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Abstract. Based on the concept of generalized coherent states, a theory of
mechanical systems is formulated in a way which naturally exhibits the mutual
relation of classical and quantum aspects of physical phenomena.

1. Introduction

In this work we present a description of physical systems which, in a sense, unifies
into one theory the formalisms of both quantum and classical mechanics. The
construction is based on the conviction that all experimentally achievable states of
any physical system are parameterized with help of an appropriate finite-
dimensional manifold M. Simultaneously, as a basic object of both experiment
and theory, a transition amplitude is chosen. This is to be interpreted as a
probability amplitude for a system in the state parameterized by q e M to be in the
state parameterized by p e M. One assumes, in accordance with well established
experience, that the transition amplitude possesses some natural properties. These
are the properties which allow one to construct a map 1£:M-»CP(^/) of the
manifold M into the complex projective Hubert space C P(J) . The Hubert space
Jί and the map K are uniquely defined by the transition amplitude. And vice versa,
once the map K: M-+(EΨ(Jί) is given, the transition amplitude for a system can be
recovered.

In the paper we limit ourselves to the case in which K is a symplectic
embedding. This means that the pull-back ^ * ω F S of the Fubini-Study form ωF S of
<ΠP(Jί) is again a symplectic form. We define a mechanical system as a triple
(M,Jί,K:M-^(dP(Jί)), where (M,K*ωFS) is interpreted as the phase space of
classical states of the system, while (CP(^), ωFS) is the phase space of its pure
quantum states. M might be considered to represent a family of all admissible
results of measurements with classical devices used to measure parameters
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characterizing states of the system. Such a point of view entitles us to interpret the
states K(q) (with q e M) as coherent states of the system. The analysis of many
examples (see e.g. [14, 15, 20]) is the source of the conviction that the crucial
feature which distinguishes that type of states is their property to follow the
behavior of classical states. Therefore, it seems to be natural to call the map K - "a
state quantization."

One also considers here the mixed states P(ρ) parameterized by ρ e ̂ (M, dμL)
with dμL being the Liouville measure determined by K*ωFS while P denotes a
quantization procedure as proposed by Berezin (see [4, 5]). Among mixed states
one can distinguish, in a natural way, a finitely parameterized family of states
which can be interpreted as the equilibrium states of the physical system (see
Sect. 3). In that chapter of the paper we show that for systems in equilibrium states
P(ρ) their characteristics such as action, energy, transition amplitude, and
interaction with an external field functionally depend on K and ρ. In that way a
mechanical system in an equilibrium state is completely described by a pair of
maps K: M-*<LΨ(Jί) and ρ: M->R+ related one to the other by certain natural
conditions [see formulas (3.10) and (3.11)]. These maps are the primary ones for the
approach exposed here. They are also primary from the point of view of
experiments testing a given physical system. These are the transition amplitudes
between states parameterized by M, which are measured directly and which lead to
the experimental determination of K and ρ (see Sect. 2).

At the same time in the Hamiltonian mechanics the fundamental quantity
which characterizes the system is the action functional. A procedure proposed by
Feynman, expresses the transition amplitude between states q,peM as a, formal
integral of amplitudes eιS[y] over all possible trajectories γ between the given states.
In our approach, the calculation of the Feynman integral reduces to the
construction of an embedding K: M^<LΨ(Jί) of the classical phase space into the
quantum phase space. This means that "integration over trajectories" cannot be
treated literally as a real integration procedure but should be viewed as a certain
geometrical construction for the realization of which one can use various ways,
including analytical methods. One can see this in numerous contexts providing
examples of embeddings K: M-^(ΠP(Jί) well known from the algebraic geometry
and complex analysis (see e.g. [10,22,20]). As for the complex analysis, it is worth
to point out that the problem of finding such an embedding K: M-+<EΨ(Jί) is
equivalent to the calculation of the Bergman type reproducing kernels (see [12,20,
22]). Some of those already have a transparent physical interpretation (see [20,
22]). Another domain of mathematics which provides one with means of
construction of K\M^><£Ψ(Jί) is the Lie group representation theory. This is
directly related to the theory of coherent states in the sense of Perelomov
(see [21]).

Consequently, in Sect. 4 we discuss, within our model, a canonical relation
between classical and quantum observables. One admits here as natural ones those
observables that satisfy conditions directly originating from the Ehrenfest theorem
(see [7]). We indicate a quantization procedure and discuss its relation with the
Kostant-Souriau (see [16, 19]) and the Berezin (see [4, 5]) quantizations.

The last section consists of applications of our theory to three systems of special
interest, i.e. to the finite-dimensional Schrόdinger mechanics, to the isotropic
harmonic oscillator and to the scalar massive relativistic particle. These examples
confirm the efficiency of the theory proposed in this paper.

The other examples such as the Kepler system and the massive relativistic
particle with spin are discussed in [11, 22,14]. A specially interesting insight into
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the structure of space-time is obtained after including into our model the twistor
theory constructions (see [19,20]). In this way one can obtain what could be called
a "quantization" of Minkowski space points.

2. The Main Categories for Microsystems

In this section we choose the language of categories in order to reveal the
geometric, analytic, and quantum character of microevents and microprocesses.
The language of categories enables one to express, in canonical way, the functorial
equivalence of the three natural ways of viewing states of matter. We show the
mutual equivalence between:
i) the category jtf of complex line bundles with a distinguished non-negative
Hermitian kernel (a transition amplitude point of view);
ii) the category 38 of complex line bundles with a distinguished Hubert space of
sections (an analytical point of view);
iii) the category %> of maps from manifolds into complex projective Hilbert spaces (a
geometrical point of view).

From now on, we assume objects and morphisms of all categories considered
here, to be smooth.

Let us start with the definition of the first category s/. The situation which one
encounters in experiments with microscopic events could be shortly expressed in
the following way:
i) one wants to know the transition amplitude between states which could be
achieved by the considered system:
ii) the states taken into account are parameterized by a finite number of
parameters.
In our approach we assume that these parameters form an n-dimensional manifold
M. Then, after fixing an atlas {Ωα, φa}Λel9 where Ωα is the open domain of chart
φa: ί2α->]R" for M, the transition amplitude between the two states parameterized
by qeΩa and peΩβ, respectively, is given as a function AΛβ:ΩaxΩβ-><C.
Let us take peΩβnΩynΩδ. From the independence of transition probability
\A^(qfp)\2 on the coordinate description, we have

[q,P), (2-1)

where gβγiΩβnΩy-^S1. From (2.1) we obtain the cocycle property

gβγ = gβδgδy ( 2 2 )

for peΩβnΩynΩδ. The analogous consideration results in gβγ=gβsgδy for
peΩβnΩynΩδ. Also, one assumes that

Λto(ί,9) = l> (2 3 )

^ f e P) = Aβa(P> q)- (2 4 )

From (2.3) and (2.4) it follows that gαα = l and gaβ = gΛp. Additionally, we assume
here the non-negativity of the Hermitian matrix

(2.5)

A-anJqn,qn)
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for all possible choices of weN and q1eΩaι,...,qneΩ(Xn. For example if n = 2,
condition (2.5) gives the physically obvious condition \AΛίΛ2(ql9 q2)\2 ύ 1. Translat-
ing the above into the language of vector bundles theory we could say that due to
the fixing of transition amplitudes we have obtained a complex line bundle 1L->M
whose transition cocycle is given by (2.2), with a distinguished section K of the
bundle prf t*®prf ]L*->M x M. The functions AΛβ :ΩaxΩβ^><£ are coordinates
of K in the unitary gauge connected with the cocycle (2.2). According to (2.3), (2.4),
and (2.5) the section K is non-negative Hermitian kernel, i.e. K satisfies

)9 (2.6)

KJtq9q)>0, (2.7)

Σ K^faqjfivlZO (2.8)

for any qeΩa, peΩβ, υ1, . . . ,/e(C and any set of indices α,β,αl5 ...,ocN resulting
from covering of M by the family {Ωα}αe/ of open sets Ωα. The covering is chosen so
that the π~1(Ωa) is trivial, which is equivalent to the existence of a smooth
non-vanishing section sa: Ωα->1L. K9fi e C°°(Ωα x Ω )̂ are coordinates of
K = Kzβ(q,p)prf^(q)<g)pr%s:$(pl where s*:Ωα->]L* is dual to sα:Ωα-»lL, i.e.
s*(sα) = l. The above definition of the non-negative Hermitian kernel K is
trivialization-independent.

The transition amplitudes are obtained as coordinates of K taken in frame
ίK-Jq, qί\ ~1/2 prf sίto)® ίKββ(p, p)] " 1 / 2 prJsJ(p), i.e.

Now, let us define the objects of the category J / as pairs (IL^M^K).
The set of morphisms H^JL^^-^M^KJ, (JL2-+M2,K2)) between the objects

(ILi^Mi, Kx) and (1L2^M2, K2) of category si consists of maps / : M2^Mί such
that f*lL1= IL2 and f*K1=K2 (f*Kx is a non-negative Hermitian kernel if
K± is).

The objects of the second category J* are complex line bundles IL-»M with
Hubert space Jtf^ realized as a vector subspace of Γ(M, 1L*). Additionally, we
assume that the objects (IL-^M,^) have the following property.

For each frame section sα:Ωα-*IL and qeΩa let us introduce the evaluation
functionals eaq:J^-^(C,

(2.10)

where ψ = ψa(q)s%(q) e ̂ xC Γ(M, £,*). These are linear functionals and we assume
that they are continuous:

|V β(«)I^A#β i f | |V | | , (2.11)

non-zero and smoothly dependent on qeΩa.
The set of morphisms H((JLί ->Ml9 ^χ x), ( L 2 ^ M 2 , Jίf^J) consists of the set of

maps /:M2^>M1 which satisfy f*JLί =JL2 and /*^χ x = ̂ χ 2 . In order to prove
the correctness of this definition let us show that the vector space
/*^Xi = {f*Ψ: Ψ G ̂ x j °f inverse image sections possesses a canonically defined
Hubert space structure with continuous evaluation functionals.
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Let Ker/*C^χ 1 denote the vector subspace of those sections ψ from 3^^ for
which f*ψ = 0. It is easy to see that Ker/* is a closed subspace of Jίχ1. Now, taking
into account the vector spaces isomorphisms /*Jίχ 1^^L 1/Ker/*^Ker/*-L we
are able to define the Hubert space structure on /*^χ 1 as the structure of Hubert
space Ker/* 1 (i.e. <f*ψ1,f*ψ2>f*L1 = <ψi,ψ2>L1>

 w h e r e Ψi = Ψ? + ψh *' = 1,2, is
decomposition given by =^Ll = Ker/*0Ker/* 1 ). Now, we may rewrite (2.11) as
follows:

= \ψJίf(p))\ ^ Afβf/(p)(||φ°lk1 + || v Ί l i J , (2.12)

where pef'^ΩJ. Because of ψ°{f{p)) = 0 for pef~\Ω^ the left-hand side of
inequality (2.12) does not depend on ψ°. This results in

) min (
φoeKer/*

The above proves the continuity of the evaluation functional eΛtf{p) for the
Hubert space f*^^. (Also smooth dependence of eα,/(p) o n P follows from the
same statement for ea q due to the smoothness of the map /.)

Since (/og)0-1=g (/*]L1) and ( / c g ^ ^ g ^ / * . * ^ ) , where f:M2^M,
and g:M3^M2, the composition rules for the morphisms of the category si
reduce to the composition rules for the category of smooth manifolds.

The third category under consideration - let us denote it by # - consists of
triples (M, Jf, K: M ̂ ><£Ψ(Jf)), where M denotes a smooth manifold, Jί is a
complex Hubert space and K stands for a smooth map from M into complex
projective Hubert space (£JP(Jί% such that the image K(M) is linearly dense in Jί.
The morphisms of this category are defined by the following commutative
diagrams

s ]M (2.13)
κ2

M2

where / is a smooth map of manifolds while the map [φ~\ is induced by a Hubert
space monomorphism φ\Jί2-+Jίx which allows to identify [ φ ] * E 1 = E 2 ,
where E - * C P ( ^ ) , /=1,2, is universal line bundle on C P ( ^ ), i.e.
E f = {(v9 l)eJitx (CP(^ : v e /}. The morphisms composition again reduces to the
composition of maps / and φ, which determine these morphisms. Due to the
diagram (2.13) the monomorphism φ is determined by / up to phase factor. This
freedom in the choice of φ does not show up in \_φ~\. Therefore, thinking about the
morphisms set H\_{M2,Jί2,K2\M2^(£Ψ{Jί2)\ {M^Jί^Kγ\M^<£Ψ{JίJ\ we
will have in mind only the maps /:M 2 ->M 1 .

Example 1. We shall consider now examples of objects for all three categories
defined above.

i) Let E ^ (ΠP(Jf) be the universal line bundle over a complex projective Hubert
space CIPMO, i.e. Έ={{vJ)eJί x<LΨ{Jί)\ vel). With the use of projection
i: E->*/# on the first factor of the product M x (CP(^#), we obtain the Hermitian
kernel KΈ(m,n):π~^^(m) x π~ 1(ή)-><C given by KΈ(m,ri)(ξ,η): = (ι(ξ), ι(η)), where
< , > is the scalar product in Jί. Coordinates of KΈ satisfy the conditions (2.1),
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(2.2), and (2.3). Concluding, we see that (E A O V # ) , KΈ) belongs to the
category si.

ii) The map M 3 v —> <*( ), v} e Γ((CP(,#), E*) defines monomorphism of vector
spaces. Its image ^ E : = / ( ^ ) C Γ ( C P ( ^ ) , E * ) is a Hubert space with the scalar
product defined by

« i ( ),«>,<i( λ w » E : = <i?,w>. (2.14)

Then, after fixing the frame section s α :Ω α ->E one finds <*(*)> ι;>(m) =
<i(»ya(m)),i;>s*(m) = :i;a(m)s*(m). Here, {Ωa}a e / stands for a covering of <£Ψ(Jt)
by open subset ί2α such that π~ί(Ωa)~Ωax(D. Due to the Schwartz inequality
one gets

\va(m)\ = \<ι(sM,v>\ϊ<ι(sa(m)), »(s«N)>1/2IMI, (2.15)

which shows that the evaluation functional e^m\ffl^-^<L is continuous. Smooth
dependence of eam o n m e Ω α follows from the smoothness of sα, i, and < , >. In

consequence (E A C P ( J ) , c^) belongs to the category 0$.

iii) It is a trivial statement that {<£Ψ{Ji\Jt,id:<£Ψ{Jί)^><£Ψ{Jt)) (for
άimJί< + oo) is an object of the category %>.

The importance of Example 1 will become clear from the further
considerations.

Now, we shall provide a construction of natural functors between the
categories defined above. For that sake let us denote by J%x the functor from the
category X to the category ^ , where X9<8f = si9 Ά9<β and x,y = a9b9c.

We begin with the construction of the functor ^ab: stf^0&. Let (1L->M, K) be an
object of si. Let us take the unitary vector space Uκ of finite linear combinations
of sections

Kβ(q)=K^p, q)s*(p) e Γ(M, £*) , (2.16)

N

where qeΩβ, with the scalar product of the vectors v= Y rfKa.^ and
N i = l

w= J wjKβj(qj) defined by

<t>,w>:= Σ ϋWKhβj(qi9qj). (2.17)

Because of (2.2) and Σ * we see that

coordinates Σ tfKnβSVΛd °f the section υeUκ are equal to zero iff (v9v} = 0.

This proves the positivity of the scalar product. The question is whether
completion to Hubert space of the unitary space Uκ can be realized by
sections of bundle 1L*? The following statement gives the positive answer to
this question.

Proposition 1. The unitary space Uκ extends in the canonical and unique way to
Hilbert space J^κ which is a vector subspace of Γ(M9 L*).

Proof Let us denote by Uκ the abstract completion of Uκ. There exists a
canonically defined morphism /: UK^>Γ(M91L*) of the vector spaces defined by

/([{»„}])(?):= flim vjp)\s*{p), (2.18)



Coherent States and Geometric Quantization 391

where vn = vnas*GUκ is a Cauchy sequence, i.e. [{#„}] e C7X. Let us now define
Hubert space Jt?κ as I(UK) with the scalar product given by
<ί,s>: = </~1(ί),/"1(s)>t;κ for s,teJ^κ. 34?κ is realized by sections of IL* and
extends uniquely the unitary space Uκ. Π

Let v= lim vn, where vneUκ. Then we find from
n~* oo

vJp) = (KMvn> (2.19)

that limvna(p) = va(p) and

vJίp) = <KMv>, (2.20)

where va(p) is coordinate of v e 3>FK. Applying the Schwartz inequality to (2.19) we
prove the continuity of evaluation functional for J^κ. The smooth dependence of
eatP on peΩa is a consequence of formula (2.19) and smoothness of Ka(p). The
condition ea p φ 0, for p e Ωα, follows from (2.7). Taking the above into account let
us put

Jk[(L->M, £ ) ] : = (L->Λί, Jfκ). (2.21)

Now, let /*eff((L1->Λf1,JK), (1L2->M2,K2)), be given by a map f:M2-+M1

such that / * ! . ! = L 2 and PK^K^ The last means Klα(/(/?)) = K2«(p) for
pe/~1(Ω l α) and s2 α=/*s l α:/~1(Ω l α)->]L2. Because Kla(f(p)) are linearly dense
in f*J>fKί and K2a(p) are linearly dense in ̂ 2 , this shows that f*JΊ?Kί = #?Kr The
last proves the functorial property of $Fha.

In order to define the functor 3Fah: J>-> J / let us take the evaluation functional
eafP€3#£, which is continuous and non-zero according to the definition of
(1L->M, j£χ). Hence, by Riesz theorem there exists non-zero K^(p) e J^ such that

(2.22)

Expressing K (̂/?) in coordinates K^(p) = Kfa(q,p)s^(q) we find that

<Kβ(qlKa(p)} = K-βa(q,P). (2.23)

Because of (2.23) and since K^(p)φO, K^: = KfapTfsf0pr^s* is a non-negative
Hermitian kernel for the complex line bundle IL. We shall define 3Fah by

^ [ ( L - Λ f , j r j ] : = ( L - M , KL). (2.24)

The following proposition proves the functoriality of 3Fah.

Proposition 2. L ί̂ the map / : M2-+M1 be such that f*^ = Jίχ2 and /*JLt =1L2.

Proof. The elements K^1^), where f̂GΩa and αe/, form linearly dense subset in
Jίf L l . It is so, because due to (2.22) the set of vectors orthogonal to {Kl1(p)}peΩa aeI

is {0}. Thus, {Klifiq))}, qef \Ωa) and αe/, is linearly dense in f*^ = 3ti£r In
accordance with the decomposition J (^ l = Ker/*®Ker/* 1 we have

(p). (2.25)

Because c^ ] L 2=/*^f I L i^Ker/* J- and K^1(f(p)) = 0 for pεΩa and αe/, vector
^α1Ll(/(p)) = ^ 1 (/(p)) represents evaluation functional e2ap for the space J ^ 2 .
Hence, applying (2.23) to JT L I and ̂ 2 , we get K^2(P^) = ̂ (/(p) ? /W) for
(/?, r) e/ " ̂ β J x / " \Ωβ)' This ends the proof. •
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Let us discuss now the relation between categories £& and <€. Let (IL-»M,
an object of category J*. Taking vector Ka(q) e J0χ, which represents the evaluation
functional eaq, we construct a smooth map K^\M->CP(Jίχ) given by

(2.26)

where [Ka(q)] denotes one-dimensional subspace spanned by Ka(q)ή=0. Because
of Ka(q) = gaβKβ(q) the definition is independent of the choice of frame. The
smoothness of K^ is ensured by smooth dependence of eaq on qeΩa. From

Ker/* 1 ^ e ^χ l one obtains the monomorphism of Hubert spaces
which satisfies

Kla(f(p)) = KtifiP)) = φf(K2a(p)) (2.27)

for all pef~ι(Ωa) and ens I. Equation (2.27) implies the commutativity of the
diagram

Thus, by definition we put

= (M,

where (1L->M, jf^) e ^ and /*e/Γ((]L1^Af1, JTL l), (1L2->M2, ^ L 2 ) ) .

A simple examination shows that &Cb(g* °f*) = &rcb(f*) ° &&(£*)> where
g*Eiί((L 2^M 2 )JfL 2), (L3-M3,

Conclusion. ^ & 15 α contravariant functor from that category 01 to the category (β.

For the definition of J^ c: %!-+$ we employ the construction ii) of Example 1.
Let (M, Jί9 K: M ^ C P ( J ) ) be an object of the category <β. By definition we put

where E->C1P(^) is the universal line bundle on C P ( ^ ) and (/, [φ]) is
the morphism given by diagram (2.13). The commutativity of (2.13) and
E 2 = [φ]*E 1 implies /*XfE 1 = XfE2, therefore, PeH({KfΈ1

6iMu Xf^ E l ) ,
(KfE2^M2,Xf^fE2)). This shows the correctness of the definition (2.29).

Defining 3Fac: ^-> J / we proceed similarly as we did in the case of functor <Fhc.
Namely, we put

ί9 K: M C 1 P ( ^ ) ) ] : ( X E M , K K £ ) ,

where KE is the canonical non-negative Hermitian kernel defined in point (i) of
Example 1. The correctness of the definition results again from E 2 = [φ]*Ex

and (2.13).
At the end let us define ^ j / ^ a s a composition ^ca'' = ̂ Cb

o^ba °f th e

functors !Fch and tFba. Also, we will use notation tFxx: = id, for x = a,b, c, where id
denotes identity functor. '
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The following definition introduces an equivalence among the objects of the
categories taken into consideration.

Definition 1. (i) The objects (ΊL-^M, Kj)9 (IL'->M', K±) e Ob(j^) are equivalent iff
M = M' and there exists a bundle isomorphism K : IL-»]L' such that κ*K^, = K^.
(ii) The objects (IL-> M, J0JJ, (I/->M', 3^) e Ob(J>) are equivalent iff M = M' and
there exists a bundle isomorphism κ:ΊL-^ΊLf such that K*30^ = 3^.
(iii) The objects (M,J(9K:M-*<EP(J())9 (M'9jr9K':M'^><EP(J())eOb(<g) are
equivalent iff M = Mf and there exists a Hubert space isomorphism λ'.Jί^Jί'

[]
These equivalences are preserved by morphisms for all three considered cases.

This allows us to define the new category $t = sίl ,§&,<% whose Ob(iF) consists of the
classes of equivalent objects and morphisms set R(9C) is canonically generated by
morphisms of the category 3C.

Applying the functor J ^ : ^ - ^ to two equivalent X~X' of the category 3C
one obtains ^yx(X)^^yx(Xf). Hence, one can define functors §tyx\$£->$.

The following theorem is fundamental for our considerations.

Theorem 3. The diagram

is commutative, i.e.

^xz = ̂ xy°^yZ> (2.31)

for all possible substitutions St9Φ9S = sϊ9 J , ^ and x9y9z = a,b,c.

Let us recall [6] that two categories 9E and <$l are said to be isomorphic if there
exists a functor !F: SC-^®/ such that: 1) for any object Y of 9 there exists a unique
object X of X such that &r(X)=Y; 2) for any pair (Xl9 X2) of objects of 9£9

the map which associates to each morphism f*:Xί-^X2 the morphism
#"(/*): JΓ(X1)-^JΓ(X2) is a bijection of the sets of morphisms.

Corollary 4. The categories J/, $, and $ are mutually isomorphic.

The proof of Theorem 3 follows by a straightforward verification. We shall
omit it here.

For the proof of Corollary 4 it is enough to put x = z in (2.31), which gives
JVJ^ = id.

Now, let if denote the category of complex line bundles jSf -^ M with fixed
Hermitian metric H eC°°(M, lL*(x) 1L*) and metrical connection F:C°°(ί2,lL)

), i.e.

(i)

(ii) dH(s, t) = H( Vs91) + H(s9 Vt)

for any local smooth sections s,ίGC°°(Ω,lL) and /eC°°(ί2), where ΩcM.
Now we shall discuss the relation between category si and Jδf. For an object

(ΊL^M, K) of si let us define the differential 2-forms ω1 2 and ω2 1 on the product
MxM,

: = idίd2logK-aιΛ2, ω2Λ : = id2d1logXδ 2 α i, (2.32)
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where _XδlOt2 are coordinates of K in the local frame s£<g)s*2:ί2αi x£2α2

- φ r f i * ® p r 2 I L * . dγ and d2 denote the differentials with respect to the first and
the second component of the product MxM, respectively. (The complete
differential on MxM is given as the sum d = d1+d2.)

From the transformation rule

n(mί9m2)9 (2.33)

where {gαy} is transition cocycle for 1L, and from the hermiticity of K we get the
following properties of ωl2.

Proposition 5. (i) ω 1 2 does not depend on the choice of frames;
(ii) ω 1 > 2 = ω 2 > 1 and ωίf2= -ω2Λ;
(iii) dωU2 = 0.

Let us also consider 1-forms

(2.34a)

(2.34b)

which are independent of indices ά1 and α2, respectively, and satisfy the
transformation rules

2, (2.35a)

l y i ^ . (2.35b)

Let A : M^M x M be the diagonal embedding, i.e. zl(m): = (m,m) for meM. We
introduce the following notation:

ίi2 = :ω, and J*0 2 o t 2 = 0α 2. (2.36)

Because of A*θ2a = A*θ2δi, one has l i

The following proposition helps to justify the above definitions.

Proposition 6. (i) H is a Hermίtίan metric on ΊL.
(ii) The 1-forms θβ e C°°(Ω ,̂ 1L® T*M) ("^ e Cm{Ωβ91L® Γ*M); ^/mβ a connection
V (V) on the line bundle 1L (ΊL) such that Fsα: = θα®sα (Vsa: = θa®sJ.
(iii) / curv V = ω, vv/ẑ rβ curv Γ denote the curvature 2-form for V.
(iv) V is metric with respect to H.

In such a way we obtain the map 3Fla: Ob(j/)-^Ob(^f), which maps the object
(ΊL-+M,K) of s/ on the object (]L->M, V,H) of i f given by Proposition 6. #; α

satisfies functorial property, i.e. for f:M1^>M2 such that /*JL 2=1L 1 and
f*K2 = Kί the diagram

( L 2 - M 2 , Γ

is commutative if Hί=f*H2 and Vί=f*V2. Therefore, we have constructed a
canonical covariant functor #Jfl from the category of complex line bundles with
distinguished non-negative Hermitian kernels to the category of complex line
bundles with distinguished metric and metric connection.
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Example 2. An example of the object of category J^ is obtained by applying
functor !Fla to the object (E->CP(.J0, ^ E ) of category si which has been defined in
the point i) of Example 1. Applying the formulas (2.32), (2.33) to the kernel
KΈ=(ι(sk), i(^))^*®s? a n d using the notation given by (2.36) we find

HFS(sk, sk) = <ι(sk), ι(sk)} = 1 + Σ 4 4 , (2.37)
i

VFSsk = 8 log < ι(sk\ ι(sk)}®sk, (2.38)

ωF S = i curv VFS = idd log <ι(sk), ι{sk)}, (2.39)

where z[=-^ are affine coordinate on the set Ωk\ = {[ξ\e<LΨ(Ji)\ ^ feφ0 for

ξ = ξίe1 + ξ2e2 +...} and the set of frames sk:Ωk-+Έ is given by
sk{z\, zf, ...): = {zl..., z\~ \ 1, zk

k,...). This gives the object (E->CP(^), HFS, ΓFS) of
category J^. Because ωF S is the Fubini-Study form we shall call PFS and HFS the
Fubini-Study connection and the Fubini-Study metric, respectively.

Let E = E - so{<LΨ(Ji)\ where s0: € P ( ^ ) ^ E is zero section of bundle E. E' is
principal (C*-bundle and i: Έl^Jί — {0} gives a natural coordinate system for E'.
The Fubini-Study connection 1-form αFS takes in this coordinate system the form

W«β-4*g. (140,

From (2.40) we see that U(t): = expHH, where H+ =He&(Ji\ is a one-parameter
group of automorphisms of the bundle (E->(CP(^), iίFS, VFS). The velocity vector
field xvEr(T(Ef)) generated by U(ή has the form

(2.41)

One has the decomposition

where the first and second components are the vertical and the horizontal parts of
xv. From ^xaFS'=0 we obtain

0. (2.43)

Projecting (2.43) by π':Έ'-><£P{J0 on (CP(^#) we find that

(2.44)

which shows that the flow [l/(ί)] obtained by projection π' is globally Hamiltonian
with the average value of the Hermitian operator H as the generating function.

The example presented above is crucial for our considerations, especially for the
next section. Here, we use it for the definition of a natural contravariant functor
J V ^ +JS? given by

, M, K: M->OTM0)] : = (K*E-»M, K*ΓFS, K*iίFS). (2.45)

The functoriality of J^c is obvious.
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The following proposition expounds a relation between the functors J^α

and #JC.

Proposition6. i) ^ a °^ Γ

α c = ̂ c and ^ιc°^ca — ^ia (modulo isomorphisms).
ii) Each object of category ££ is obtained as ^Ίa(A) and ^U{C) for some A e O b ( ^ )
andCeOb(%).

Proof The point i) is proved by the direct check of two considered cases.

The point ii) is a corollary of the Narasimhan-Ramanan theorem (see [18]) and
Theorem 3. •

Pursuing further these considerations let us define the symplectic subcategories
of the categories J / , J*, Ή, and if. We choose to denote them by the same letters
but with an index Sp added, i.e. j / S p , J^Sp, ^ S p , and J2?Sp.

Definition 2. i) (JL-+M,K)eΘ(stfSp) iff K is non-degenerate kernel, i.e. 2-form
ω = zl*ω1 > 2 [see formulas (2.32) and (2.36)] is non-degenerate.
ii) (1L->M, J ^ ) e ^ ( J ί

S p ) iff reproducing kernel of Hubert space f̂L, defined by
evaluation functional, is non-degenerate [in the sense of point i) of this
definition].
iii) (M,Jt,K:M-+<EΨ(Jf))e(βsv iff X*ω F S is non-degenerate.
iv) (IL->M, V, H) e 0(JS?SP) iff *" curv V is non-degenerate.

Let us remark that these definitions of symplectic subcategories are consistent
with the functional correspondence discussed above. Therefore, the symplecticity
criterion is functorial invariant. As a consequence, Theorem 3 and Corollary 4
possess their symplectic counterparts. This allows us to formulate properties of the
objects of one category in terms of the others. We provide an example of such a
situation below.

Proposition 7. Let ^ca[(lL-^M, X)] = (M, Jί, K: M-*<£Ψ{Jί)\ K: M-<CP(.#) is a
symplectic embedding iff K is non-degenerate and satisfies the condition

K-aa{q,q)K-ββ{p,p)<X' ( Z 4 6 )

Proof. Because i) and iii) are equivalent via functor $Fca, we infer that
K: M^(CΨ(Jί) is an immersion iff K is non-degenerate kernel. Next, because of
Kdiβ(q,p) = (K(X(q%Kβ(p)y for K0L: = ios0LoK:Ωa-^Ji, where sa:Ka(Ωa)-+Έ are
local frames of E, condition (2.46) means that strict Schwartz inequality is satisfied
which takes place iff K is an injection. •

The three alternative descriptions of a physical system, which have been
proposed in this section, naturally correspond with well developed mathematical
theories. In the case of categories &t and J^ this is, first of all, the theory of
reproducing kernels (see [1]) with its applications to the complex analysis (see i.e.
[2,3,8]). We want to underline especially the aspect of applications, because, since
the appearance of Bergman's work (see [2, 3]), the reproducing kernels became a
well established and very efficient tool in the theory of holomorphic functions (see
[8]) as well as an independent object of investigations (see [12]).

In order to distinguish the holomorphic subcategory J*H o l within the category
3t, we shall restrict ourselves to the investigation of holomorphic bundles IL->M.
The Hubert spaces J^χ are then realized through the holomorphic sections of
bundle JL while the scalar product in J^L is naturally given by the integration over
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M that guarantees (see [25]) the continuity of the evaluation functional eaq. The
complex analysis provides many examples of objects (1L->M, ̂ fL) of category &Hol

for which the reproducing kernels were found explicitly (see [12]). Some of those
cases are also interesting from the physical point of view (see [20, 22]).

Another example of category ^G related with ^ by forgetting a functor can be
obtained with (G,M9Jί9K:M^><EP(J()9σ9 T) as objects, where the Lie group G
acts on M via σ: G->Diff M and T: G-+kutJί while K is a G-equivariant map. If G
acts on M transitively then the construction of objects of ^G turns out to be related
to the construction of an irreducible representation of G. In this way one arrives at
the coherent states theory in the sense of Perelomov (see [21]). A quite interesting
subcategory of #, from the point of view of the theory of Kahler homogeneous
spaces, is given by the intersection #Gn^Ήoin^sP ( s e e [17]). Let now M be a
compact complex algebraic manifold, ά\mJί< oo and let K be an embedding of
algebraic manifolds. The objects of that type form a subcategory ^Alg of category
ζ€. In this case we may use the algebraic geometry where the necessary and
sufficient conditions are formulated (Kodaira theorem) for the complex manifold
to be algebraically embedded in <S^{Jί\ see [10, 23]. One can find there also
explicit construction of such embeddings, as the Plucker, Segre, and Veronese
embeddings, the last two ones closely related to the theory of spin.

As we see, the point of view presented here naturally encompasses such theories
as complex algebraic geometry, complex analysis, representation theory and
reproducing kernel theory, all appearing as efficient and natural tools for a
description of physical phenomena in the microscale.

3. The Notion of a Mechanical System

In the foregoing section we have shown that the physical systems provided with the
transition amplitude kernel could be identified with objects of the category ^ or of
its isomorphic images si or (%. In this section we shall formulate a theory of
quantum processes. In a sense a proposed formulation incorporates in a natural
way both classical and quantum mechanical description of events.

We define a mechanical system to be an object (M, M9 K: M^><LΨ(Jί)) of the
symplectic subcategory ^ S p . As a manifold of all attainable pure states of the
system we take <£Ψ{Jί). States K(m), where meM, will be called coherent states.
The justification of this terminology will become clear after considerations and
examples elaborated in what follows. We assume the family of all coherent states to
be a submanifold of <£Ψ{Ji). This submanifold characterizes intrinsically the
mechanical system under consideration. In addition, any chosen parameterization
K: M->(CP(J#) of the submanifold K(M) corresponds to a way of measuring of
transition amplitudes. The probability amplitude A^(q, p) for the state Ka(q) to be
found in the state Kβ(p), where qeΩa and peΩβ, Ωa,ΩβCM, is given by

Λ(qP) 1*1)

where K^.Ω^Jί are smooth maps such that, K(q) = [Ka(qj]. Clearly, the
probability density \ΛΛβ(q,p)\2 is independent of the choice of Ka.

It is convenient now to introduce a "transition operator" for coherent states
K(q) and K(p) given by

* (a ri
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So we have
^ ^q9p) (3.3)

and

P(<l)'. = ̂ -««(q,q) = ̂ ββ(q,(U for qeΩanΩβ. (3.4)

Hence, the projection operators P(q), q e M, do not depend on the choice of gauge.
By our assumptions, manifold M used for parameterizing the coherent states is
symplectic with symplectic form ω = K*ωFS. Let L1(M,dμL) denote the space of
functions which are integrable with respect to the Liouville measure dμL \ = Λnω,
where In = dimM. We may define a continuous linear map of Lι(M, dμL) into the
algebra 3S{Jί) of bounded linear operators on M by

L\M, dμL) 3 ρ-Pfo): = £ Piq^qWM) (3-5)

The integration in (3.5) is understood in the weak sense. One has the following
inequality

\\P{Q)V\\^\\Q\\ΛV\\, VveJΐ and V ρ e L ^ d μ J , (3.6)

from which the continuity of the map P \l}{M,άμj)-^M{Jί) follows.
If the system is in a mixed state described by density operator P(ρ), given by (3.5)

then we shall say that it is localized in K(M) with the weight function
ρ G L\M9 dμL\ f ρ(q)dμL(q) = 1. The probability <P(ρ)>(p): = Tr(P(ρ)P(ρ)) of find-

M

ing the system in a state K(p) provided it is in state P(ρ) is equal to the ρ-weighted
2

= J \A^q9p)\2ρ(q)dμL(q). (3-7)
Λί

Assuming <P(ρ)>:M-^R+ as the weight function for the new mixed state
P((P(ρ))\ we introduce the following definition.

Definition 1. We call the state P(ρ) an equilibrium state of the mechanical system if
there exists a map /ι:M-*]R+ and one-to-one maps φ, φ : R + ^ R + such that

ρ = φoh and <P(ρ)> = φ°/z. (3.8)

[We shall say then that the subsets of equally weighted coherent states for ρ and
<P(ρ)> are identical.].

We shall consider a set E(K, h) of equilibrium states which satisfies the following
requirements:
a) The function h is fixed for all equilibrium states from E(K, h).
b) E{K,h) is closed with respect to transformation ρ-><P(ρ)>.
c) E(K,h) is parameterized by a finite number of parameters (/?!,...,/?*)

_

d) There exists β0 e Δk such that φ(h(q); β0) = ρ0 = const and one has the following
partition of the identity operator:

I = P(ρ o )= SP(q)QodμL(q). (3.9)
M
S

M

Let us now present in brief the heuristic motivation for the above requirements.
According to b) and c) the integral transform (3.7) results in the renormalization of
parameters β, i.e.

) (3.10)
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for
), (3.11)

where β = β(β). Parameters βί9 ...,βk are to be interpreted in a thermodynamical
sense, i.e. they characterize the equilibrium states of the system K(Jί) within the
"thermostate" CP(^#). Our assumptions guarantee that any "interference" into
the system may transform it only from one state of equilibrium to another. By
"interference" we mean experimental realization of the transform ρ—><P(ρ)> as
defined by (3.7).

The "interferences" that one admits here are such as not to destroy the system,
i.e. such as do not change its intrinsic characteristics much, if at all. We consider the
function h: M-»R+ to be one of such intrinsic characteristics of the system under
observation. As functions h and φ, together with transition amplitudes, constitute
the description of outcomes of observations, conditions a)-c) become natural.
They guarantee a sufficient stability of the equilibrium states of the system under
disturbances introduced by an experimental interference.

Requirement d) means that:
(i) the family of the coherent states forms a linearly dense subset in space of all
pure states;
(ii) the composition law (with measure ρodμL) is satisfied for the transition
amplitudes, i.e.

Λ-aβ(q, p ) = J Σ hδ(r)A-Jq, r)A-δβ(r, p)ρodμL(r), (3.12)
M δ

where £ hδ = 1 is a partition of unity subordinate to the covering (J Ωa = M.
δ a

Formulas (3.11), (3.10), and (3.7) become the consistency equations for maps K
and h. We shall not study in this paper the general problem of solving those
relations. Instead, we describe at the end of the paper a number of physically
important examples.

Now we pass to the calculation of the transition amplitude for a process along a
given piecewise smooth trajectory.

Let the sequence (# = #i,#2> >ftv-i> qN = P) be such that ^ e β β i , where we
assume that Ωαi = Ωa and Ωαjv = Ωβ. According to the multiplicative property of the
transition amplitude, the following expression gives the transition amplitude from
the state K(q) to the state K{p\

(3.13)
under the condition that the system has gone through all the intermediate states
K(q2\ ..., K(qN_ x). To express this the following terminology will be used. We shall
call the sequence (Kiq^, ...,K(qN)) a process starting at K(q) and ending at K(p).
Consequently, Λ^β(q9 q2i..., qN- ί9 p) will be called the transition amplitude for that
process. Let us investigate further a process of that kind. For that we shall consider
a piecewise smooth curve y:[τι,τf]^M and the partition ( τ 1 = τ ί , τ 2 , . . . , τ N _ l 5

τN = τf) of the interval [τi9τf']9 where τk+1—τk=——τ(τf — τ f), such that

y(τi) = qi- Then in the limit 7V->oo, this curve y may be viewed as a process
approximately described by discrete processes (#,q 2, ...,##-i>P) The transition
amplitude for the process y is then obtained from (3.13) by passing to the limit
as 7V->oo,

N-l

4 t f ( « ; y ; p ) = l i m Π Akak+1(y(τk)Mτk+i))' (3.14)
N^OO k=ί
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Taking into account the smoothness of K^.Ω^Ji and piecewise smooth-
ness of γ we could calculate (3.14) explicitly. In order to do this let us put

)): = Kak+χy{τm))-KJ,y(τkk)) and use (3.14). Then

(
\{Kβ(p)\K0(p)}

<KJy(τk))\KJy(τk))}

<κ\dκy
P

(
\(Kβ(p)\Kβ(p))J P l (K\K)

(K\dK)

7^y (3.15)

where the symbol denotes a family of 1-forms which on ΩΛ are given by
<κa\dκΛy

 <κ\κ>
<Ka\Ka) •

Now, we uncover a geometrical sense of the obtained expression. For that let us
note that the metric structure K*HFS(sa, sa) =: ρδα and the connection one-form
K*VFSsa = :θ(X(S)sΛ written in the frames sa given by maps Ka take the following
form:

<?to = <K«|Kβ>, (3.16)

After expressing K* VFS in the unitary gauge frame

1

one obtains

^ ®ua. (3.18)

Formulas (3.15) and (3.18) exhibit the fact that the transition amplitude for the
process γ is just a parallel transport factor for curve γ with respect to the
connection K*V¥S.

The notion of transition amplitude for the process γ together with the
composition law (3.12) constitutes a starting point for the expression of probability
amplitude A^(q, p) in terms of the path integral. We now proceed to obtain this
expression. The multiple iteration of the composition law (3.12) ends up with the
following expression for the transition amplitude:

M 02 M ON-1

(3.19)
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Let q = y(τi), q2 = 7(^2)9 ...,qN_x = γ(τN-1), p = y(τf). This and independence of the
left-hand side of (3.19) on the number N — 1 of iterations enable us to write down
(3.19) in the form

AΛβ(q,p)= lim J Σ ^ W Φ o W y y
N-*ao M 02
x ί Σ hδN-MτN-i))QodμL(y^N-i))

M δN-ί

xAsS2(q,γ(τ2))AS2δ3(γ(τ2),γ(τ3)) --- Adli_lβ(γ(τN_1),p). (3.20)

Before letting JV go to infinity in order to obtain the final expression we introduce a
convenient notation,

ί Π dκy{τ):= lim J Σ hδ2(γ(τ2))ρ0dμL(γ(τ2))
τe[τj,τ/] iV-> oo M 62

x ί Σ V-,(rt*w-i))MAtL(y(τW-i)). (3-21)
M <5JV-I

The expression being integrated in (3.20) tends to Λ^q γ p) as JV goes to
infinity - in accordance with (3.14). From that and (3.15) we get formally

)=ί Π ^7(τ)exp(//lm^^^^dτ) (3.22)

which could be interpreted as a path integral expression for the transition
amplitude, the integration in (3.22) being carried out over all piecewise smooth
trajectories.

We now come to calculation of the transition amplitude between coherent
states K(q)eh~ί(E) and K(p)eh~ί(E% however, under essential restriction.
Namely, we admit in the process of integration (3.22) only those trajectories
(representing the physical process) which are confined to the equiprobable
hypersurface h~ *(£), i.e. h(γ(τ)) = E = const for τ e [τb τf~]. Let then A^{q\ p;h = E)
denote the probability amplitude for the transition from K(q) to K(p) which is the
result of the superposition of equiprobable γ processes. In order to express the
amplitude AΛβ(q; p; h = E) as the path integral one should insert the appropriate
5-factor into the measure part in (3.21), i.e. we use

δ(h(γ(τk))-E)ρodμL(y(τk))

= 7 e-^^-^^dλiτ^ρodμM^ (3.23)

instead of QodμL(y(τk)). As a result we have

Aiβ(q;p;h = E)=\ fl dκy(τ)dλ(τ)
τe[τi,τf]

xexp(V/{ im^j^_ι fχdτ-[%(τ))-£]A(τ)Jdτ^

'(3-24)

In integral (3.24), different parameterizations of the process y give equal
contributions. The reparameterization invariance may be fixed by introduction of

τ

t = J λo{s)ds as a time parameterizing the processes. This way, the integral becomes
u

the integral over the equivalent choices of classical "clocks" and may be dropped
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out. The resulting amplitude is given by

Asβ(q;p;h = E) = e-iE«f-t«\ Π dκy(t)

^ - h m r r (125)

According to Feynman's path integral interpretation of the above transition
amplitude, the action functional Sκh for the mechanical system
(M, Jί9 K: M->CPMQ) reads as follows:

The extremals of the action SKιh are to be found from the Hamilton equation

ω_j^=d/z. (3.27)
at

It should be clear now that function h has to be identified with the Hamiltonian of
• 1 ^ ., , τ (K\dKy dy .

the mechanical system. Evidently, the summand Im /VΛvr. —' ~r 1S responsible
\K\K/ at

for the interaction of the system with the effective external field resulting from the

way the embedding K: M^(CΨ(Jί) has been realized. Consequently, Im / j n ~ χ

is to be identified with generalized canonical momentum. \κ\κ)
In any given situation it is convenient to fix a map K0.M^><LΨ(Ji) in a

homotopy equivalence class of maps from M into <LΨ(Jί) and then describe the
other maps of this equivalence class as deformations of Ko. The fixing of Ko may
be realized via imposing on Ko some symmetry condition which are inherent to the
physical system by assumption. The deformations K of Ko, breaking the
symmetry of the system are at the same time responsible for interaction of the
system with an external field. An example of such a situation is discussed in [20].

4. The Relation Between Classical and Quantum Observables

The model of the mechanical system developed in the two preceding sections is
deeply found on the notion of coherent states. The coherent states are known to be
close to the states of classical phase space. Due to this, the map K: M-^>(ΠP(J?)
could be treated as a quantization of states from (M, ω) describing the relation
between classical and quantum states.

In this section we shall concentrate on relations between classical and quantum
observables. We define the classical observable in a standard way as a function
h E C^iM), while the quantum observable is represented by a Hermitian operator
H e B(Jί\ For the sake of simplicity we restrict our consideration only to bounded
operators.

The structure of our model of mechanics provides one with a natural (also from
the physical point of view) way of prescribing to any given quantum observable its
classical counterpart. This procedure consists of the calculation of the mean value
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on coherent states K(q\ qeM, for HeB(Jί), i.e.

for qeΩa. In this way one obtains functions <i/>κeC°°(M).
The transition from classical to quantum quantities, known generally as the

quantization procedure, is given by a homomorphism Q of an appropriate Lie
subalgebra of the Poisson algebra (C°°(M,R), {•,•}) into the operator Lie algebra
(B(M), [•,•])• O u r goal is to introduce such a quantization procedure Q which is
natural and consistent with the structures that we have introduced.

We shall start with two remarks originating from the very beginning of
quantum theory (see [7, 24]).
(i) The motion of the wave packet corresponds to the motion of the classical
particle under the condition that the potential varies slowly in the space occupied
by the wave packet. Taking mean values of the position and the momentum
operators we may exhibit this correspondence for the position and the momentum
of the wave packet (see [7]). This is what is known in quantum mechanics as the
"Ehrenfest theorem."
(ii) A year before Ehrenfest's work [7], Schrόdinger discovered (see [24]) a family
of states of the quantum harmonic oscillator, which is parameterized by the
classical phase space and is invariant under time evolution which thus defines the
evolution of the classical states. The classical dynamics obtained in this way is
identical with the dynamics defined via the Hamiltonian of the classical harmonic
oscillator.

In view of the above remarks we shall introduce the following notion. Let a
function /ιeC°°(M,R) define a global Hamiltonian flow σh on (M,ω) and let
H+=HeB(Jί).

Definition 1. We shall say that a pair (h9H)eC">(M9tL)x B(Jf) satisfies the
Ehrenfest condition if for each ί e R one has

M -£-> <£Ψ{Jί)

[U(t)]

where U(ή = Qxp{ίtH).
Naturally, the function h + const generates, the same flow as h, so the pair

(h + const, H) also satisfies the Ehrenfest condition. In order to avoid this non-
uniqueness let us introduce a slightly stronger version of that condition. To this
end let us introduce a one-parameter group of automorphisms

U'(t)=ΓιoU{t)oi, for ίeR,

of the principal bundle Έ' = Έ\Γ1(0)ίj?\{0}. Note that the Fubini-Study
connection 1-form αFSeΓ°°(]E', T*Έ') is invariant under U'(t). Let 1/ : = K*Έf be
C*-principal bundle over M defined as the pull back of E'. The function h
generates a one-parameter group σ'h of automorphisms of IL' which preserves the
connection one-form K*ocFS and such that π' o σ'h{i) = σh(t\ where π':JL'->M (see
[16]). It is easy to see that (see [16]) each such one-parameter group of
automorphisms of (L', K*aFS) is of the form σ'h9 where h e C°°(M, R). Because K is



404 A. Odzijewicz

an embedding and [C/(ί)] preserves K(M) one has

J L + E

J \ϋ'(t) (4.3)

Here, K': 1L'->E' is a principal bundle morphism generated by K. Since from now
on, by the Ehrenfest condition, we shall mean (4.3). Requirement (4.3) removes the
non-uniqueness in the correspondence between functions h and operators H.

Lemma 1. // (h^HJ and (h2,H2) satisfy the Ehrenfest condition and h1 = h2 or

Proof If hί = h2 then σ'hl = σ'h2i which gives

U&) oioK' = K Ό σ>hί(t) = K' o σ ' h 2 ( t ) = U2(t) o%oK'.

Because (ioK')(M) is linearly dense in JK, we obtain U1 = U2, which gives
H1=H2. If Uγ = U2 then from the Ehrenfest condition we have

K'OO'hι(t) = KΌtή,2{t).

As K' is an injection, σ'hι = σf

h2 and hί = h2. •

Let E denote the set of pairs (h, H) e C°°(M,R) x B(Jί) satisfying the Ehrenfest
condition. Let prf denote the projection of E on ith component of the Cartesian
product C°°(M,R) x B{M\ We introduce the following notation

: CE(M, R) and pr 2 (E) =: BE(Ji).

Because of Lemma 1 we get the following mutually inverse bijections

Proposition 2.
, (4.4)

pr 2 o prΓ 1 (h) = Qo ιP{h)- i^ P(q)XhP(q)dμL(q) (4.5)

for H+=HeBE{Jί) and hEC^(M,ΊR)nLι{M,dμL), where Xh is given by
ω-\Xh = dh.

Proof (i) Let h be a function satisfying the Ehrenfest condition with the operator
H+=H. Let us denote by XH and Xh the vector fields generated by flows
[[/( . ) ] : = [expι( ) # ] and σh correspondingly. From this and from (2.44) one has

(4.6)

(4.7)

Carrying over the expression (4.7) on M with help of K we get

K*(ωFS^XH) = d(H)κ. (4.8)

This, together with iC*ωFS = ω and K^Xh = XH results in

(4.9)
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Subtracting (4.6) from (4.9) one gets (H)κ — h = const and the constant is zero
because of (4.3).
(ii) Due to ι:Έ'^J(\{0} and (4.3) one has

U(t)P(q)U+(t) = P(σ(t)q), (4.10)

which after differentiation at t = 0 gives

itH,P(q)-] = (XhP)(q). (4.11)

In accordance with (i) of this proof, h = (H}κ, hence

P(h)= ] P{q)h{q)dμL{q)
M

<Ka(q)\KΛ(q)>

= J P(q)HP(q)dμL(q)
M

^

J
M

= Π P(q)dμL(q)\H-ij^P(q)(XhP)(q)dμL(q)

= Q^H-i\ P(q)(XhP)(q)dμL(q). (4.12)
M

We have used relation (3.9) for the proof of the last equality. •

Let us also note the following identities:

$(XhP)(q)dμL(q) = 0, (4.13)
MM

\M (XhP)(q)P(q)dμL(q) + £ P(q)(XhP)(q)dμL(q) = 0 (4.14)

for h e C^iM, R), which are a consequence of invariance of the Liouville measure
under the Hamiltonian flow σh.

Lemma 3. The mean value operation defines the morphism of Lie algebras

α <C), { , } F S ) .

Proof. The linearity of ι< > is obvious and {A} = 0 iff A = 0. This proves that i< >
is a monomorphism. The equality

KlA9B]y = {(A}9<By}¥S, (4.15)

which shows that j< > is a homomorphism of Lie algebras, may be checked
through a straightforward calculation. •

Proposition 4. The following conditions on H = H+ eB(Ji):

(i) HeBE(Jί),

(ii) \/AeB(Jί)9 {<#>*, <^4>χ} = KlH9A]>κ >

(iii) V^ G B ( ^ ) , {<#>*, <^>x} = {<i/>, <^>}FS ° X

are equivalent.
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Proof, (i) => (ii). As HeBE{Jί\ there exists a function /zeC°°(M,R) which
generates the global Hamiltonian flow σh fulfilling (4.2). Hence for every A e B(Jί\

<Kα o σh(t)\Ka o σh(t)} (e ιt Ka\e ιt Ka}

= <KyΐκIκΛy
K:> • (416)

Differentiating (4.16) with respect to the parameter t at t = 0 gives

d
(4.17)

In accordance with (4.4) h — {H}κ, which together with (4.17) results in (ii).
(ii) => (iii). This follows from (4.15).
(iii) => (i). The expression (iii) can be rewritten in the form

<K*X<H>K, d<A)) o K = <X<H>, d(A}) oK, VAe B{Jί), (4.18)

where X<Hyκ

 a n d X(Hy stand for the vector fields tangent to the Hamiltonian flows
σ< i ϊ > κ and [l/( )]5 respectively. Because forms d< 4̂>, with AeB(Jί\ span the
cotangent spaces T$l<EΨ(Jί)) for any [ι;]e(CF(^#)5 one obtains from (4.18)

K*H<Hyκ(q) = X<H>(K(q)) (4.19)

for qeM. From (4.19) one derives directly that the velocity field X<H> for the flow
[l/( )] is tangent to K(M), i.e. the flow [l/(ί)] preserves K{M). As K: M->CP(^#) is
an embedding of manifolds then K o [[/( )] o K~ * is a globally defined flow on M
which due to (4.19) fulfills the condition σ<H>κ(t) = K ° [U(tJ] oK~\ that is, we get a
weaker version of the Ehrenfest condition. The stronger version follows from the
equality (H}κ = (H}oK (see [16]). •

The time evolution of a quantum observable A e B{Jί) is governed by the
Heisenberg equation

jtA = ίlA,H}. (4.20)

For H E BE{Jί\ in accordance with point (ii) of Proposition 4, after performing the
mean value operation < }κ on (4.20) one gets the evolution for the classical
observable (A}κ, which is a counterpart of the quantum observable A, i.e.

f . (4.21)

This additionally justifies naming (4.2) the "Ehrenfest condition."

Theorem 5. (i) (iBE{Jί\ [ , ]) is a Lie subalgebra of (B(M\ [ , ]);
(ii) (Q(M 5R), { , }) is a Lie subalgebra of (C°(M, R), { , });
(iii) i< yκ\iB^Jί)-^C^(M,WC) is an isomorphism of Lie algebras.
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Proof. From point (ii) of Proposition 4 it follows that iBE(Jί) is an real-vector
subspace of B(Jί) and that

= {<£HU Al)κ, (H2yκ) + {<H1> J B <XH2,AJ>K}

Λ {<H2}K,

κ, <A>K}

ΪOTH1,H2E BE{M) and for any A e B(Jί). From the above it follows that iBE(Jί) is
closed with respect to the commutation. This completes the proof of point (i).

Because of Lemma 1 and formula (4.4) the map i< }κ is an isomorphism of
vector spaces iBE{Jί) and Q?(M,R). Putting H = HU A = H2eBE{Jt) in (ii) of
Proposition 4 one notices that i< }κ is also an isomorphism of the Lie algebras,
which proves (ii) and (iii). •

Let Q: CE{M, W)-+BE(Jt) be the inverse of i< ) κ . Hence, Q could be treated as
a quantization procedure applied to classical observables belonging to Q?(M,R).

Let us discuss the relation of the Q-quantization to the Kostant-Souriau
quantization procedure. Let L2Γ(M,ΪL*), where 1L: = K*Έ, denote the vector
space of sections of 1L* square-integrable with respect to the Liouville measure.
This means that φeL2Γ(M,E*) iff

ί Σh(q)lψτ^QodμL(q)<oo, (4.22)
M a Kza{q,q)

q) for qeΩa.

According to Sect. 2, we have the following natural monomorphism:
7 :^^L 2 Γ(M,£*) of vector spaces with / defined as follows:

I(υ): = <KJίq)\v>3:(q) (4.23)

Because of condition (3.9) one has {I(v)\I(v)}JL=<φ>, i.e. / is also a monomorph-
ism of Hubert spaces.

Proposition 6. The Hubert space l{Ji) is preserved by the Kostant-Souriau
prequantization operator VXh + ih and

Q(h) = Γιo(VXh + ih)oI (4.24)

/orΛeCf(M,R).

Proof. Here we adopt the notation of (4.3). We have

<(i o K')(ξ)\ U(t)v} = < U( -1) o i o κ'(φ>

= <ioUf(-t)oK'(ξ)\v> = ((ioKΌσ>(-ή)(ξ)\v>, (4.25)

where £e]L' and veJί. Differentiation with respect to t at ί = 0 results in

JS?Zh,«i o K'( )\υ» = <i o K'( ) \iQ(h)v>, (4.26)

where Xh, stands for the velocity field of the flow σ'h. Simultaneously, one has
the following natural isomorphism
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between the vector spaces {(toK'( )|ι?): υeJί} and I(Jt). Due to (4.26),
{<* o K'{ -) |ϋ>: υ e M) is a module over the Lie algebra (C%(M,R), { , }). Stan-
dard considerations (see [9, 16]) lead to the conclusion

(4.27)

Applying the isomorphism Φ to the equality (4.26) and taking into account (4.27)
one arrives at (4.24). The in variance of I(Jt) under VXh + ίh follows from the
corresponding invariance of Φ~ *(/(./#)) under S£Xh. •

We have shown that quantization Q:CE°(M,1S.)^BE(J^) is equivalent to the
Kostant-Souriau quantization procedure provided that we realize the Hubert
space Jί as the subspace l(M) in the Hubert space L2Γ(M,E*).

Any bounded operator B e B(M) can be expressed in the l(Jt) representation as
the integral operator

)= J ΣhJίpβ^p) ,^£* dμL(p) (4.28)

with the kernel
BΛfap): = <KJtq)\BK7(p)}9 (4.29)

where qeΩa and peΩy, while tpα:ί2α-»C denotes the coordinate of the section

Functions J5δy: Ωa x Ωy^><£ as well as Xδy might_be considered as coordinates of a
certain smooth section of the bundle prft*®prf]L ! | ί taken in the frame

Hence

K(<lP)

is a function o n M x M which, when restricted to diagonal A in M x M gives the
mean value function of £, i.e. B(q, q) = (B}κ(q).

Formulas (4.29) and (4.30) provide a one-to-one linear map of B{Jί) into
C°°(MxM,<C). This allows to describe the quantum observables via smooth
functions defined on the product MxMof the classical phase spaces. If it happens
that B 6 B^Jί\ then due to Proposition 6 one infers that in order to recover the
function f?:MxM-»<C it is enough to know its restriction B\Δ = (B}K to the
diagonal Δ. Besides the properties listed in Proposition 2, Theorem 5, and
Proposition 6, this is one more characteristic of BE(Jί).

We shall end this section by calculating the transition amplitude
^aβ(<l:>Plh = E) in the case h = (H}. Reversing the consideration which led to
(3.22), we obtain

x ί ΣhδM
τ2))QodμL(y(τ2))...

M δ2

• ί Σ hδN _

( )
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This is the Schrόdinger equation propagator in the coherent state representation
(see [15]).

5. Examples of Mechanical Systems

Now we shall illustrate the proposed model of the mechanical system with several
examples which are important from the physical point of view. These are
describing the Schrόdinger finite-dimensional mechanics, n-dimensional isotropic
harmonic oscillator and scalar massive relativistic particle. The last case was also
presented in [20].

The efficiency of our model in the case of the Kepler system has been verified
in [11].

In Example 2 and Example 3 we will apply the Ehrenfest condition to
unbounded operators, which shows that it can be understood in a broader sense
than we assumed in Sect. 4.

Example ί. Schrδdinger Finite-Dimensional Mechanics. The mechanical system is
defined by M = <£P(N\ Jΐ = €N+i while K = id. We shall express the physical
quantities of interest in a chart (Ωl5 φx) and in a frame s^z1,..., zN) = (1, z1,..., zN),
where we have put z\ = zk (see Example 2 of Sect. 2). Thus, in accordance with
(2.39) the symplectic form ω = ωF S is given by

ω = ίddlog(ί +z+z), (5.1)

where z+z = zίz1 + ...+zNzN and the Liouville measure is

, , , \dA
(l+z + z)+ V v + 1

(5.2)

The transition amplitude between coherent states z,we (CIP(JV) in the frame
s x: Ωγ ->E is of the form

l + z + w

^ ) (5<3)

The projecting operator P(z) on the coherent state z e <£Ψ(N) takes the form

I z+]

Let now .4eMat(N+1)><(iV+1)((C) and I be the unit matrix. Then one has the
following useful formula:

f P(zKA}(z)dμL(z) = πN—l--(A + τvAl). (5.5)
<ΠP(ΛΓ) (yV + l j !

Equation (5.5) could be checked by a straightforward calculation. As a corollary of
(5.5) we get the unit operator decomposition

" & M - 1 (5 6 )
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equivalent to the composition rule for transition amplitudes (5.3) with respect to

the measure π " N rfμL.

Let us consider now the following function:

(5.7)

where H = H+ eMat ( i V + 1 ) x ( N + 1 )(<C) and βί,β2eΊB.. The family of this function
with H fixed, satisfies the conditions a)-d) of Definition 1 of Sect. 3, i.e. it consists
of the equilibrium states of the system. In particular, the transform (3.7) maps

ρ({H};βuβ2) on ρ « i ί > ; ^ J 2 ) , where ^ ^ L ^ and ^2=

Equation (3.10) is also satisfied if one puts βi = 0 and β2 = =r-^π~N(N + l)\ (we
assume that ΎvH * 0). T r H

Assuming that the system is in the equilibrium state as described by (5.7) and
applying the procedure discussed in Sect. 3 we get, with the help of (3.26) the
expression for the action of the system:

u lm
A

dt. (5.8)

The equation of motion obtained from δSidf <H> = 0 is of the form (2.44), which after
being solved results in the flow [l/(ί)] = [exp(iίiί)].

As the result, the family P(ρ((H}; β1,β2)) of equilibrium states is assigned to
every Hermitian operator H. After applying the procedure of Sect. 3 it provides us
with the Schrόdinger time-evolution of the system. Since K = id, space C^(M,R)
consists of functions <i/>, where H+ =HeB(Jί\ while BE(Jί) is given by
Hermitian operators from B(Jί\ The classical and the quantum description of the
system are essentially identical.

Example 2. The Isotropic Harmonic Oscillator. Take M=(CW. The Hubert space Jtκ

will consist of those holomorphic functions ψ e Θ{<En) which are square-integrable

with respect to the Gauss measure dμGf κ = exp ί ——z+z) d2nz, with the L2 scalar
product. ' \ 2κ /

It is easy to check that the holomorphic functions of argument w E <C"

κ^y-^r'h"" (5 9)

parameterized by z e C" belong to Jί. Thus we get the map

Kκ(z): = Kκ(z, -)eJίκ (5.10)

which defines an embedding KK = [K^\ of C" in CP(«/J. As the reproducing
property (Kκ(z\Kκ(w)} = Kκ(w,z) is satisfied, we find that

ω = K*ωFS = iδdlogK(z,z)= - ί- Y dzkΛdz\ (5.11)
2κι u = i

and hence

dμL = Λnω=—nd
2nz.

K
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The transition amplitude between the states ze(Cw and weC" takes the form

A(z,w) = e2κ . (5.12)

The family of equilibrium states P(ρ) is defined by

J^-*'+', (5.13)

where h(z)= γ~z+z and β e R + . The simple calculation shows that

<P(φ(h(z); β))} = φ (h(z); -^Λ (5.14)

and

P(φ(h(z); 1)) = I . (5.15)

Now, interpreting Rez and Imz as position and momentum of the system in the
equilibrium state P(φ(h; β)), we see that ( C n , ^ K J X κ : C " ^ C P ( ^ κ ) ) describe the
n-dimensional isotropic harmonic oscillator. Map (5.10) defines the principal
bundles morphism K'κ:ΊLf = (CnxC*->E' given by

K'(z,ξ)=Γ\ξKκ(z)) (5.16)

The composition rule

(eιs\ αx) o (eιs\ α 2 ) : = \e L 2 J, α t + a2)

for (eis\ OLX)9 (eiS2, α2) e S 1 x Cw, defines the Heisenberg-Weyl group Wn structure on
S 1 x (Cn. One has the natural representations σ: Wn-+ AutlL' and U: Wn->kvXMκ

given by
+ α) (5.17)

and
i + 1 / 2 + o ί ) , (5.18)

respectively. The bundles morphism K' is P^-equivariant with respect to the above
actions, therefore, the Ehrenfest condition is satisfied for the elements of the
Heisenberg-Weyl algebra 2BM. Thus 2BM C C%{<£n, R) and Q: 2Bn-^End^κ gives the
Bargmann-Fock representation of the canonical commutation relations. The

energy function /z(z)= — z+z also belongs to C£(<C",IR) and
ZA

This equivalence of the classical and the quantum dynamics for the harmonic
oscillator was first mentioned by Schrodinger in [24].

Example 3. The Scalar Massive Relativistίc Particle. In this example we treat the
future tube M + + : = {x + iy:xe R 4 and y e C+} as a classical phase space M, where
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C+ = {yeΈL4: y

2=y°2-yi2-y*2-y*2

>0 and / > 0 } . The Hubert space is
Jtλ: = {φe&(M++): <ψ|ψ>Λ< + oo} with

(ψ\ψ}λ: = 2-2 ( Λ + 4M+ + φ(zMz) ̂ Z ί J J d V * * , (5.19)

where λ > — 3, as the scalar product. Let us define the embedding Kλ: M
+ + -+Jtλ

by the formula

λ \ (5.20)

For — 3<λeZ the map Kλ: = \^Kλ] is equivariant with respect to the conformal
group SU(2,2)/Z4 which acts on M + + as the group of biholomorphisms and in
Mλ by the representations from the discrete series (see [13]).

As in the two previous examples the reproducing property (Kλ(z) \Kλ(w)}
= Kλ(w, z) is satisfied. Hence, after introducing the coordinates

z-z)2

-T , we obtain
y

ω = KfωΈS=-i{λ + A)dd\og[^\ =dxμΛdyμ. (5.21)

Let us now parameterize the family of equilibrium states with the following
system of weight functions:

(5.22)

Applying the transform (3.7) to (5.22) we get

In the equilibrium state the conformal symmetry is broken down to the
Poincare one.

Applying the machinery described in this paper to the above data we uncover
the mechanics of a scalar massive relativistic particle with pμ as the 4-momentum
and xμ as the space-like position. For an exhaustive discussion of this model see
[19, 20].
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