(2D+a-2a-2 - D + (a-2aL2)) ,

9ί
—jM(a-3a-3T)-9jL(a-3a-3D+jL) . (4.23)
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Finally, we turn to Spin(7). The target manifold in this case has dimension 8 and
the invariant tensor is a self-dual 4-form Φ which can be constructed from φ. Let e°,
ea, a = 1, . . . , 7, be an orthonormal basis, then

φ = e° A φ + *φ

Φ = ωL = Lijkl d^A-'Άdx1. (4.24)

It is straightforward to verify that the torsion H vanishes in the Spin(7) case as it
does in the G2 case. The Poisson bracket algebra of two transformations generated
by ωL closes as a W algebra; it is

9/
{yL(α_3),7L(α-3)}pβ = -jL(a-3a'-3T) . (4.25)

5. Concluding Remarks

In this paper we have seen that two-dimensional supersymmetric sigma models on
Riemannian target spaces with special geometries have associated symmetries and
that, classically, the algebraic structure of these symmetries is of PF-type, i.e. higher
spin extensions of the superconformal algebra. It would clearly be of interest to
analyse these symmetries at the quantum level, but, as we remarked in the
introduction, this is non-trivial in view of the non-linearities involved. If one makes
the assumption that symmetries of this type are preserved quantum mechanically,
then they would seem, in certain cases, to imply strong constraints on the re-
normalisation of the models concerned. For example, N = 1 sigma models on
Calabi-Yau target spaces have additional symmetries of this type as we have seen,
and these, if preserved, would imply, in conjunction with the Calabi-Yau theorem,
the perturbative finiteness of such models. Since this would contradict explicit
calculations [22] (except for n = 4), the conclusion seems to be that these symmet-
ries are in general anomalous quantum mechanically. We have carried out a pre-
liminary calculation for the case n = 6 which lends support to this conjecture, but
a complete analysis remains to be done.
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