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Abstract. A toy model of gravitational collapse in General Relativity is studied. It
consists of a spherically symmetric thin shell of dust with a fixed rest mass. The
configuration space is the half-axis and the Hamiltonian splits into a differential
operator of infinite order ("free" Hamiltonian) and a "Coulomb" potential. Har-
monic analysis on the half-axis is used to define the free Hamiltonian. For rest
masses comparable to, or lower than one Planck mass, the Kato-Rellich theorem is
applicable and one self-adjoint extension of the full Hamiltonian is found.
A boundary condition for the wave function results whose effect is to keep the shell
away from the singularity. This will lead to superposition of states containing both
black and white holes.

1. Introduction and Summary

The classical theory of gravity, General Relativity, suffers from the problem of
singularities. Gravitational collapse cannot be halted and it leads generically to
infinite densities and curvatures. This divergence contradicts the basic postulates of
the theory (e.g., locally Minkowskian spacetime, see e.g. [7]). A possible solution of
this problem is often sought in quantum theory. However, attempts to construct
quantum gravity have not been successful as yet.

In the present paper, we try to circumvent the construction of quantum gravity
by working with a more tractable model, which still suffers in its classical form from
the same disease. The model we choose is a spherically symmetric thin shell of dust
with a fixed rest mass M and its gravitational field as given by Einstein's equations.
Thin shells have become quite popular as models for various phenomena in recent
years (e.g. Refs. [1, 3, 15, and 19]).

In principle, there are at least two objections against the use of such minisuper-
space models. First, suppressing most of the degrees of freedom can destroy some
property of the original system which is relevant for the problem under study (cf.
[12]). Thus, in our case, the result that there is no thermodynamics may be due to
the freezing of all but one degree of freedom (see later). Second, canonical reduction
of the degrees of freedom to just the physical ones needs a gauge fixing which, for
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parametrized systems like ours, includes a choice of time. However, it is well-
known that quantum theories based on different choices of time will in general not
be unitarily equivalent ("multiple choice problem," see [11]). The criticism [4] of
the choice of proper time along the shell world sheet seems to touch this problem.
We will take an optimistic standpoint in this paper and assume that our minisuper-
space model gives, at least qualitatively, valid hints of what happens in gravi-
tational collapse.

The plan and the main results of the paper are as follows. In Sects. 2 and 3, we
study the classical Hamiltonian and the corresponding dynamics of the shell and
spacetime. The Hamiltonian is not bounded from below; the solutions with positive
energy are asymptotically flat spacetimes with topology R 3 x R ; the negative
energies correspond to the spacetime topology S3 x R. Thus, two different space
topologies are possible for this system. It is interesting that these two different
topologies do not live in separated components of the configuration space Ji of the
system: Ji = 3R+, (R+ = (0, oo)), which is connected. The second important prop-
erty is that the classical dynamics of the shell is incomplete: the shell collapses to
the singularity in a finite proper time, or its world sheet cannot be extended to an
arbitrary negative value of the proper time, as one again encounters a singularity.
Moreover, during the collapse of the shell, a future event horizon always forms.
Thus, there are singularities and black holes in this model as in General Relativity.

Any attempt to make classical dynamics complete by some condition at the
singularity meets with great difficulties. For example, it is impossible to impose
some "bounce from the wall" condition because of the causal structure of the
spacetime. The shell ends up at the so-called future singularity of the Kruskal
spacetime, and there is no (causal) way to extend the motion, because there are no
points in the spacetime which lie to the future of the singularity. Thus, one has to
extend the spacetime through the singularity. However, such an extension is a very
uncertain business (see e.g. [17]): different spacetimes can be attached to the
Kruskal one along its future singularity, a detailed way of how a particular one is to
be attached is not well-defined, and how the shell world sheet is to proceed in the
new spacetime is not determined. Physically, the shell undergoes an infinite squash-
ing with infinite forces and the gravitational field experiences points with infinite
curvature.

In Sect. 4, we define the Hubert space and the basic operators for the system.
Since the configuration space is R + , this definition is not straightforward. To deal
with this problem we follow ref. [8]. Then, we choose a factor ordering in the
Hamiltonian which seems to be the simplest one. We are confronted with an
unusual situation of an operator which is of infinite order in derivatives. In Sect. 5,
we describe the harmonic analysis on R+ and construct by this tool a one-
parameter family of self-adjoint extensions of the free Hamiltonian. The most
important properties of the corresponding domains are: the wave functions must be
CQ (10, oo)), and must satisfy a rather strict boundary condition at the singularity:

^ ( 2 π )(0)sinα + ^<2"+ 1 )(0)cosα = 0 V« = 0,l (1)

where α e (— π, 0] is the parameter distinguishing the different extensions. The
appearance of all derivatives is due to the infinite order of the operator.

In Sect. 6, we use the Kato-Rellich theorem (see e.g. [16]) to find a self-adjoint
extension of the full Hamiltonian. This works only a) if the rest mass of the shell is
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comparable to, or lower than, about one Planck mass, and b) for one value of α,
namely α = — \n. Then, the domain of the constructed full Hamiltonian coincides
with the domain of the free one. We have no proof that this is the only possible
extension. In any case, this particular extension leads to a particular boundary
condition at the singularity, namely that ψ{2n)(0) = 0 for all n = 0,1, . . . . This
implies immediately that the probability | ψ(0) | 2 to find the shell at the singularity is
zero. We also find the probability current J{x\ which is conserved as a conse-
quence of the Schroedinger equation, and show that the above boundary condition
leads to vanishing of this current at the singularity (this holds for all α).

It is instructive to compare the boundary condition (1) in the quantum theory
with the above described attempts to make the classical theory complete. (For
a rigorous discussion of incompleteness of dynamics, classical and quantum, see
[16], p. 146). First, the problem to make a quantum theory complete seems to be
mathematically better defined than the corresponding classical one. One has to find
a self-adjoint extension of the Hamiltonian; the question of how many self-adjoint
extensions a given symmetric operator can possess, and what these extensions are
has been, at least in principle, completely answered by von Neumann's theory of
deficiency indices. In our particular case, we have so far only one extension, and it
seems plausible that there could be at most a one-parameter family of them.

Second, usually (and it is so in our case) the domain of the extended operator
contains only functions which satisfy certain conditions at the relevant boundaries.
Now, the boundary condition (1) has no sensible analogy in the classical theory,
because of the causal structure of the classical solutions: the quantum theory seems
to disregard this structure. There is no paradox, however. The quantum system
need not obey a causal structure of any fixed classical spacetime or even of a class of
such spacetimes. The reason is that the full quantum dynamics of the system "shell
& gravitational field" is not a dynamics within a particular spacetime. The wave
function contains information about the state of the gravitational field as well as
that of the shell. The boundary condition at the singularity can lead to such a broad
smearing of the wave packet, that a state of an infalling shell in a shrinking
three-space (three-geometry is a point in the configuration space of gravity) is
superposed with a state of an outgoing shell in an expanding three-space. That is,
a state of a shell and a three-space falling into the future singularity is combined
with that of the shell and three-space just leaving the past singularity. For shells
that reach infinity, these two states cannot coexist within one classical spacetime:
either the shell collapses and there is only a future singularity, or it expands and
there is only a past one. This leads to a rather surprising conclusion: quantum
evolution of a low-mass shell that starts at a given J can in principle be always
finished at the same / - n o contradiction seems to result. However, more work will
be necessary to understand this point.

One can also compare our boundary condition with those imposed in quantum
cosmology: Linde's [14] and Vilenkin's conditions [18] and the Hawking-Hartle
no-boundary proposal [6]. There are two differences. First, the causal structure of
classical solutions describing processes involving black holes is very different from
that of a cosmological model. One can be mislead by the presence of event horizon
to believe that any condition at the singularity is superfluous: if the shell crosses the
horizon, its fate is sealed, etc. However, black holes are leaky in the quantum
theory, because they are smeared with white holes. Second, each of the conditions
in cosmology is one of the main assumptions of the theory. Condition (1), however,
is derived from another assumption, namely "The Principle of Unitarity' (for
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arguments in favor of unitarity in quantum gravity, see [9]). Thus, it is an "output"
rather than an "input."

It seems quite plausible that there will be scattering states in the quantum
mechanics we have constructed: a wave packet coming in from infinity, bouncing at
the singularity and going back to infinity. What will be an interpretation of such
a process? This will depend on the form of the wave function in a neighbourhood of
the singularity. In particular, the relation

between the minimal and the Schwarzschild radius of the shell seems to be
a relevant parameter. For example, γ could depend on the energy < # > in such
a way that a threshold Eb for the formation of black holes (γ < 1) would result (cf.
[5]). Then, for the energies higher than Eb, the scattering state would describe some
extreme form of the Hawking effect. However, as the evolution is unitary, no loss of
information seems to result and no thermodynamics seems to be applicable. In any
case, more work on this simple model is necessary before it can be completely
understood.

2. Self-Gravitating Spherically Symmetric Dust Shells

In this section, we briefly introduce the classical model following closely ref. [1].
The classical paper on the dynamics of thin shells is ref. [10].

The world sheet Σ of a thin shell is a common three-dimensional boundary of
two spacetimes. Let us call these "out"- and "in"-spacetimes, JP+ and M-. Jl+ and
M- must satisfy the Einstein equations. As we consider only a spherically symmet-
ric situation, they must be Schwarzschild spacetimes for two different mass para-
meters m+ and m_. We assume that the shell is the only source of gravity; then, M-
is a part of Minkowski spacetime which does not contain the null infinity.
Consequently, m_ = 0, and m = m+ is the total mass of the system. On Σ, we can
introduce the coordinates τ and p such that the induced metric on Σ takes the form:

ds2 = - dτ2 + ρ2{τ)(d92 + sm23dφ2).

Here, τ is the proper time along the world sheet and ρ(τ) is the radius of the shell at
the time τ. Finally, we suppose for the sake of simplicity that the shell consists of
dust. Then, its 3-energy-momentum tensor takes the form

M
κι 4πp<

where M is the total rest mass of the shell. Shells with different rest masses are
different dynamical systems. M is "constant" over the whole of the phase space, (it
is not a dynamical variable), whereas m is constant only along the dynamical
trajectories (it is a dynamical variable).

The Einstein equations imply the following master equation for the motion of
the shell:

+p2- 2l2mp~2 = Prnp'1 . (2)
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Here, σ is a' sign giving information about what part of the Kruskal manifold with
mass m is taken as Jί+: σ = + 1 , if this part does not contain the two-surface where
the two horizons cross each other, and σ = - 1 otherwise. / is the Planck length;
the units are chosen such that h — c = 1.

From Eq. (2), one obtains the energy by solving it for m:

E{p,p) = Mj\+p2-βp-\ (3)

where

The equation of motion for the shell is obtained by differentiating (3) and excluding
the invalid root p = 0:

M

The classical Hamiltonian h(p, π) which reproduces the equation of motion and
the value (3) of the total energy is uniquely determined to be

ft(p, π) = Mcosh(π/M) - β/p , (4)

where π is the momentum conjugate to p,

p = sinh(π/M) . (5)

Let us just mention that a charged dust shell will have a Hamiltonian of the
same form with

where Q is the electric charge of the shell (cf. [1]). Thus, many results obtained in
the present paper apply as well to charged shells (but can have a different physical
interpretation). The problem will be studied in a later paper.

We finish this section by introducing dimensionless quantities which will
simplify further work. The coordinate x, the conjugate momentum p, the time t and
the Hamiltonian H are defined as follows:

x = Mp, p = π/M ,

ί = Mτ, H = h/M.

Equations (4) and (5) become

H(x,p) = coshp-β/x, (6)

x = sinh p . (7)

3. Properties of the Classical Dynamics

In this section, we are going to discuss some important features of the classical
Hamiltonian (6).
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A) The dynamics is incomplete. We can easily show that each solution of Eq. (3)
runs off to p = 0 in a finite time, either forwards, backwards, or both. Indeed, we
can write (3) in the form

where

Mp

F e f f(p) is an increasing function of p in the whole interval [0, oo), and

Ke f f(oo)= 1 -m2M~2 .

Hence, there are only three types of solutions.

1) m ^ M, p > 0. The world sheet of the shell starts at p = 0 at a finite time τ_,

and approaches p = oo with τ = + oo and p = yj — Feff(oo).
2) m ^ M, p > 0. This motion is the time inversion of the first one.
3) m < M. The world sheet starts at p = 0 at a time τ_ and p = oo, reaches

a turning point with

Po = β/(M - m)

and falls back to p = 0 at a time τ+ and p = — oo.
These properties of the shell dynamics reflects the main problem of classical

General Relativity: the gravitational collapse to the singularity. The part of the
classical solution which describes the spacetime also becomes singular. It is just the
Kruskal manifold with the value m of the mass parameter.

B) H is not bounded from below. We observe that the Hamiltonian (6) is not
bounded from below on the phase space Γ = R + x l R , x e IR+, p e R. For a relativ-
istic theory, the Hamiltonian not only is to be bounded from below, but it is to be
non-negative. For classical General Relativity, there is a proof of the positivity of
the total energy [20]. It looks like a paradox, therefore, that our Hamiltonian -
which is a Hamiltonian of a general relativistic system - can be negative. The
solution of the paradox is that our classical solutions with negative energy cannot
be asymptotically flat (total energy is defined at the infinity of an asymptotically
flat spacetime). Thus, the part of the Schwarzschild spacetime which plays the role
of Jί+ must not contain the infinity in these cases. For m = 0, JK+ is simply the
same part of the Minkowski spacetime as M-. If these manifolds are glued together
along their isometrical boundaries, a spacetime with the topology 5 3 x R will
result. Similarly, for m < 0, M+ is that part of the Schwarzschild solution with
negative mass, which contain the (timelike) central singularity. Again (if we add
these singular points to the spacetime, for each value of the time coordinate one),
we obtain the topology S 3 x R .

This is a situation which is not quite common from at least two points of view.
First, the "topology of the classical solution" for our system seems to allow two
different values, but the phase space of the system is connected. Different topologies
can exist in neighbouring points of the phase space! Second, a very important part
of the physics of our system is clearly not determined by the structure of its
Hamiltonian only. Knowing the expression (6), we can calculate the function x(t).
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However, from this function or just from the expression (6), we cannot infer that
there is a spacetime and what is its geometry. Neither does the expression (6) alone
tell us anything about how the classical system avoids spending arbitrarily large
energy. One can try to explain this situation as follows. By canonically reducing the
system, one has to solve the constraints for the dependent variables. This is the
geometry of the space in the present case. Then, one obtains this geometry (and so
the topology) as some function of the "true dynamical variables" x and p. Thus, the
full classical solution - that is a motion of the shell in a spacetime - can be
reconstructed only after this function is given together with the Hamiltonian.

4. Quantization: The First Steps

The problem of quantization of a system with a configuration space R+ is not
trivial. We will use the method described in ref. [8], p. 1162. Very briefly, the
Hubert space is J2?2(R+, x~1dx), and the basic observables are the coordinate
x and the phase space function Π = xp. These can be represented by the operators

xφ(x) = xφ{x),

Πψ(x) = -ίx — ψ(x),

which can be made self-adjoint. The next problem is to define cosh p. Let us denote
the corresponding operator by H° (the Hamiltonian of the "free theory"). We have

Thus, coshp is a function of p2 .p2 is expressed by means of x and Π as follows:

and we choose the simplest factor ordering making the operator symmetric with
respect to the measure x - 1 dx:

γΠχ-112 = -χ-1/2Aχ-112 , (8)

where
A = (d/dx)2 .

The following definition seems, therefore, natural

Many calculations will be simplified if we transform to i f 2 ( R + , dx) using the
unitary map

defined by
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The operator (8) goes over into — A and (9) into

00 (— \ ) n

Thus, the study of the operator (9) in !£ 2(IR +, x ~* dx) is equivalent to that of the
operator (10) in 3?2(R+, dx). We can utilise the well-known self-adjoint extensions
of A on 5£2(R+, dx) and the fact that H° is a function of it.

5. Harmonic Analysis on IR+

Harmonic analysis - that is, roughly speaking, the expansion in the generalized
eigenfunctions of a Laplacian - will be a key to the properties of the Hamiltonian.
We start this section by collecting relevant points about the Laplacian on 1R+ and
then pass to investigation of the free Hamiltonian.

The self-adjoint extensions Δa of the Laplacian on 1R+ can be parametrized by
the parameter α e ( — π, 0] (see, e.g. [16], p. 144). The functions from the corres-
ponding domains satisfy the following boundary condition at x = 0:

ιA(0)sinα + ^'(0)cosα = 0 . (11)

The complete orthonormal ((5-function-orthonormal) set of generalized eigen-
functions of Aa have the form

Φ«(p, x) = aa(p)e ~ipx + K(p)el*>x . (12)

Equation (11) implies that

[α«(p) + b α (p)]sinα + [ - ipaΛ(p) + ίpba(p)']coscc = 0 (13)

for all p. From Eq. (13) and the normalization condition, we obtain (up to a phase
factor):

aa(p) = (2π)" 1 / 2 J
-h s m z α

-^/p^cos^oί + siirα

or
/^/ ,inpcosoccospx - smasmpx

φ β(p, x) = (2/π)1^2 ^ ^ . =J-. (14)
/ z s α + s in z α

In particular,

The corresponding generalization of the Fourier transformation is defined by

] p , x ) , (15)
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and

ψ(p)=]dxφ(x)φ*(p9x). (16)
o

We have, for any α, that

We consider Eqs. (15) and (16) as defining a unitary transformation, F α , and its
inverse, i 7 " 1 ,

The transform of H° is simply

The natural domain for tiiis operator in i ? 2 ( R + , dp) is Cc?(R+): C Q > ( I R + ) is dense
in i ? 2 ( R + , dp), coshpφ(p) is square integrable for any \j/(p)eCo(R+) and cosh p
is symmetric on C ^ I R - H ). Let us denote by H% the symmetric operator H° with the
domain Fα(Co )(R+)). The next two theorems describe important properties of the
domains.

Theorem 1. Each φ(x)eFa(Co (R + )) is an entire analytic function of x.

Proof Equation (15) can be considered as an ordinary Fourier transform of some
function on the whole real axis. Indeed, define the map,

by

» P™*-*<*** ftp) f o r p > 0 ,
cos α + sin α

Ί-i/2 pcosα + isinα ~
= 2 1 / 2 =ψ(—p) for p < 0 .

Λ v /p 2 cos 2 α + sin 2 α

First, χα is clearly an isometry. Second, we easily see that χa maps C Q ) ( R + ) on
Cg^R) as \[r(p)eC${WL+) must vanish in a whole interval [0, ε), ε > 0. Finally,

Then, as (χaψ)(p)e C Q ^ R ) , the Paley-Wiener theorem (see e.g. [16], p. 16) implies
the claim, QED.

Theorem 2. Each ί^(x)GFα(Cg )(R+)) satisfies Eq. (1),

φi2n)(0) sin a + ι/Λ2/ι+1)(0)cosa = 0

/or a// non-negative integers n.
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Proof. Let φ(p)eCo(Wί + ); then

ι/^>(0) = J dpφ(p)l(- ip)kaa(p) + (ip)kK(pΏ
o

for each integer k. Thus,

ί dpψ(p)l{- ip)2naa(p)ύna + (ip)2nK(p) sin a
o

= J dpψ(p)(- I)"p2"[(fl«(p) +
0

+ ( - ίpaa(p) + ipba(p))cosα] .

The claim follows immediately from Eq. (13).
A simple corollary of Theorems 1 and 2 is that

for αΦα'. Indeed, an analytic function is uniquely determined by its Taylor
expansion at the origin, and any pair of equations of the form (1) with α φ α have
only the zero solution in common. Another consequence is that

\ψ(x + ί) + \ψ(x- ί) (17)

The next task is to find self-adjoint extensions of the symmetric operators H%.
We can use von Neumann's theory of deficiency indices (see, e.g. [16], p. 135) to
obtain the following theorem.

Theorem 3. The operator ί/J with the domain Fα(Co)(IR + )) is essentially self-
adjoint for each a.

Proof The deficiency subspaces JΓ+ of i/J are defined by

Let us consider the right-hand side in J£? 2(1R + , dp). The operator H% is represented
by multiplication by coshp there. It is obvious that

if φ(p)eCo(Ί^+). Moreover, coshp + i is bounded below from zero on the real
axis:

| coshp± i\2 ^ 2 .

It follows that
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and

Ran(coshp ± i) = C<§(R+).

However, CO^IR-H) is dense in $£2(IR+, dp) and so only the zero vector can be
orthogonal to it. QED.

The self-adjoint extension of an essentially self-adjoint operator is obtained by
closure. Will the boundary condition (1) survive the operation of closure? The
corresponding domain is the completion of the Dom(H%) with respect to the
"scalar product" (see e.g. [16], p. 138)

(φ9ψ)Λ = (φ9ψ) + (H°φ,H°φ).

Thus, the Fourier component of each element of Dom(i7£) must be integrable with
cosh2/? (as usual, A denotes the closure of the operator A):

00

ί dp\φ(p)\2 cosh2 p < oo .
0

Then,

]dp\${p)\2p" <ao.
o

for all n ^ 0. Thus, we can differentiate behind the sign of integral similarly as in the
proof of the Theorem 2 to show the following:

Theorem 4. Let φ(x)eΌom(H%). Then,

and φ(x) satisfies the boundary condition (1).

It follows that Dom(H%) and Dom(i7°) can have non-trivial common ele-
ments, but all derivatives of these functions must vanish at the origin. Moreover,
Eq. (17) holds on the core of fij for any α. In ref. [2], all solutions of the "eigenvalue
equation"

-ψ(x + i) + -ψ(x-i) = εψ(x)

have been found. In particular, φ(x) = e~λx is a square integrable solution for any
λ > 0 with ε = cos λ. There is an infinite "degeneration" for a fixed value of ε:

λ = arccosβ + 2mr, neZ+ . (18)

However, these functions do not satisfy Eq. (1), and so they are^not eigenfunctions
of H j for any α. Of course, the generalized eigenfunctions of H® are given by Eq.
(12) or (13); the free Hamiltonian has a purely continuous spectrum.

Thus, we have obtained quite a complete theory of the free Hamiltonian. It will
be applied in the next section.
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6. Construction of a Unitary Quantum Theory

The harmonic analysis on IR+ was a useful tool for the construction of the free
theory. For the interacting theory, we need a new idea. We will find it in the
Kato-Rellich theorem (see e.g. [16], p. 162). The application of this theorem to the
full Hamiltonian H gives the following:

Theorem 5. The operator

H = H°-πl2-βχ-1

with the domain Όom(H°-π/2) is self-adjoint, if

β<(π/2y<2κ, (19)

where

. cosh p
K = mm

+ V

(As K « 1.51, the mass of the shell has to be smaller than about two Planck masses)

Proof The Kato-Rellich theorem has two conditions, which read in our case:

Dom(i7£) c D o m ( - βx'1), (20)

and
|| - βx-'φW2 S A2\\mψ\\2 + B2\\ψ\\2 (21)

for all ^ e D o m ( i / £ ) n D o m ( - βx'1) with A < 1 and £e!R. The condition (20)
can only be satisfied for α = — π/2, as Eq. (1) then implies that φ(0) = 0, and the
Theorem 4 guarantees that ψ'(0) exists. For other α's, Dom(5α°) contains functions
with ψ(0) Φ 0, so that || - βx ~x φ | | 2 diverges.

The inequality (21) can be shown for any α if β satisfies (19). Consider ψe
Dom(//α)nDom( — βx'1). The condition (1) implies that this is equivalent to

^ and ^(0) = 0. Then,

φ(x)= j dpψ(p)φa(p9x),
o

where ^ ( p ) e C o ) ( R + ) and satisfies the equation

Hence, we can write

]φΛP'X)-φΛP'°\ (22)
X0

Using Eq. (14), we find easily that

V«(p,x)-ΨAP,O)= _ ( π / 2 ) - 1 / 2 p

x

f
2 cos 2 α + sin2 a Px/2

sin α sin px ~|

cos 2 α + sin 2 α Px J
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Substituting this into (22), we obtain

\x~'φ{x)\2 ^{2/π)] dp\pφ{p)\2 .
o

The above definition of K yields that | p | ^ K ~ί cosh p, so

\x~ V W I 2 ^ (2/π/c2) J dp\coshpφ(p)\2 .
0

Integrating this inequality from 0 to 1, one finds

] dx\x~^(x)\2 ^(2/πκ2)\\coshpφ(p)\\2 . (23)
o

The following inequality holds

J dx\x~ VWI 2 ^ ϊ rfx^WI2 ^ ϊ dx\φ(x)\2 . (24)

The inequalities (23) and (24) imply the claim immediately. QED.
In this way, we have managed to construct at least one self-adjoint Hamiltonian

H. The corresponding quantum mechanics will be unitary; the evolution will be
given by the Schroedinger equation

ί^φ = Hφ. (26)

The wave functions φ must be C °° and must satisfy the condition

^(2M)(0) = 0 , n = 0 , l , . . . , l . (27)

It is, however, difficult to see, at the present moment, the significance of the fact that
we could construct such a mechanics only for very light shells (very light indeed!).
Either it exists for heavier shells as well, but one had to use different methods to
find it, or there are no self-adjoint extension of if for the heavy shells. The last case
would be analogous to that of the Dirac electron in an external Coulomb field: if
the central charge becomes 137 e or larger, then there is no self-adjoint extension
(see, e.g. [13]). The physical interpretation is that electrons with low value of
angular momenta fall on the center. In fact, it is quite plausible that a zero mode
appears among the eigenfunctions of our Hamiltonian if the mass increases, and
that this happens in a neighbourhood of the Planck mass.

We can get a nice interpretation of the boundary conditions (1), if we observe
that there is a conserved probability current J(x) for the Schroedinger equation
(26). J(x) is given as usual by

J\x) = i{φ*Hφ-φHφ*),

so that
(φ*φ)' + Jf = 0.

We can calculate J, if we write the right-hand side of (26) as follows:

Σ ' l ' i 2 Λ y ( χ ) P χ
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and the series converges (at least for the function from the core of the operator).

Then, we obtain easily

„ = ! (2n)l k=ί

(28)

We show that J(0) = 0 in consequence of the condition (1). Indeed, if n = 2m, the

fc-sum in (28) can be written as follows:

1=1

r/|/,*(2I-2)(L(2n-2ί+l) _

(ψ(2l-l)ψ*(2«-2l)_ψl

whereas, if n = 2m -f 1, we obtain the same expression plus the following additional

term:

ίJJ*(2m)ψ(2m+l) _ ψ(2m)ψ*(2m+l)\

We can see immediately that all round brackets in the above expressions vanish if

Eq. (1) holds, and J = 0. Hence, the shell cannot cross the singularity.

In ref. [1], some square integrable solutions to the following equation:

\ Ψ(x + i) + \ιl'{x-i)-βχ-1 ψ(x) = εψ{x) (29)

have been found. What is the significance of these? The left-hand side of Eq. (29)

can be considered as Hφ, if φ is from the core of the operator. Thus, the solutions

could be eigenvectors of H and describe some bounded states. However, they do

not satisfy the boundary condition (27). Moreover, one easily verifies that they are

not orthogonal to each other. Hence, they are not eigenvectors of any self-adjoint

operator whatsoever. In any case, there is no proof that our Hamiltonian has any

bounded states.
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