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Abstract. The geodesic flow of a perturbation of the Schwarzschild metric is
shown to possess a chaotic invariant set. The perturbed metric is a relativistic
analogue of Hill's problem in classical celestial mechanics in that it models the
effects of a distant third body.

1. Introduction

This paper is concerned with a dynamical system which models the motion of a
small mass near a black hole but also subject to the gravitational effects of
a third, more distant mass. It is shown that under certain conditions, the system
posesses hyperbolic periodic orbits with transverse homoclinic orbits. The
resulting chaotic dynamics contrasts sharply with the behavior of the better-
known general relativistic systems, which have turned out to be completely
integrable.

In classical celestial mechanics, the motion of a small point mass around
a large mass is modelled by the Kepler problem. The effects of a third mass
could be treated as a perturbation. For example, a perturbing potential due to
Hill is sometimes added to describe the effects of a distant third mass [Hill].
The Kepler problem is completely integrable. In fact, it possesses additional
constants of motion beyond those required for integrability with the result that
all of the bounded orbits are periodic rather than merely quasi-periodic as is
typical for integrable systems. However, integrable systems are rare and delicate.
One expects that most perturbations will destroy the integrability. This is dif-
ficult to show for perturbations of the Kepler problem because the unperturbed
problem is so degenerate.
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The relativistic analogue of the Kepler problem is the Schwarzschild problem
which describes the motion of a small point mass around a spherically symmetric
black hole. Because of the symmetry, this problem is also completely integrable,
but it does not possess additional constants of motion like the Kepler problem
does. Several perturbations of the Schwarzschild problem have been studied.
Among them are models of axially symmetric rotating black holes (the Kerr
problem) and of electrically charged black holes (the Reissner-Nordstrom
problem). Oddly enough, these also lead to completely integrable dynamical
systems. One still expects that most perturbations will be nonintegrable. The
problem is that not many physically valid perturbations have been studied. One
reason for this is the difficulty of solving the Einstein equation (the relativistic
analogue of Laplace's equation for the gravitational potential). In particular, a
rigorous description of the effects of a third mass has not been found. In this
paper, an approximate model for these effects is obtained under the same
conditions as the classical Hill's problem. This model is a solution of the
linearized Einstein equation which behaves like the Hill problem in the classical
limit where gravity is relatively weak.

Once the relativistic model has been constructed, it remains to study the
resulting dynamics. The nonintegrability is demonstrated by an application of
the Melnikov integral method for finding transverse homoclinic orbits. In the
unperturbed Schwarzschild problem there is a hyperbolic periodic orbit with
nontransverse homoclinic orbits (no such feature is present in the Kepler
problem). Certain branches of the stable and unstable manifolds of this orbit
coincide. The Melnikov integral allows one to prove by explicit computation
that the perturbation will split the stable and unstable manifolds apart so that
they intersect transversely. Then the existence of chaotic orbits follows in the
usual way. From the mathematical point of view, an interesting feature of the
computation is the fact that the size of the splitting of the stable and unstable
manifolds turns out to be exponentially small in a certain parameter.

The paper is divided into sections. Section 2 compares the Kepler problem
with the Schwarzschild problem and establishes the existence of the hyperbolic
periodic orbit and homoclinic orbits for the unperturbed Schwarzschild problem.
This is all well-known. Section 3 contains the construction of the perturbation
analogous to Hill's problem. Section 4 is devoted to the computation of the
Melnikov integral and the observations about exponentially small splitting.
Finally, Sect. 5 contains the rather colorful interpretation of the results in
physical terms.

2. The Kepler Problem vs. the Schwarzschild Problem

The Kepler problem is the classical (non-relativistic) model for the motion of a
point particle under the gravitational influence of a large mass. A large mass, M,
located at the origin in R3 sets up a gravitational acceleration field which is the

M
gradient of the Newtonian potential function Φ(x)=—, where r = | x | , the

Euclidean distance from the origin. The Newtonian potential function can be
characterized by four properties: it is time-independent, spherically symmetric,
dies out at infinity, and solves the Laplace equation:

V2Φ(x) = 0.
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The motion of the point particle is described by the differential equation:

x=VΦ(x).

The relativistic analogue of the Kepler problem is known as the Schwarzschild
problem. Before describing this it is appropriate to present a brief account of
some of the principles of general relativity. For more information on relativity
and the Schwarzschild problem, good references are [MTW, O'Neill, and Sch].
A moving particle is described not by a curve x(t) e R3 but rather by a so-called
worldline in spacetime: γ(τ) = (t(τ),x(τ))eR4. Here the parameter τ is the proper
time of the particle, that is, the time as measured by a clock carried along with
the particle. The other time parameter t turns out to be the time as measured by
an observer at rest far from the origin. Gravitational effects are described not
by a potential function, but rather by a Lorentzian metric on R4. Even in the
absence of massive particles spacetime is equipped with such a metric, namely
the Minkowski metric:

dx1®dx1+dx2®dx2

The presence of a massive particle changes the metric. To describe it, it is
convenient to introduce spherical coordinates (r, θ, φ). In these coordinates the
Minkowski metric is:

g= — dt®dt + dr®dr + r2dφ®dφ + r2 sin2 φdθ®dθ.

A particle of mass, M, at the origin changes this to:

g= -A(r)dt®dt + A-1(r)dr®dr + r2dφ®dφ + r2 sin2 φdθ®dθ, (2.1)

2M
where Λ(r) =1 . This is known as the Schwarzschild metric. It is charac-
terized by four properties analogous to those which determine the Newtonian
potential function: it is time-independent, spherically symmetric, converges to
the Minkowski metric at infinity, and solves the Einstein equation:

Ric(g) = 0,

where Ric is the Ricci curvature tensor (a symmetric rank-two tensor obtained
by contracting the Riemann curvature tensor). The motion of a point particle
under the influence of this mass is described by a worldline γ(τ) which is
a geodesic of this metric. More precisely, γ is a unit-speed, time-like geodesic,
that is, g(/(τ),y'(τ)) = —1. The differential equation for a geodesic is:

where Vy> denotes covariant differentiation along the curve.
It is interesting to compare the motions predicted by the classical and

relativistic models. Only bounded, planar motions will be considered. The
Kepler problem in the plane can be formulated as a Hamiltonian dynamical
system of two degrees of freedom. Let

H=±\p\2-Φ(x),

where xeR 2 is the position of the point particle and peR2 is its momentum
(in this case/? = x). There are two simple constants of motion for this system, the
energy H and the angular momentum Ω = r2φ, where r and φ are polar co-



418 R. Moeckel

ordinates in the plane. Since there are only two degrees of freedom, the system is
completely integrable. The well-known procedure for finding the orbits is to use
the angular momentum to eliminate φ and thereby obtain a system with one
degree of freedom for r:

where h is the energy. It is also traditional to make the substitution u = -

and use φ instead of t as a parameter. The following equation for u(φ) is the
result:

Ω2u\φ)2 = 2h + 2Mu-Ω2u2. (2.2)

For h < 0 this leads to the familiar elliptical orbits with one focus at the origin.
The geodesic flow of the Schwarzschild metric can also be formulated as

a Hamiltonian system, this time with three degrees of freedom. First, it is well-
known that geodesic flows are Lagrangian dynamical systems with Lagrangian
equal to the kinetic energy:

If one introduces the conjugate momenta

E= A(r)t', p = A~ \rY, Ω = r2φ',

then the Hamiltonian is:

(2.3)

There are three simple constants of motion: the energy H——\ (recall the unit
speed requirement), the angular momentum Ω and the conjugate momentum of
t,E. The equation for u(φ) is now:

Ω2u\φ)2 = E2- A(u){ί + Ω2u2) = (E2 -1) + 2Mu- Ω2u2 + 2Mfl V . (2.4)

Comparison with (2.2) shows that, in a sense, the transition from the classical
model to the relativistic one is accomplished simply by adding a cubic term to
the orbit equation. For small values of w, that is, for large values of r, the two
models will yield similar orbits, however, near the mass M, the effects of the
change are profound.

The coefficient A(r) in the Schwarzschild metric (2.1) vanishes at r = 2M, the
Schwarzschild radius. This is the edge of a black hole. By means of clever
coordinate changes it is possible to remove the singularity at r = 2M and it is
possible for geodesies to cross the edge smoothly. Once inside, however, they are
forced to the real singularity at r = 0. This can be seen intuitively by noting
that for r<2M the signs of the coefficients of dt®dt and dr®dr are reversed.
The radial coordinate behaves in certain ways like a time coordinate and in
particular, it is monotonic (decreasing in this case) along geodesies. For the
purposes of this paper it is enough to remember that once a geodesic crosses the
Schwarzschild radius it goes to meet its maker.

More insight into the differences between the classical and relativistic flows
can be obtained by comparing the functions oil the right-hand sides1 of Eqs.
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(2.2) and '(2.4). In each case these are of the form: a constant minus a poly-
nomial P(u). The u coordinate is confined to the region where P(u) is less than
the constant. Different kinds of orbits are obtained by choosing different values
of the constant. For simplicity, it will be assumed without loss of generality that

Figure 1 shows P(u)= —u + Ω2u2 for the Kepler problem. For a negative h,
the orbit will oscillate between two fixed radii, namely the semiminor and
semimajor axes of the ellipse. At the critical point of P(u), these two radii are
equal and one obtains a circular periodic orbit.

Figure 2 shows P(u) = — u+Ω2u2 — Ω2u3 for several choices of the constant Ω.
Given the choice of M9 the Schwarzschild radius is r = u = 1. Any orbit for which
u increases beyond 1 disappears into the black hole.

For low angular momentum, Ω 2 <3, every bounded orbit suffers this fate.
At Ω2 = 3, a bifurcation occurs. For Ω2 > 3, there are two circular orbits at the
critical points of P(u). The minimum is stable while the maximum is hyperbolic.
The phase portrait in the (r,p) plane is shown in Fig. 3. One branch of the
unstable manifold of the hyperbolic point meets a branch of the stable manifold
to form a homoclinic orbit. The other branches lead to the black hole. The

2 h - -

Fig. 1

Ω 2 <3

3<Ω2<4 4<Ω 2

Fig. 2
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homoclinic connection will be exploited later to prove the nonintegrability of
a certain perturbation of the Schwarzschild problem. The critical value cor-
responding to the homoclinic orbit is E2 = § when Ω2 = 3 and it increases with
Ω thereafter. For Ω 2 >4 the homoclinic orbit disappears because the relevant
branches of the stable and unstable manifolds become unbounded.

3. Hill's Problem and a Relativistic Analogue

Hill's problem is a perturbation of the Kepler problem invented by G. W. Hill
to describe the motion of the moon around the earth. The idea is to view the
earth-moon system as a two-body problem which is perturbed by the gravity of
the sun. Since the distance to the sun is large compared to the distance between
the earth and the moon, the gravitational effect of the sun is almost the same for
the earth as it is for the moon. In other words, the relative acceleration of the
two produced by the sun is small. Hill's idea was to expand this relative
acceleration as a power series and keep only the dominant terms as the
perturbation [Hill].

To derive the form of this perturbation, imagine that the earth and the sun
are moving in a circular orbit of the two-body problem. Introduce coordinates
centered at the earth which rotate in such a way that the sun remains on the
positive x^axis at position X=(R,0). Suppose the moon is at position xeR 2,
distance r from the earth and distance ρ from the sun (see Fig. 4). Furthermore,
let the mass of the earth be \ and the mass of the sun be M. The acceleration

produced by the sun on the moon is 3 , while the acceleration produced

Fig. 3

Fig. 4
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by the sun on the earth is —3- . The relative acceleration is the difference of
the two. R

Hill's approximation is obtained as follows. First, introduce polar coordi-

nates (r, φ). Then ρ2 = R2 + r2 — IRrcosφ. Expanding -3 in powers of — and
ρ R

substituting only the constant and linear terms into the relative acceleration
gives the approximation (back in rectangular coordinates):

M

for the relative acceleration. This is the gradient of the potential function:

M
where κ=—j measures the size of the perturbation and P(φ) = 3cos2φ — 1

R
(a Legendre polynomial in cosφ). Hill's problem is obtained by adding the
perturbing potential Ψ to the Hamiltonian of the Kepler problem in the rotating
coordinate system. The effect of the rotation of the coordinate system can also
be viewed as a perturbation of the Kepler Hamiltonian. If the frequency of the
rotation is ω, the perturbation is simply ωΩ in polar coordinates.

It is possible to construct a perturbation of the Schwarzschild problem
analogous to Hill's perturbation of the Kepler problem. Since gravity is modelled
by the Lorentzian metric of spacetime, what is required is a perturbing metric, h,
rather than a perturbing potential function. The construction of h is complicated
by the fact that the Einstein equation is nonlinear. Thus one does not want h
itself to satisfy the equation, but rather the total metric g+h, where g is the
Schwarzschild metric (2.1). Now it is notoriously difficult to solve the Einstein
equation. Very few explicit solutions are known. In particular, it is not known
how to construct a metric which models the gravitational effects of two large
masses. Since the problem at hand concerns a small perturbation of g and is
intended only as an approximate description of the effects of a distant mass it is
appropriate to replace the Einstein equation by its linearization about the solu-
tion g. More precisely, let h depend on a small parameter K. Then h will be
required to satisfy:

^ R i c ( g + h ) | K = o = 0. (3.2)

Since these equations are linear in h, it is possible to study the perturbing effects
of the third body and those of the rotating coordinates separately. In fact, the
Melnikov integral (to be discussed in Sect. 4) is also linear in the perturbation.
Furthermore, the perturbation due to rotating coordinates has no intrinsic effect
on the dynamics and will therefore contribute nothing to this integral. Thus it is
possible to concentrate exclusively on the effects of the third mass.

Equation (3.2) was studied by Regge and Wheeler, who were attempting to
analyze the stability of the Schwarzschild metric under small perturbations
[Reg-Wh]. They show that by making use of the freedom to choose new
coordinates, one can restrict attention to perturbations of the form:

\r)dr®dr+gr2dφ®dφ + gr2 sin2φdθ®dθ~] , (3.3)
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where /(r, φ, θ) and g(r, φ, θ) are to be determined. Furthermore, they envoke
separation of variables to expand / and g in spherical harmonics. Such a
separation is fitting for the problem at hand because the Hill potential (3.1) is of
this form. Assume that

f=F(r)P(φ), g = G(r)P(φ),

where P(φ) = 3cos2φ — 1. Then substitution of (3.3) into (3.2) leads, after some
extremely laborious computations to a system of ordinary differential equation
for the functions F(r), and G(r). Although the Ricci tensor in (3.2) has 10
independent components, many turn out to be zero simply because of the form
of h. In the end, (3.2) reduces to the two equations:

= F ( r ) + F ( r )

r2A{rY

These are as in [Reg-Wh] except for the sign attached to G(r).
It is easy to verify that the quadratic polynomials

or any constant multiples of them satisfy the required equations. In particular,
the metric

h = κP(φ) [F{r)A{r)dt®dt+F{r)A ~ \r)dr®dr

+ r2G(r)dφ®dφ + r2G{r) sin2 φdθ®dθ']

= κP(φ)[_(r-\)2dt®dt+r2dr®dr

+ r2(r2 - \)dφ®dφ + r\r2 -1) sin2 φdθ®dff]

is a solution of the linearized Einstein equations. There is a good reason to
view h as the relativistic analogue of Hill's potential.

It is a basic tenet of general relativity that its predictions should agree with
those of Newtonian gravitational theory in situations where gravity is weak.
In this case, the metric of spacetime should be a small perturbation of the
Minkowski metric. It can be shown that the geodesic equations for such a
perturbed Minkowski space reduce in the appropriate limit to Newton's laws for
motion in potential Φ provided that the coefficient of dt®dt in the perturbed
metric is — 1 +2Φ [Sch]. As an example of this principle one can look at the
Schwarzschild metric (2.1) in the region where r is large: the relevant coefficient

2M
of the perturbing metric is just — H . Now the metric h of (3.4) is proposed

as a perturbation of the Schwarzschild metric, g. The coefficient of dt®dt
0 Λ/Γ

in g+h is - 1 + +2Ψ, where Ψ = \κ{r-\)2P{φ). In the limit of large r

but still small — I this reduces to Newtonian motion in a Kepler problem

with perturbing potential Ψ. However, in this limit, the difference between
Ψ and Hill's perturbation Ψ in (3.1) is insignificant. Thus the metric g + h can
be viewed as the relativistic Hill problem.
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4. Nonintegrability of the Relativistic Hill Problem

423

In this section, the Melnikov integral technique will be used to prove the exis-
tence of transverse homoclinic orbits in the geodesic flow of the perturbed
Schwarzschild problem. Let g denote the Schwarzschild metric (2.1) and let h be
the perturbing metric (3.4). The geodesic flow of the total metric g+h will be
analyzed by Hamiltonian methods such as were used in Sect. 2. Once again, only
the planar case will be studied.

Write g+h in the form:

where B=A(ί-κf), C=A~\\ + κf\ and D = r\\ + Kg). Here f=r(r-l)P(φ)
and g=(r2 — ̂ )P(φ) with P(φ) = 3cos2φ — 1. As in Sect. 2, the geodesic flow has
Lagrangian:

The conjugate momenta are

E=Bt',

and the Hamiltonian is:

1

H is expanded as a series in the parameter K:

= Dφf,

where Ho is the Hamiltonian (2.3) of the Schwarzschild problem and

(4.1)

The Hamiltonian H has only two constants of motion: E and the energy
H= —\. The angular momentum Ω is no longer constant on account of the
asymmetry of the perturbation. Consequently, it is no longer possible to reduce
the godesic flow to a flow with one degree of freedom. Once E has been fixed,
H is a Hamiltonian of two degrees of freedom with conjugate variables

Fig. 5
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(r,p, φ, Ω). Using the energy equation, Ω can be expressed as a function of the
other three variables, although for any given E the requirement that Ω2 > 0 is
satisfied only on an open subset of (r,/?, φ) space.

The flow of the Schwarzschild problem can also be viewed in this way. In
Sect. 2 the value of Ω was fixed and the corresponding phase portraits in the
(r,p) plane were drawn (Fig. 3). The different curves represented different values
of E. Instead one could fix E at the value of the homoclinic orbit in the figure
and let Ω vary. Locally near the homoclinic orbit, the pictures would be
much the same with the values of Ω distinguishing the different curves. As E2

decreases towards the critical value of 9, the homoclinic orbit shrinks and
disappears. In the full three-dimensional flow, orbits leave the plane and flow
around the space to return to the plane when φ increases by 2π. The motion of
the (r,p) variables in the meantime is as shown in the phase portrait. The
simplifying feature in this case is that the dynamics of (r,p) is independent of φ.
For the perturbed problem, one can still consider the return mappings of these
planes φ = φ0. However, since the dynamics of (r,p) now depends on φ the
mapping will not be obtained from a flow in the plane. If the perturbation
parameter K is small, the return mappings will still have a hyperbolic fixed point
with one-dimensional stable and unstable manifolds, but in contrast to Fig. 3,
one expects these curves to intersect transversely as in Fig. 5. If this is indeed the
case then the points of intersection will be transverse homoclinic points and
nearby orbits will display chaotic behavior.

To prove that this is indeed the case one can apply the version of the Melnikov
integral method found in [Rob]. Consider a plane φ = φ0 as in Fig. 5. At the
point where the stable and unstable manifolds cross the r axis they will be
separated by a certain distance. If this distance is zero for a certain value of φ0

then the manifolds have a point of intersection along the r axis in that plane.
One can measure the distance in many ways, but it is convenient to use the
difference of the values of Ω at the two points of crossing [recall that Ω is being
viewed as a function on (r,p,φ) space]. For the unperturbed system, the
separation is zero because the stable and unstable manifolds coincide. But if K is
nonzero, the manifolds generally split apart. It is shown in [Rob] that the value
of the separation is κM(φ0) + O(κ2), where:

Tj

M(φo)= lim IDΩ-X^ydt.
j-+oo T*

Here y is the parametrization of the homoclinic orbit of the unperturbed system
which crosses the r axis in the plane φ = φ0 at t = 0, Tj and 7}* are respectively
the times when this orbit crosses the same plane again for the j t h time in
the future and the past, and where X1 is the Hamiltonian vectorfield of the
perturbing Hamiltonian Hγ. The significance of M(φ0) is as follows: if the
function M(φ0) has simple zeroes, then for all sufficiently small K the stable and
unstable manifolds have a transverse intersection.

The integrand of the Melnikov integral is just the rate of change of Ω along
orbits of Xί; since Xγ is Hamiltonian:
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Using the definitions of P(φ), F(r\ G(r), and Λ(r) and the energy equation
for Ho, this can be reduced to:

Because the parametrization of the homoclinic orbit is easier when φ is the
independent variable, it is convenient to make a change of variables in the

2r2
r

Melnikov integral. From the definition of Ω one finds dt = — dφ. Substituting

this into the integral and ignoring some constant factors which are irrelevant to
the question of simple zeroes, one finds:

M(φo)=lim f [2(2E2-l)r(φ)4 + 2r(φ)3 + Ω2(2r(φ)-ί)']sm(2φ)dφ.(4.2)
j^-ao -2πj

Here r(φ) is the parametrization of the homoclinic orbit of the unperturbed
problem which crosses the r axis in the plane φ = φ0. An explicit formula for r(φ)
can be obtained from Eq. (2.4). This equation can be written in the form:

where P(u) is the cubic polynomial (1 — u)ί u2+ —j 1. For the value of Ω cor-

responding to the homoclinic orbit, —j is the critical value P{u^), where uγ is

the critical point representing the hyperbolic circular periodic orbit being studied
(see Fig. 2). Thus we can factorize the right-hand side of the last equation to get:

This can be solved explicitly with a bit of effort to obtain:

u(φ) = u,-a2 sech2 (a(φ - φo)/2), (4.3)

\
where OL2 = U1—U2. AS usual, Hφ)= —--. Note that as the parameter E2 de-

u(φ)
creases towards the critical level of f, α tends to zero (the width of the homo-
clinic orbit shrinks). In fact, it is not hard to show that near the bifurcation, α
behaves like ( £ 2 - f ) 1 / 4 .

As it stands, the improper integral in (4.2) is not absolutely convergent. Note,
however, that one could add any constant to the expression in square brackets
without changing the value of the integral. Choosing this constant so that
the square bracket vanishes at r= — gives an integral which is absolutely con-

u i

vergent. This follows from the fact that r(φ) converges exponentially to — as

|φ|-+oo. Let Q(r) denote the polynomial in square brackets in (4.2) with the
added constant. Then

M(Φo)= 1 Q(r(Φ))sin(2φ)dφ. (4.4)
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Although (4.3) and (4.4) bring the question of nonintegrability into an ex-
plicitly computable form the computation of the relevant integral is still rather
difficult owing to the complexity of the function r(φ). It turns out that this
function becomes much simpler in the limit α->0, that is as E2->f. So now some
effort will be devoted to putting M(φ0) into a form where it is possible to take
this limit.

First, M(φ0) can be written::

M(φo)=^(M+(φo)-M.(φo))ί

where
oo

M+(φo) = J Q(r(φ))e±2iφdφ.
— oo

To see the dependence on φ0 more clearly, define a new integration variable
s = φ — φ0. Then

oo
M ίfk \ — p±2iφ0 C n(r(<A\p±2ίsrJc

— oo

where

—- = u(s) = u1—a2 sech2 (as/2).
r(s)

Now the integrals are independent of φ0. Furthermore, the two integrals are
equal because r(s) is an even function. Thus

o) = sm(2φo)I,

where

/ = J Q(r(s))e2isds.
— oo

The next step is to reduce / to a contour integral over a compact contour. From
now on, all variables will be viewed as complex. Introduce another new integra-

. , i in m i

tion variable z=s . Then
α

_2π

I=e~ iQ(r(z))e2izdz,
L

where L is the line \z: im(z)= > oriented from left to right and

I α J
- L = u(z) = Ul+oc2 csch2 (αz/2). (4.6)
r(z)

Now the integral over the line L=\z\ im(z)= H > differs from / only by

a factor of e π so / can be written as

I=C(a)J (4.7)



Nonintegrable Model in General Relativity 427

with
2π

- 4 - , J=§Q(r(z))e2izdz. (4.8)

— e

Here Γ is initially the contour L — L but by Cauchy's theorem, it could be

replaced by any convenient closed contour lying in <z: |im(z)|<—f which

encircles all of the poles of the integrand. It will be shown that it is possible to
choose a contour satisfying these conditions which is independent of α. This will
facilitate the computation of the limit of the Melnikov integral as α->0. Note
also that the constant which was added to Q(r) earlier does not contribute to /,
so in the discussion to follow it will be dropped.

Since Q(r) is a polynomial, the poles of the integrand of J are just the
poles of r(z), that is, the zeroes of u(z). In (4.6), the constants uγ and α depend
continuously on the parameter E and as £2->§, ux->^9 and α->0. Let λ = E2 — §.
Then

1 4
imuz-uoz-- + z2

uniformly on compact subsets of the complex plane with the origin deleted.
Therefore, the zeroes of u(z) converge as 2->0 to those of wo(z), namely to
z = ± i | / Ϊ 2 . So if Γ is any simple closed curve encircling 0, ±i |/Ϊ2, it will
satisfy the required conditions for all sufficiently small λ.

Fixing such a contour gives:

(4.9)

as /l->0, where

Λ = fQ(ro(Φ2hdz

and

. . 1 3z2

From (4.5), (4.7), (4.8), and (4.9) one finds:

Note that the constant C(α) is nonzero if αφO. It follows that if / o φ 0 , then for
all sufficiently small /l>0 the Melnikov function has the desired property of
having nondegenerate zeroes and so the corresponding geodesic flows have
transverse homoclinic points. Therefore, the proof of nonintegrability for these
parameter values depends only on the value of Jo. Note that the simplicity of
ro(z) makes the computation of Jo much more tractible than that of J itself.
Furthermore,*this analysis brings out an interesting feature of the problem: the
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constant C(α) is exponentially small. Since α behaves like the fourth root of λ
near the bifurcation,

for some constant K. This means that size of the splitting of the stable and
unstable manifolds is also exponentially small in λ.

To compute / 0 , note that the residue of Q(ro(z))e+2iz at —i]/Ϊ2 is just minus
the residue of Q(ro(z))e~2ίz at +ϊj/Ϊ2. It follows that

/ 0 = 2 π / [ R e s w l 2 ( ρ ( r ^ ^

= - 4 π Res+ίv/12(β(r0(z)) sin(2z)).

Substituting (4.10) into Q(r) gives (ignoring the constant term):

The residue of Q(ro(z))sin(2z) at z = ΐj/Ϊ2 is therefore:

/Ϊ +0.

So, in fact, the transversal homoclinic points do exist.

5. The Qualitative Interpretation

This section is devoted to a qualitative discussion of the behavior and physical
meaning of the geodesies of the perturbed Schwarzschild problem. Figure 5
shows one of the planes φ = φ0 containing a hyperbolic fixed with transversely
intersecting stable and unstable manifolds. This is the situation which has been
shown to hold for certain values of the parameters λ and K. More precisely,
for each sufficiently small positive λ, there is a constant κo(λ) such that for
\κ\<κo(λ) the transverse homoclinic orbits exist.

The hyperbolic fixed point is the intersection of the plane φ = φ0 with
a hyperbolic periodic orbit of the geodesic flow of the perturbed Schwarzschild
problem. This orbit is close to the corresponding one for the unperturbed
Schwarzschild problem; namely, it is a nearly circular orbit revolving around the

Fig. 6
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Fig. 7

black hole approximately at radius r = 3, that is, at about three Schwarzschild
radii (see Fig. 6). Similarly, the transverse homoclinic orbit behaves like the
homoclinic orbit of the unperturbed problem: it gradually spirals out to a
somewhat larger radius and then spirals back in towards the periodic orbit.

The new feature in the perturbed problem is the existence of a chaotic in-
variant set of orbits near the transverse homoclinic orbit. These can be described
in the usual way using symbolic dynamics. Figure 5 shows three rectangular
"windows" in the plane through which orbits might pass. The first window P
is close to the periodic orbit, so any orbit passing through it will behave for
a while like the periodic orbit itself. Similarly, the second window H contains
points which will behave like the homoclinic orbit. Finally, the last window B
consists of points which are headed for oblivion in the black hole. Let T denote
the first return map to the plane φ = φ0. This will be defined in some open set
around the homoclinic orbit. Because of the hyperbolicity of the fixed point, the
window P will get stretched out along the unstable manifold as T is iterated.
Thus a suitable iterate TN will stretch P across itself and across both of the
windows, H and B. The effect of iteration on H is similar. First, it is mapped
along the homoclinic orbit into a neighborhood of the fixed point, where it
is stretched until it maps across each of the other windows. A similar analysis
applies to the iterates of T~ι. Thus under TN the windows are mapped across
one another as indicated schematically in Fig. 7.

It follows from the usual symbolic dynamical arguments that any bi-infinite
directed path in the graph of Fig. 7 can be realized by a geodesic of the perturbed
Schwarzschild problem in the sense that the geodesic passes through the windows
in the order indicated by the path in the graph. For example, the path which
always passes through P is realized by the periodic orbit itself. The path which
passes through P every time except for one pass through H is realized by the
transverse homoclinic orbit. Other paths give rise to motions which were not
present in the unperturbed Schwarzschild problem. For example, there are orbits
which pass through P and H in many different orders. If the given order of
passages is periodic, then there is a hyperbolic periodic geodesic realizing it.
These orbits will revolve near r — 3 except for erratic episodes of spiralling out to
larger radii and back in again. Finally, there are orbits which behave in this way
for an arbitrarily long time and then disappear abruptly into the black hole.
Which course will be followed by a given geodesic depends sensitively on the
initial conditions. In particular, the domain of attraction of the black hole will
intersect the windows P and H in an open set containing infinitely many strips
running roughly parallel to the stable manifold of the fixed point and it is a
delicate matter to decide whether a given geodesic will fall into the black hole or
not.
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