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Abstract. We consider stochastic flip dynamics for an infinite number of Ising spins
on the lattice Έά. We find a sequence of constructive criteria for the system to be
exponentially ergodic. The main idea is to approximate the continuous time
process with discrete time processes (its Euler polygon) and to use an improved
version of previous results [MS] about constructive ergodicity of discrete time
processes.

1. Introduction

Ever since the appearance in probability theory of random processes defined
through the interaction of infinite interacting particle systems ([S, V, D]), such
general questions as in the title have been investigated. The problem is to consider
a broad family of systems or automata containing a large number of interacting
components and to give criteria under which their behavior is essentially the same
as for non-interacting processes. As observed already by Tolstoi (and quoted in
[DS]), there are general reasons for "happiness" in a family. Here, this is called
ergodic behavior and, depending on the context, also stands for unreliability,
memory loss, convergence to the unique invariant measure, high noise regime, absence
of phase transition and more of that. Its counterpart in equilibrium statistical
mechanics is the so-called high temperature regime, for which the technique of
cluster expansions and Dobrushin-Shlosman analysis have given complete charac-
terization.

As is often the case, giving general answers and complete descriptions is often
limited to cases of less interest. Critical behavior, catastrophes and bifurcations,
coexistence of phases and all that, are in some sense perpendicular to the ergodic
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regime. It becomes however more interesting if the criteria for ergodicity can be
made optimal and ideally, touch the regime where critical phenomena appear. Such
analysis was carried out for other systems such as in percolation theory [ACCFR]
or for ferromagnetic lattice gas models [A]. The idea is reminiscent of the renormal-
ization group: looking at big enough (but finite) parts one discovers via a rescaling
argument properties of the infinite system. The reasoning is most often of the form:
if something happens in a fixed large volume, then we know how the infinite system
behaves and vice versa.

In the present paper we take up these old questions for the so-called spin-
flip processes (the class of Interacting Particle Systems introduced in Sect. 2).
These are continuous time processes, where each of the infinitely many spins
influences the behavior of any other spin after any amount of time, however small.
Still we are able to construct a sequence of finite systems evolving in discrete
time, such that the proper behavior of any of these in a finite time interval
(which can be effectively verified), ensures the ergodic behavior of the initial
IPS.

The opposite is also true, at least for attractive systems: if the initial process is
exponentially ergodic, then some systems from our sequence do behave properly.
Hence our ergodicity criterium is genuinely constructive: in case one is interested in
checking the ergodicity of a process, which, in fact, is exponentially ergodic, one
will do that rigorously by working hard and checking more of our conditions. If
one is not too lazy, one will succeed.

In implementing our program we connect two recent ideas, both of which
we present in an improved version. First, there is the technique of [MS] where
the same question was studied for discrete time processes, the so-called Probabil-
istic Cellular Automata (PCA). Secondly, we use the idea of [St] of
approximating continuous time processes by PCA. Summarized, our main idea to
prove exponential ergodicity for continuous time processes is to find PCA
which are

i) exponentially ergodic,
ii) approximate the initial IPS.

Section 2 has the necessary definitions and notations. We there also
remind the reader of the use of coupling which will play a major role in the
following sections. Our main results (Theorem A and B) are presented in
Sect. 3. To arrive at them we start in Sect. 4 revisiting the question of exponential
ergodicity for PCA which was solved in [MS]. We give a very simple (compared
to [MS]) set of sufficient conditions for the exponential ergodicity of PCA, which
gives most of what one can hope for in the discrete time case. They are
also necessary conditions for attractive systems. Examples show how new and
better rigorous bounds on the critical value of certain interaction parameters can
be obtained. The non-locality (in a certain sense) of the continuous time process
seemingly is an obstacle to give any constructive criteria for its ergodicity.
The extent to which it is non-local is estimated in Sect. 5. Then enters the idea of
[St] to approximate IPS via discrete time systems. A simplified approach is
contained in Sect. 6 and we get better bounds than in [St]. Each of Sects. 4, 5 or
6 is more or less self-contained. In Sect. 7, we conclude the proof of our main
results.
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2. Definitions and Notations

a) The state space. An infinite spin configuration η on the rf-dimensional lattice TLd

is an element of the state space Ω = {— 1, 1}Z\ The spin value at a site ieΈd in
configuration ηeΩ is denoted by 77 (z) = ± 1.

The configuration obtained from η by flipping the spin at site jeZd is ηjeΩ
with

The translation (̂77), ieΈd, of ηeΩ is a new configuration for which for jeΈd

Equipping Ω with the usual product topology, we let C(Ω) denote the Banach
space of all real valued continuous functions /with norm

11/11 - s u p I f(η) I . (2.3)
ηeΩ

Similar notations will be used when dealing with fc-tuples (7715 . . ., ηk)eΩk,
k = 1, 2 , . . . of configurations.

The dependence of a function/e C(Ω) on the spin value at i e TLά is measured by

(2.4)
ηeΩ

while its total oscillation is

The set

D(Ω) = {feC(Ω): | | | / | | | < 00} (2.6)

certainly contains all local functions, i.e. functions feC(Ω) such that/(f/) =f{ηi\
^ηeΩ, for all but a finite number of i e Z d .

b) The discrete time process. Let a function p 0 : £2-» [0, 1] be specified with the
property that it only depends on the configuration η e Ω in a finite neighborhood
U cz Z d of the origin, i.e.,

Po(^) = Pofa) whenever 7^ [/ . (2.7)

The range of interaction is the smallest number r < 00 for which

ί/c([-r,r]n2f. (2.8)

The translates pt'M -> [0, 1], ϊ e Z d , are defined via

Po(τfW) (2.9)

only depending on the spin values η(j\je U + i.
Let p(dσ\η) be the product probability measure on Ω with probabilities

Prob[σ(/') = 11 η~] — £̂ (77), i.e. for every finite set A a TLd,

σ(i)p(dσ \η)=U (2pt(η) - 1) . (2.10)
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The Probabilistic Cellular Automation (PCA) determined by p0 is the discrete time
Markov process {σn}n>0 with state space Ω and transition probabilities p(dσ\η).
The transition operator P is defined on all/eC(Ώ) as

= $f(σ)p(dσ\η). (2.11)

A probability measure v on Ω evolves according to

v n = v n ^ P = v P " , n ^ ί (2.12)

with v0 = v and for any probability measure μ

\ \ . (2.13)

We say that the PCA is attractive if pt{n) is a non-decreasing function of η, i.e.
Pι(η) ̂  Pi(ηj) if η(j) = 1.

A stationary or invariant measure v solves

vP = v, (2.14)

while we say that the PCA is ergodic whenever, for all initial measures μ, there is
convergence to the unique invariant measure:

μn -> v , weakly (2.15)

as n t oo.
It is convenient to introduce also the space-time lattice Zd+1 of points x = (n, i\

neZ, ieZd, and the space Ω00 = { —1,+l} z < i ' of space-time configurations
σ = {σx, xeZd+1}, σx = ± 1. The restriction of such a σeΩ 0 0 to a volume
Fez Zd+1 is σv = {σx, XE F}, and, as a special case we view σn = {σx = σπ(i),
x = (n, 0» iEZd}EΩ as its π t h time layer restriction.

c) 77ze continuous time process. The continuous time analogs of the PCA intro-
duced above are called Interacting Particle Systems (IPS) and are described by
giving for each ieZd a local non-negative and bounded function c(i, η\ ηeΩ, which
is to be interpreted as the probability per unit time of flipping the spin at site ί if the
system is in state η. That is,

Prob[^(i) φ η{i)\η0 = η] = c{i,η)t + o(t) . (2.16)

In analogy with the PCA construction we require that

c(i, η) = c(o9 τi(η)) ^ 0 ,

c(ί, ηj) = c(i, η) whenever 7^ U + i , (2.17)

and let

B = sup c(o, η) < GO ,
ηeΩ

M = ]Γ sup \c(o, ηj) — c(o, η)\ ,
j φ 0 η

ε = inf [ φ , *f) + φ , fy°)] . (2.18)
n
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On a local function/(??), ηeΩ, the generator L of this continuous time Markov
spinflip process is acting as

Lf{η) = Σ Φ> n)U{nl) -f(η)~] (2.19)
ιeΈd

The corresponding Markov semi-group will be denoted by S(t\ t ^ 0. See [L] for
the details of the construction.

We say that the IPS is attractive if c(o9 η) ^ c(o, σ) if η(o) = σ(o) = — 1 and
c(o, η) ^ c(o, σ) if η(o) = σ(o) = 1 for any two configurations η.σeΩ for which

As before, a probability measure v on Ω is stationary or invariant if

vS(t) = v , (2.20)

and the process is said to be ergodίc whenever for all initial measures μ, μS(ή -> v,
weakly as t t ô

d) Coupling of PC A and IPS. Our main results are formulated in terms of coup-
lings of certain measures. We start by reminding the reader the definition of the
most simple one for PCA: the discrete time Vasserstein coupling.

Fix a function a0 on ΩxΩ:

ao(η9rj) = mm{po(η\po(η)}, η,fjeΩ . (2.21)

A probability measure qo('\η, fj) on { — 1, 1} x { — 1, 1} is defined by putting (in
short-hand notation)

η,fj) = ao(η,ή) ,

ή) = Po(ή) ~ cιo(η9ή) ,

qo(-,-\η,η) = l - po(η) - po(η) + ao(η9 fj) . (2.22)

By translation this also defines qi('\η,fj) for every ieΈd.
Let q(dσ,dσ\η,ή) denote the product measure on ({ —1, 1} x { —1, 1})Z"

^ΩxΩ with marginals qi(m\η,ή), ieZd. Clearly, q(dσ,dσ\η,ή) is a coupling
measure for p(dσ \ η) and p(dσ \ ή). The associated coupling PCA on Ω x Ω is defined
via its transition operator 2, on/eC(Ω x Ω\

Qf(i, n) = f/(σ, σ)q(dσ9 dσ \ η9 η) . (2.23)

Again, if /(σ, σ) = g(σ\ then Qf(η, fj) = Pg(η)l if /(σ, σ) = ^(σ), then

= g(η)

Remark. Other couplings can be constructed by choosing in (2.22)
0 ύ a0 ύ rmn{po{η\ po(ή)}. While we will restrict ourselves in the following to the
Vasserstein coupling, the results of Sect. 4 can be formulated using any one of those
other couplings.

Consider the strip SN = Zd x {0, 1,. . ., /V} of time length N ^ 1. For all initial
data ηeΩ, let μN(dσ \ η) be the probability measure on SN obtained from the PCA
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(2.7)-(2.11). That is, for a function feC(ΩN\

J/(σ l 5 . . ,σN)μN(dσ\η)

= ί " ' ' ί J/(σi> ^σN)p(dσN\σN-1)p(dσN-ι\σN-2). .pidσ^η) . (2.24)
Ω Ω Ω

Consider now the coupling PCA defined above. The analog of (2.24) defines
probability measures pN(dσ, dσ\η, ή) on the same strip SN.

By construction pN(dσ, dσ \ η, ή) is a coupling of μN(dσ | η) and μN(dσ \ ή). How
this coupling behaves for the spin at site ίsΈd at time N is obtained by letting

gieC(ΩNxΩN) be given as

0i(σ, σ) = 1 if σN(i) φ ^ ( i )

= 0 otherwise ,

and putting

Q"> ήlσN(ί) Φ σN(i)] = 1 Sfi(σ, σ)Piv(dσ, Jσ | η9 ή) . (2.26)

This notation will be frequently used in the rest of the paper also for other
couplings.

In the continuous time case, for the IPS defined in (2.16)—(2.19), we refer to IΠ.l
in [L] for a definition of the so-called basic coupling or Vasserstein coupling. It is
a new process Tη'σ on the product space Ω x Ω with marginals the IPS started from
configuration η and the same IPS but started from configuration σ. An important
feature is that for attractive IPS

Φ fa')r(o)] = \S(t)(η) -

) , (2.27)

where for the IPS S(t)(σ) = Prob[a f = 11 σ0 = σ] and the arguments + refer to
the all plus, respectively, all minus configuration. Similar formulae hold for attract-
ive PCA as well (replacing in (2.27) T by Q and S(t) by Pn).

3. Main Results

Let an IPS be given as defined in (2.16)—(2.19). For a given 0 < δ, define a δ-
approximating PCA (δ PCA) by putting for (2.9)

pf\η) = 1(1 - e x p [ - 2δc(i, ηW if η(i) = - 1

= l - l ( l - e x p [ - 2 S c M ) ] ) iϊη(ί)=l. (3.1)

The super- (or sometimes sub-) script δ is used also for other quantities to identify
this δ PCA.

Fix N = 1,2,. . . . Consider the function

B 1 - e~2BδeMNδ - 1

Z(N, δ) = - ( ™ 1)
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As will be shown in Sect. 6, (3.2) is an upper bound on the closeness between the IPS
after continuous time Nδ and its (5PCA after N discrete time steps, provided they
both start from the same configuration.

We further define for integer n g: 1,

E(n) = 2(2nr + l)dz(N, δ) + e'εNδ £ ^ ^ (3.3)
k ^ n k-

and
E(N,δ) = minE(ή) . (3.4)

n ^ 1

The minimizing n in (3.4) is a characteristic length for the IPS: for any site ieΈd, if
its distance to the origin (in units of the interaction radius r) exceeds this length,
then its influence on the behavior of the IPS at the origin at time Nδ is, at most, of
the order of z(N, δ). This will become clear in Sect. 7. Just note here that n ^ MNδ,

(3.5)E(n)*2i2«r+iy,(N,S) + e \ i V
n\ |_ n + 1J

so that in case δ <ξ 1 <̂  Nδ, using n ~ MNδ in the right-hand side of (3.5) gives
a good and explicit upper bound for (3.4).

As in (2.26) but for the <5PCA, let Qδ[_ηN{ί) φ ( ^ J ) N ( 0 ] denote the probability
with respect to the coupling (5PCA that at time N the spin values at site ieΈd are
different. Here, η0 = η, (ηj)0 = η\ ηeΩ,jeZd. Put

k\J)N = sup QδlηN(ί)*(ηj)N(m (3.6)
n

and

kfN = k(

of
N . (3.7)

We let

y%> = ΣkΓ- (3-8)
j

Definition. We say that condition Cδ

N holds for the IPS (2.16)-(2.19) if

y(

N

δ)<\-E(N,δ). (3.9)

Theorem A. Suppose that for the IPS there exist δ and N as above, such that
condition C^ holds. Then (not only the <5PCA but also) the IPS is ergodic, and for
some c, λ > 0,/or allfeD(Ω), t > 0,

||S{t)f~\v(dη)f{η)(I Sce~λt|||/||| , (3.10)

where v is the unique invariant measure.

In the rest of the paper, IPS for which (3.10) is satisfied for all local functions/
will be called uniformly exponentially ergo die (UEE).

Remarks.
1. From Theorem C in the next section it follows immediately that the approxi-

mating PCA process of Theorem A - which is the analog of the so-called Euler
polygonal approximation from ordinary differential equations - is ergodic. For this
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we only use that yjy} < 1. We need the gap 1 — y^ to be large enough to get that in
that case the approximated process (the IPS) is also ergodic.

2. We will show in Sect. 7 that the limit δ [0 of condition C{ (N = 1) yields the
well known M < ε condition [L]. Next hope would be that the limit δ j 0 of Cδ

N for
N > 1 give new (and better) ergodicity criteria. This however is not true: by this
procedure one cannot go beyond the M < ε condition. In general we have that
y^ = 1 + N(M — ε)δ + O(δ2). One only arrives at improved ergodicity criteria by
keeping δ > 0 fixed, though small. This is possible because z(N,δ) starts off
quadratically in δ for fixed N, see (6.27). In fact, as we will show below, for attractive
IPS also the opposite statement holds true: if the IPS is UEE then, for some δ, N,
the condition Cδ

N is verified.

Theorem B. Suppose that for the IPS (2.16)—(2.19), its Vasserstein coupling T of
Sect. 2d), satisfies

lim ίdsup Tη<ηJ[_ηt{o) φ {ηj)t{o)'] = 0 . (3.11a)
t t X η,j

Then, for some δ > 0, N = 1, 2,. . . the IPS satisfies condition C^ and hence, this IPS
is UEE.

Actually, we can prove slightly more. Choose a constant τ(M) such that for all
t ^ τ(M),

(MT)3Mt 1

[3Mί]! < Ϊ 0 '

Then the statement of Theorem B remains true if we suppose only that for some
t ^ τ(M),

(6Mrt + ί)d sup T^\ηt{ό) φ (*Λ(o)] < \ . (3.11b)
η . j ~>

A similar remark holds for the next corollary which is easy to prove from (2.27).

Corollary 1. Suppose that for an attractive IPS, as t j oo,

S(t)( + )-S(ή(-) = o(Γd). (3.12)

Then, this IPS satisfies condition C^ for some δ > 0 and N and hence, is UEE.

This last result is also contained in [AH] and [H]. Proofs of Theorems A and
B will be given in Sect. 7.

4. Ergodicity of PCA

Let a PCA, defined by (2.7)—(2.11) be given, and choose an integer N > 0. Put

fey = SUpβ' " < [ M 0 + ^ ( 0 ] (4 l)
n

and
fc* = kN

oi. (4.2)
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Theorem C. Suppose that condition CN holds:

yN = Σ k f < l . (4.3)
j

Then the PCA is ergodic and for allfeD(Ω\ 0<a,0^b<N9

\\PaN + bf- \f(η)v(dη)\\ ^^-\\\P"f\\\ , (4.3)

where v is the unique invariant measure.

Remarks.
1. An advantage of Theorem C over results of [MS] is that the condition CN of

(4.3) is much simpler than the conditions CNR introduced there.
2. Theorem C is easy to extend to the non-translation invariant case with

non-finite interaction radius. In that case

yN = sup X fcy . (4.4)
i J

3. The case TV = 1 is the usual Vasserstein-Dobrushin single site condition
([V, D, LMS]) since it is readily checked that

klj = sup \pi(ηj)-pi(η)\ . (4.5)

Then,

7! =Σ suPlPofa'")-Pofa)l (4 6)
j n

4. Notice that condition CN can be viewed as a property of an auxiliary PCA
defined on a large (in fact, twice as large) state space. It is sufficient to work with
just one coupling PCA and to make a finite time calculation in order to check
whether (4.3) holds. We can thus say that Theorem C relates the asymptotic
behavior of a PCA to the finite time (= N) behavior of a coupling PCA.

5. For attractive PCA, cf. (2.27) and the remark below,

/cfj = sup \P^(ηj) — Pf(/?)| , (4.7)

where
P?(η) = Prob[σN(0 = 11 σo = η] (4.8)

is the probability that σN(ί) = 1 when started at time zero from the configuration
σ0 = η. In particular, k^ = 0 unless je W(ί, N), the cube in TLd around site i with
sidelength 2Nr + 1. If je W(i, N) we can use

k?j S: sup \P?(ηj) - Pt(η)\ ^ Ff( + ) - P?(-) , (4.9)

where, as in (2.27), the arguments + denote the all plus, respectively, all minus
configurations. It is then easy to prove

Corollary 2. For an attractive PCA, suppose that there exists an integer η > 0 such
that

1 (4.10)
v ' (2nr + l)d

Then, the PCA satisfies condition Cn and hence, is UEE (in the sense o/(4.3)).
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Remark. Usually this kind of statement is formulated with o(n~d) in the right-hand
side of (4.10), see e.g. (3.12). Our slight improvement here is that it is actually
enough for exponentially fast decay to have a cn~d-decay with c sufficiently
small.

Proof of Theorem C. By standard arguments (see the proof of Theorem 1 in
[LMS]) it is sufficient to show the contraction property HIP*/!!! = VJVIII/III β u t >
using the coupling PCA defined in Sect. 2d) on the strip SN,

PNf(ηj) - PNf(η) = J lf(σN) -f(σN)-]pN(dσ, dσ\η, ηj) (4.11)

so that

\PNf{ηi)-Pr'f(η)\=ϊ Σ δJpN{dσ,dσ\η,ηl) (4.12)
ieΈά\σN{ι) φ σN(ι)

and

( 4 1 3 )

which after summing over jeΈd gives the desired result.

Examples. We illustrate Theorem C by applying the criterion yN < 1 to three
specific models. All three are parametrized by a constant 0 g / ^ 1 and, as will be
clear, each time Eq. (4.7) can be used.

1. Stavskaya's model is a one-dimensional PCA with

po(η)=l iίη(-ί)

= λ otherwise . (4.14)

For all the cases considered (N = 1, 2, 3, 4) we find that kf = PN( + ) - PN( +j) =

^ V

y3 = 4(1 - λ)3(l + λ) ,

? 4 = (1 - λ)4(5 + 9/ + 4λ2 - 3λ3 + / 4 ) . (4.15)

It implies ergodicity for that model (from y j for / > 0.5 and (from y4) for λ ̂  0.45
(y4(/ = 0.45) = 0.95). The [MS] estimate gives ergodicity for / ^ 0.484.

2. Γ/2β Majority Vote Model in one dimension is the PCA with

Here are

otherwise. (4.16)

y2 = 3λ2 - Λ4 , (4.17)



Ergodicity of Interacting Particle Systems 457

and the supremum in (4.7) is reached for rfs which are ± alternating. Equation
(4.17) implies ergodicity for, respectively, λ ̂  0.33 and / g 0.61. [MS] gives er-
godicity for / S 0-366.

3. Toonϊs model is a two-dimensional north-east-center majority vote model.
That is the PCA with

Po(η) = l-^ if η(l 0) + η(09 0) + η(09 1) > 0 ,

1 -λ
= — — otherwise . (4.18)

The calculations are quite similar to the previous model but here

7i - 3/ ,

y2 = 5λ2 + λ4 (4.19)

implying ergodicity for, respectively, / g 0.33 and λ g 0.43. [MS] gives the same
result for / g 0.352. In all three examples the bounds of [MS] have been improved.

5. The Locality of the Process

We have assumed that both the discrete time and continuous time processes have
a finite range of interaction r, see (2.7), (2.8) and (2.17). Clearly however, there is
a difference in the dependence of the time evolved configuration on the initial data.

For PCA, this dependence is strictly local. The spin σn(o) at the origin is
determined at time n ̂  0 by the values σo(j), je([ — nr9 nr] n Z)d

9 of the spins at
time zero in a finite set only. In other words, for all n g: 0, Pn/is local whenever/is
a local function.

For the continuous time versions, if/eD(Ω), then, for all t ̂  0, S(t)feD(Ω), see
[L], but locality of the function is not preserved. Since we have to deal with this
problem in later sections, we summarize here how much S{t)f(η) can depend on
η(j) for far away jeΈd.

This information can be extracted from Theorem I.3.9(c) in [L] giving

δjS(t)f^e~« Σ expίtn(ij)δj, (5.1)
ieTLά

where Γ is the bounded operator on lι{Έd) with norm M, defined via its matrix
elements

Γ(ίJ) = sup \c(U ηj) - c(U η)\ if i Φ ; \
v

- 0 i Π = j . (5.2)

Using the idea of coupling it is easy to see why (5.1) holds true. In showing this
below, we at the same time will obtain the (slightly stronger) information which we
will use in Sect. 7.

Let Tη^ denote the Vasserstein coupling (see ΠI.l in [L] or Sect. 2d) above)
between the processes ηt and fjt both having spinflip rates (c(i, η\ but starting from
configurations η, respectively, ή.
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For notational convenience we will write

= \f{ηt, ήJT' ildη,, dη,\η,(i) = ± ήSΏ T" ήlη,(i) = ± ή,{i)l •

Then,

= T* ϊ\_\c(i, ηt) - c(i, ήt)\; ηt(i) = ή,dΏ - Γ" *[c(i, ηt) + c(i, ηt); ηt(i) Φ ή,(>Ώ

"lηt(k) + fc(fc)] - εT^lηt(ϊ) Φ ί?((0] • (53)

For the inequality we have used that for local functions /, σ, σ e Ω

\f(σ)~f(σ)\S Σ hf (5.4)
k:σ{k) φ σ(fe)

together with definitions (5.2) and (2.18). Hence,

jΣ ^[nt(k) φ fjt(k){\ S 0 (5.5)

or, taking ή = η\

Tη'ηJίη,(i) * (ή(01 ύ e-aeΓt(Uj). (5.6)

It is clear that (5.1) follows from this.
A similar derivation shows that for the discrete time case

Qη'ηJlrin{i) * (ηj)n(m ύ (δopo + K)n{iJ) , (5.7)

where K has matrix elements K(iJ) = δjp{ if i +7 and zero otherwise.

6. Approximating Continuous Time Spinflip Processes by PCA

Given the spinflip process (2.16)—(2.19) with rates c(i, η), we define a family of
approximating PCA η{

n

δ) indexed by δ > 0. They are the δPCA of Sect. 3. Each of
those has spinflip probabilities

Probfri 'MO Φ η{

n

δ\ί)\η{

n

δ) = η~] = ̂ (1 - e x p [ - 2δc(i9 ιy)]) . (6.1)

In other words, the transition probabilities (2.9) are equal to (3.1) and of the form

p\%) = δc(Uη) + o(δ) iίη(i)= - 1 ,

= 1 -δc(i,η) + o(δ) iϊη(i)= 1 . (6.2)

Obviously, many other choices than (6.1) can be made giving rise to (6.2), the
simplest of which would be to let the spinflip probabilities equal δc(i, η). Our choice
has the advantage of being more natural for the lemmas that follow and giving
better estimates.
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The associated transition operator (2.11) is denoted by Pδ, e.g. if/(σ) = σ(o),
then, ignoring higher orders in δ,

Pδf(η) » [<5φ, η)(l - η(o)) + (1 - δφ9 η))(ί + */(<>))] - 1

= 77(0) - 2<5φ, ^ ( o )

(6.3)

where / stands for the identity operator.
It is easy to check that (6.3) remains valid for any local function/up to first

order in δ. Further details and a proof of the following lemma can be found in [St]
as a direct application of this fact:

Lemma 1. As δ [ 0,
a) For allfeD(Ω\

-ΛPs-I~]f->Lf. (6.4)

o

b) For allfeC{Ω\

P[J/δ]f-*S(ήf (6.5)

for all t ^ 0 uniformly on compacts; [_tjδ~\ is the smallest integer greater than or equal
to t/δ.

In the following sections we need some more details on just what the correction
is to (6.5) for finite δ > 0. This will be done in Corollary 3 below.

For that purpose we introduce an auxiliary continuous time spinflip process
Ξΐ, 0 ̂  t fg δ, depending on a fixed configuration σeΩ in two ways. First,
we require the process to start from it, Ξζ = σ, and, secondly, the spinflip
rates (denoted by s(i, Ξ)) for that process are constant (in the second argument Ξ)
equal to

s(i9 Ξ) = c(U σ) . (6.6)

It is easy to verify from (6.6) that the measure at time t is a product measure with

Prob[Ξ f

σ(i) Φ σ(i)] = -(1 - e x p [ - 2tc(i9 σ)]), O^t^δ (6.7)

which imitates formula (6.1).
On this same time interval we also consider the original process ηt with spinflip

rates c(ί, η\ started from some configuration η0 = ηeΩ.
Let Aη'σ denote the Vasserstein coupling between these two processes ηt and

Ξ,σ, see e.g. IΠ.l in [L]. We choose a probability measure m(dη, do) on Ω x Ω as
initial measure for the coupled process Am = j m(dη, dσ)Aη'σ and define for
ίe[0,<5]

e, = sup Am[η,(i) Φ £, '(/)]. (6.8)

Lemma 2.

eδ S eUδe0 + ~(eMδ - 1) - hi - e~ 2 M ) . (6.9)
M 2

Note that the right-hand side of (6.9) is O(δ2) if e 0 = 0.
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Proof of Lemma 2. We proceed as in (5.3) and use the same notation as explained
above (5.3). For any h > 0,

Aη σίηt + h{i) + St"+*(0] = A»-°[ηt + h(i) * Ξ<+M ηt(i) = ΞM]

+ A"'°[Ξ?+h(i)ηt+h(i) * Ξ?+h(i)\η,<}) * Ξ?{i)-]A*'°ίηt(i) * St*(/)]

S hA» °[]c(i, σ) - c(i, ηt)\; η,(i) = Ξ*(0] + o(h) + A« °ίηt(i) * Ξt»(i)]

(6.10)

as follows from the definition of Vasserstein coupling together with (7.6). Moreover,
via the triangle inequality,

A"'"l\c(i, σ) - c(i, ηt)\; ηt(i) = Ξ*(0] ύ A"'σ[\c(i, σ) - c(i, Ξ?)\, *?r(0 = St"(ί)]

+ A < °Uc(i, ΞΓ) - c(i,ηt)\;ηt(i) = Ξ?iΏ •

(6.11)

On the other hand, we can apply inequality (5.4) to (6.11) and combine it with
the definitions δjc(i, ) = Γ(i,j), i # j, Γ(i, i) = 0 to get

(6.11) g. ΣΓ(i,j)A" 'Ίσ(j) + Ξt

σ(j)] + δiC{U )A» °\_σ(i) =*= Ξf"(i)]

+ Σ Γ(i, j)A" Ίηt(j) * ^ σ ( i ) ] (6.12)
j

Of course, in the first two terms the expectation only involves the second marginal
and moreover, we know from the definition of the Ξ? process and (6.7) that for all
jeΈd

A"-°lσ(j) Φ ΞttJΏ = ^(1 - e x p [ - 2ίc(;, σ)]) ^ 1(1 - e~2Bt) . (6.13)

Combining (6.10)—(6.13) we get, upon averaging with m(dη, dσ\

et + h S h(M + 2B)-(l - e~2Bt) + hMet + o(h) + et . (6.14)

Hence, taking h j 0,

^ ( y~M'(l - e-2B<) (6.15)

which after integration over 0 ^ t ^ δ gives the desired result. •

There clearly is a connection between the process Ξf

σ just considered and the
approximating PCA η(

n

δ\ cf. (6.7). To construct a stochastic process σt for which, at
all times t = nδ,

σt = ηίδ> (6.16)

in distribution, we must repeat the above construction in all intervals of the form
[nδ, (n + 1)<5]. This means that we take σt to be the right continuous process (which
is no longer Markovian) having, in the interval [nδ, (n + 1)<5], spinflip rates
c(i, σnδ\ or,

σt = Ξ^9 t = nδ + s, O^s^δ. (6.17)
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This construction allows us to prove the following

Lemma 3. For allfeD(Ω\

\\S(Nδ)f-PΪf\\£z(N,δ)\\\f\\\, (6.18)

where

z(N, δ) = ~{eMm - 1) - ^~MC^{eMm - D (6.19)

Proof of Lemma 3. In analogy with the coupling we had in Lemma 2 between
ηt and Ξ?, we let Λη denote the modification to a coupling between ηt and σt, both
started from configuration η. This modification (also non-Markovian) is easy to
realize by applying the same idea as in (6.16)—(6.17). Define

(ί)Φσnδ(m (6.20)
i

so that v0 = 0 and, from (6.9),

Hence,

vn S eMόvn.1 + ~(eM* - 1) - l-(\ - e~2B*) . (6.21)

B 1 1 — e~2Bδ

S (eMNS _ 1) - {eMm _ 1 } _ ( 6 _ 2 2 )

This finishes the proof because

N
\S(t)f(η) - PN

δf{η)\ g X δifA*lηt(i) Φ (7t(i)] (6.23)

and, for ί = Nδ, (6.23) is bounded by %| | | / | | | . •

The general estimate controlling (6.5) for times t which are not exact multiples
of δ is given in the following

Corollary 3. For all values of t, δ > 0 and for all feD(Ω),

\\S(t)f- P[

δ

t/δ]f\\ S ίz([t/δl δ) + δBl HI/HI . (6.24)

Proof of Corollary 3. Suppose that t = Nδ — s, where 0 ^ s < δ so that N = [t/δ~\.
Then,

| |S(ί)/-PΪ ί / < 5 1/|| ύ \\S(Nδ)f-S(t)f\\ + \\S(Nδ)f-Pδ

sf\\

S\\S(s)f-If\\+z(N,δ)\\\f\\\. (6.25)

Finally,

^s\\Lf\\^δB\\\f\\\. (6.26)

Remark. 1. It is important that for fixed t = Nδ,

z(N, δ) = (eMt - l ) ^ [ ( y + B^δ + O(δ2)^ (6.27)

can be made arbitrarily small by making δ > 0 sufficiently small.
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2. A slight modification of the above arguments (starting with a better estimate
in (6.10)) shows that (6.18) and (6.24) remain true for

(6.28)

Z(N,S) = ( M + 2 B ) B (*<-.>» '-1)
1 ' ; (M - ε)(M - ε + IB) '

M -

replacing definition (6.19). Notice from (6.28) that z([t/δ\ δ) is bounded uniformly
in t whenever M < ε. More generally, we expect that the PC A discretization is O(δ)
close to the original continuous time process, uniformly in time, if this last process
is ergodic.

7. When is a Spinflip Process Ergodic?

The best known ergodicity criterion for interacting particles is the so-called
"M < ε"-condition (see Theorem I 4.1 in [L]). M and ε are the quantities defined in
(2.18). The traditional proof (as in [L]) of this condition is rather involved even in
the case of spinflip processes. Therefore we start our investigation by rederiving the
"M < ^''-condition with a minimal amount of work using [St]'s idea of approxi-
mating with PCA.

From Theorem C and (4.5) we know that the approximating PCA is ergodic if

Σo)(rii)-plo){η)\<ί. (7.1)
j n

Easy calculations show that (6.2) implies that

7 + 0 η

sup \p{

o

d\η°) - p{δ\η)\ = 1 - δε + o(δ) , (7.2)
n

so that

y[
δ) = 1 + δ(M - ε) + o(δ) . (7.3)

Hence, if M < ε, then yf} < 1 for δ small; moreover,

δ 10

^ lim [y[δ)rδ]\\\f\\\
δ i 0

= β ί ( M - ε ) | | | /H| (7.4)

which is all what is needed in obtaining the "M < ε"-condition.
One might be optimistic at this point and think that, for each JV, a new

condition for the ergodicity of continuous time processes is obtained from requir-
ing that

lim [y{δ)ft/Nδ] < 1 . (7.5)
δ I 0
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Some thinking reveals however that this limit cannot give us anything better than
for N = 1. The reason is essentially that (7.5) requires the coefficient in front of δ in
yjv} to be negative but this coefficient only contains information about single
spinflips no matter how large N is, and is therefore governed (as for N = 1) by the
difference M — ε.

Example. Let a one-dimensional spinflip system be determined by the rates

c(i,η) = 0 iϊη(i- 1) = η(i) = 1 ,

= M if η(i) = 1 , η(i - 1) = - 1 , (7.6)

= ε iϊη(ί)= - 1

The parametrization of (7.6) is so arranged that M and ε have the same meaning as
in (2.18). This model is an asymmetric contact process with infection rate M/ε,
(Chapter VI in [L]).

The ^-approximating PCA has transition probabilities

= l - α i f > ( 0 ) = l , η(-l)=-ί, (7.7)

= β iϊη(0)=-ί,

where

a = Ul-e-2δM), β=l-{\-e-
2δε). (7.8)

Using the methods of Sect. 4, we calculate

= 1 + (M - ε)δ + (ε2 - M 2 ) (5 2 + O((53) ,

yf =

2(M - ε)5 + (3ε2 - 2M 2 - 2εM))(52

3(α - )8) + 3^ 2 2 2

= 1 + 3(M - ε)ί + (3ε2 - 6Mε)δ2 + O(δ3) . (7.9)

We are obliged therefore to look in y^ for higher order than linear in δ. To let
these be effective, we should not take the limit δ j 0 and we are thus facing the
problem of estimating exactly (i.e. in constructive terms) how good the approxima-
tion is. This was solved in Sect. 6. Recall to that effect that (3.2), (6.19) is 0{δ2) for
fixed N.

In summary, our strategy consists in writing down the constructive criteria for
ergodicity of an approximating PCA (as developed in Sect. 4) and then, to use the
estimates of Sects. 5 and 6 to correct for the error made by the approximation.

Proof of Theorem A. From now on, we fix δ > 0 and the integer N = 1, 2,. . .. We
consider two initial configurations η,ήeΩ and four continuous time processes,
ηuy\u σt and σt. The first two are the same spinflip processes (2.16)—(2.19) with rates
c(U') but started from η0 = η and ή0 = ή. Their PCA approximations are η{

n

δ\
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respectively ή(

n

δ\ as defined in (6.1). Similarly, (6.16)—(6.17) define the processes
σt and σt with σ0 = η and σ0 = fj. We will always take ή = ̂ J for some jeZd.

The spinflip processes ηt, ήt are easily coupled via the Vasserstein coupling T*h ^
that we first considered in Sect. 2d). For a fixed site i e Zd and integer n > 0 consider
the corresponding cube

H^= ^ ( Ϊ , w) = { j G ^ : - nr ̂ ja - ia ̂  nr, a = 1,. . ., d} , (7.10)

where r is the radius of interaction defined in (2.8) and (2.17). The complement of
W in Έd is denoted by Wc. We know from (5.6) that

X r ^ J ω i ) Φ ( r t ( θ ] ^ β " ε ί Σ 7, Σ r(ij1)...r(jk-ij)
K

The processes σt and σf are not Markovian but we can still construct a coup-
ling Rη>ιϊ (also non-Markovian) between them. This is done by taking the coupling
PCA Qf ή of Sect. 2d) between η(

n

δ) and ή(

n

δ) and applying the same construction as in
(6.16)-(6.17). For times t = Nδ,

R^^J[σt(i) Φ σf(i)] = QΓ'lηWiϊ) + fa'ΆO] , (7-12)

and thus, as in (3.6)—(3.8),

X^^σt(0Φσt(i)]^yΓ (7.13)
j

The four processes ηt,ήuσuσt can be coupled together in a coupling / / ^
which is the modification of Aη^ of Lemmas 2 and 3 to a coupling between Tη^
and K^ ̂ .

Let t = Nδ. We are interested in

δjS(t)f^ Σ δjsup T^}[_ηt{i) Φ ̂ (0] (7.14)

for/eD(Ω). £ "
The first case is when jφ W(ί, n). Then we can use the bound (7.11).
The second case is when j e W(i, n). Then, we proceed via

T^η]\_ηt(i) Φ ηt{i)Λ = Hη'ηJlVt(i) = σt(i); ήt(i) - σt(i); σt(i) Φ σf(/)]

+ H">"Xηt(i) + ̂ (i) or ηt(ί) Φ σt(i); ^ ( 0 Φ ^(01

^ R^^Cσ^O Φ σf(i)] + 2 sup l " [ ^ ( 0 Φ σ,(0] , (7.15)

n
where, as before, it is understood that ή = ηj.

From the proof of Lemma 3, (6.22), we have

A"[rιt{i)*σtm^z(N9δ). (7.16)

Combining (7.11)—(7.16) yields

\\\S(Nδ)f\\\SlE(n) + y{δ)-]\\\f\\\. (7.17)

Thus, minimizing (7.17) over n, we get that for all τ > 0,

γί™l ~ 1 sup \\\S(Nδ - s)f\\\ , (7.18)
0 < 5 < Nδ



Ergodicity of Interacting Particle Systems 465

where y = E(N, δ) + yff < 1. Note that for 0 ^ s < Nδ,

\\\S(Nδ - 5)/| | | ^ e(M-e)(Nδ-s) myiii ^ m a χ | 1 ? e(M-e)Nδ}j ( ? 1 9 )

It is therefore easy to see that for any 0 < t < T,

\\S(T)f- S(ήf\\ ^] dτ\\LS(τ)f\\
t

s\dτB\\\S(τ)f\\\
t

g ce~λt\\\f\\\ , (7.20)

1 Bmax{l9e
(M-ε)Nδ}

where we define constants 0 < / = -lny, c = —-Λ < oo. The
Nδ A

proof is concluded by noting that limΓ S(T)f exists (by (7.20)) and equals a con-
stant (by (7.19)). The set D(Ω) is dense in C(Ω) and this constant must therefore
equal the expectation value in the unique invariant measure. •

Proof of Theorem B. We must show that y^ + E(N, δ) < 1 for some δ, N. From its
definition

}.̂  = Σ sup βΓ'^Λ * rfV)]
j Ά

^ X + (2nr + l)d sup R™J\_σt{o) + σ f(o)] , (7.21)
JeW,c, η,j

where we have cut the sum in two parts: in the first term Wc

n is the complement of
W(o, n\ see (7.10); for the last term, we have used (7.12) at time t = Nδ. We will
choose the integer n > 0 later.

From (5.7) and (7.2) for <5 <O, a similar calculation as in (7.11) takes care of this
first sum

Σ ( QΓ'ίnfio) + (ηψ(on g ίδop
(

o

d) + KsF(o,j)

S [1 - δε + O(δ2nN Σ [ l >

j (7.22)
k ^ n k l

On the other hand, using the same notation as in the proof of Theorem A,

RthηJίσt(o) φ σt(o)-] ̂  T^^J[_ηt(o) Φ W\{o)^ + 2 sup l"[f/f(o) φ σt(o)]

^y( ί ) + 2z(iV,δ) (7.23)

where, by hypothesis, y(ί) = o(ί~d) as t t oo. Summarizing the above, we have
obtained that for all n > 0,

ff , (5) g [1 - δε + O(^ 2 )]^ X ^ ^ + (2πr + \)dy(t)

+ 2(2nr + l)dz(N, δ) + £(N, δ)

^ 2E(n) + (2πr + l)rfy(ί) . (7.24)
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Now let t = Nδ and choose n = [3MiV(5] = [3Mί]. Take first t very large so that

the second term of (7.24) is less than 1/3. We use (3.5) to estimate the remaining

term. The second term in (3.5) is not greater than

-

which can be made less than 1/6 by taking t large. From (6.27), the first summand in

(3.5) is bounded from above by

2(6Mrt + l)(eMt ~ \)~\ ( y + β)δ + 0{δ2) . (7.26)

So it can be made less than 1/6 by taking δ small enough. Hence the condition

Cδ

N holds. •

Acknowledgement. We thank the Institut de Physique Theorique, CNRS Luminy-Marseille
where part of this work was done, for their kind hospitality.

References

[A] Aizenman, M.: Absence of an intermediate phase for a general class of one-component
ferromagnetic models. Phys. Rev. Lett. 54, 839-842 (1985)

[ACCFR] Aizenman, M., Chayes, J.T., Chayes, L., Frδhlich, J., Russo, L.: On a sharp transition
from area law to perimeter law in a system of random surfaces. Commun. Math. Phys.
92, 19-69 (1983)

[AH] Aizenman, M., Holley, R.: Rapid convergence to equilibrium of stochastic Ising
models in the Dobrushin-Shlosman regime. In Percolation Theory and Ergodic
Theory of Infinite Particle Systems, ed. H. Kesten; IMA Vol. Math. Appl. 8, Berlin,
Heidelberg, New York: Springer 1987, pp. 1-11

[D] Dobrushin, R.L.: Markov processes with a large number of locally interacting
components: Existence of a limit process and its ergodicity. Problems Inform. Trans-
mission 7, 149-164 (1971)

[DS] Dobrushin, R.L., Shlosman, S.B.: Completely Analytic Interactions: Constructive
Description. J. Stat. Phys. 46, 983-1014 (1987)

[H] Holley, R.: Possible rates of convergence in finite range, attractive spin systems.
Contemp. Math. 41, 215-234 (1985)

[LMS] Lebowitz, J.L., Maes, C, Speer, E.R.: Statistical Mechanics of Probabilistic Cellular
Automata. J. Stat. Phys. 59, 117-170 (1990)

[L] Liggett, T.M.: Interacting Particle Systems. Berlin, Heidelberg, New York: Springer
1985

[MS] Maes, C, Shlosman, S.B.: Ergodicity of Probabilistic Cellular Automata: A construc-
tive criterion. Commun. Math. Phys. 135, 233-251 (1991)

[S] Spitzer, F.: Random processes defined through the interaction of an infinite particle
system. Springer Lecture Notes in Mathematics 89, 201-223 (1969)

[St] Steif, J.: The Ergodic Structure of Interacting Particle Systems. Stanford University
Ph.D. Thesis (1988)

[V] Vasserstein, L.N.: Markov Processes over Denumerable products of Spaces, Describ-
ing Large Systems of Automata. Problems Inform. Transmission 5, 47-52 (1969)

Communicated by J.L. Lebowitz




