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Abstract We study e(λ) = inf spec ( — A + λV) and examine when e(λ) < 0 for all
λ + 0. We prove that - cλ2 ^ e(λ) ^ - dλ2 for suitable V and all small \λ\.

1. Introduction

In this paper we want to look at the "ground state energy," e(λ) = inf spec ( — A + λV),
of a Schrόdinger operator — A + λV for F's which do not decay at infinity - think
of periodic or almost periodic problems. In particular, we want to see when e(λ) is
strictly negative for all λ + 0. There is a large literature on this problem and the
weaker e ^ 0 result, most of it in one dimension. These examples typically have
only essential spectrum so e(λ) < 0 is equivalent to solutions of — u" + λVu = 0
having an infinite number of zeros. The one-dimensional results often are phrased
in these terms (" — d2/dx2 + AKis oscillatory").

The earliest results we are aware of are those of Wintner [19], who studied

=- + λV with V(x + 1) = V(x). He showed that
dx

1 1 1

λ\ V(x)dx - Cλ2\ V2(x)dx ^ e(λ) ^ λ J V(x)dx (1.1)
0 0 0

holds with C = 1. Kato [8] then improved this to C = 1/16. The question about
the optimal C has been raised in [6, 8, 12, 19]. In Sect. 6 we will show that
C = (2π)~2 is best possible, the first inequality in (1.1) being strict for l φ θ .

In Sect. 5 we will recover Kato's result.
A series of authors (Moore [11], Blumenson [1], Ungar [18] and Stanek [17])

proved in the one-dimensional periodic case that e(λ) < 0 for all AφO if
Jo V(x)dx = 0 (note the strict inequality). By a Bloch v^ave analysis and eigenvalue
perturbation theory [13], this result is easy, not only in one dimension but also
for v-dimensional periodic potentials (Eastham [4, 5] only proves e(λ) ^ 0) if V
is periodic with \nnϊicelιV{x)dx = 0.
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For the almost periodic one-dimensional case, various authors (Markus-
Moore [9], Scharf [15] (who only showed e(λ) <, 0), Coppel [2], Halvorsen-
Mingarelli [7], Dzurnak-Mingarelli [3] - see the review in [10]) proved e(λ) < 0
under some circumstances.

Our original goal was to understand how to prove similar results for multi-
dimensional almost periodic models. In fact, we found such general methods that
we feel the problem is rather transparent. Our results do not assume that V is
almost periodic but only that it persists at infinity in some sense. For short range,
F, the results are very different. For example, if V has compact support then
e(λ) = 0 for λ small if v ^ 3. So our hypotheses will have to be such that they
exclude the short range case.

Our main results in this paper are three theorems, all in 1RΛ The first theorem
uses an abelian average

Avε(V) = $e-£<x> V(x)dx/$e-ε<x>dx ,

where, as usual, <x> = (|x|2 + 1)1/2.

Theorem 1. Let V obey:

(i) Vis C^W) with || K||co and \\VV\\n finite.
(ii) Avε(F)->0<2sε|0.

(iii) Av ε (F 2 )->α>0αsεj0.

Define e(λ) = inf spec (-A+ λV), λ e R\{0}. Then, e(λ) < Ofor all λ e R\{0} .
Indeed for some b > 0 and all 0 < \λ\ ^ 1 ,

e(λ) S ~ bλ2 .

Remarks. 1. It suffices that AvEn(V) -» 0, Avε n(F2) -> a > 0 for some sequence sn 10.
2. Notice how we avoid the short range case where Avε(F2) —• 0.
3. Our proof shows one can take

and in fact || F F | | i can be replaced by l im ε i 0 Av ε((FF)2) if it exists.
Given Theorem 1, it is natural to ask about a lower bound on e(λ) quadratic in

λ. The hypotheses of Theorem 1 do not suffice for this, for consider V(x) = tanh(x)
in one dimension. It is easy to see that the hypotheses of Theorem 1 hold but
e(λ) = — \λ\. The key to eliminating linear terms is to deal with averages centered
at arbitrary points, not just at the origin. Let Ca(a) with a e W and α e [0, oo) be
the hypercube in R v of side α centered at a. Define

A±(l)= sup {α"v J V(x)dx\
inf L CΛa) Jinf

CM)', alia; all a>l

V± = lim A ± (I)

Theorem 2. Let V be bounded on W. Then

λ | 0
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Given this result, it is natural to expect that a quadratic lower bound on the
energy will depend not only on A + (/) -* 0 but on how fast it goes to zero.
Intuitively, if the ground state is spread uniformly over a distance /, the kinetic
energy is O(Γ2). l(A± (I) = O(Γα), then

πάn(Γ2-λΓ*)
i

is — O(Λ2/2~α). This suggests that the correct condition for a quadratic lower
bound is A ± (I) = O(Γ *). This is a natural condition in that in the periodic case, if
the average of V over a fundamental cell is zero, then A + is indeed O(Γ *). We will
need a somewhat stronger condition:

Theorem 3. Suppose Vis bounded with V = div(PF) where Wis CX(RV) function and
\\W\\n < oo. Then

e(λ)^ -λ2 || W\\i.

Notice that by Gauss' theorem, if V — div(PF), then J V(x)dx is a surface

term, so || ίv\\^ < oo implies that A + (/) = 0(l~ι). In one dimension, we can show

that A±(ϊ) = OiΓ1) is equivalent to || W\\^ < oo.

2. Upper Bound: Proof of Theorem 1

Let φε(x) be the trial vector

φε(x) = e-
ε<xy/2

Then a simple calculation shows that

l |0> e | l2

for any multi-index α. In particular (with H = — A + λV on H2(W)),

V), (2.1)

<φε, H
2φε) = 0(ε2) + λ2Avε(V2) , (2.2)

if V is bounded. Finally,

<φε, H
3φε> = (VHφε, VHφε} + λ(Hφε, VHφε> .

If V is bounded

<ifφε, VHφε} = 0(ε2) + λ2Avε(V3) .

If Wis bounded

(VHφε, VHφε) = 0(ε2) + λ2Avε(V(V)2) .

Thus

<φε, H*φ8y = 0(ε2) + Avε(A
3 V3 + λ\VV)2) . (2.3)
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Proof of Theorem 1. Suppose e(λ) ^ 0. Then H ^ 0 and so by the Schwarz inequal-

ity,

< φ ε , H 2 φ ε > 2 ^ (φε,Hφεy <φ ε , i ί 3 φ ε > . (2.4)

Using (2.1-3) and taking ε to zero, we see that

A4[lim Av ε (F 2 )] 2 S λ[lim Ave(K)] [ϊϊϊn Avε(Λ3 V3 + λ2(VV)2)~]

which is impossible, since by hypothesis the left side is λ4a2 > 0 and the right side
zero.

To get a bound on e(λ), use the fact that (H - e(λ)) ^ 0, so (2.4) holds if
H is replaced by H — e(λ). Since <φ ε, # φ ε > - > 0 as ε-*0, in that limit
(φ, (H - e)2φ) = <φ, H2φ) + e2 ^ <φ, H2φ}. Thus

Since we consider only |2 | ^ 1 and \e(λ)\ ^ || KH^, we see that

λ2a2 ^\e(λ)\UW\\l + S\\V\\H . D

3. Lower Bound: Proof of Theorem 3

By hypothesis V = VW. Thus, if u e Co°°:

= -$WV\u\2dx

so

If II u || 2 = 1, we have that

< w ? ( _ Δ + λ F ) w > ^ || F w ||2 _ 2A|| J K I U || Full2

by completing the square. Since CQ° is a core for H, we have that

e{λ)Z -λ2\\W\\l.

4. Calculation of D± e/Dλ at λ = 0 (Proof of Theorem 2)

We will only prove l i m ^ o ^ " 1 e(Λ) = K_ since the other limit then follows by
replacing V by — K. Given α and α, define ^α > α to be the function which is

Ψ*,a(x) = α " 1 / 2 min(α1/2, dist(x, Rv\Cα(α)))

so φ^a vanishes outside Cα(#), is 1 on Ca(a) with a collar of size α 1 / 2 removed from
the set and "linear" on the collar. Since V is bounded

<Ψa.a, Vψ«,a>KΨ«,a, Φa,a> = ^ f V(x)dx + OfcΓ1'2) .
C«(β)
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Moreover, it is easy to see that

<vψa.a, vφa,a>κψa,a9ψ«,ay = o(α- 3 / 2 ) .
It follows from the variational principle that

e(λ) ^ λV- for all λ ̂  0 .

To get the lower bound, we introduce a map τα from L2(RV) to L2(W) by

(τaψ)(x) = oc-* J ψ(y)dy if x e CΛ(a\ a
CΛa)

We claim that

(4.1)

for φ G β( - Δ) and will prove this below. Since τα is positivity preserving, self-
adjoint and preserves the LX(RV) norm

(This also follows from the Schwarz inequality.)
Without loss of generality, we can suppose e(λ) < 0 for λ ̂  0, e.g., replace Fby

V- || V\\ oo - 1. In that case for λ ̂  1/2, find unit vectors φλ so that

A). (4.2)

Since e(λ) < 0, we have

Wxt-ΔψΛZλWVWn. (4.3)

Write

(ψλ, {-Δ+ λV)φλ} = a1+a2 + a2) + a4h

with (α to be fixed later)

- τa(φλ))> ,

α4 =

^ 0 and by (4.1) and (4.3)

Clearly, α3 ̂  ΛA_(α). Thus, by (4.2),

(1 - λ)λ~1e{λ) ^A-(<ή- cλoc2 - cλί/2oc .

Take α = In λ'1 and find that

l i n U - 1 ^ ) ^ V-

completing the proof of Theorem 2 modulo the lemma below. D
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Lemma 4.1.

\\φ-τa(φ)\\2

2Sca2\\Vφ\\2

2.

Proof. If we prove this for φ supported in a single closed cube, C, where φ need not
vanish on δC (Neumann form), we obtain it for all φ by summing all cubes. By
scaling we can take α = 1. So in a unit cube we need to prove that with P the
projection onto the functioin 1:

| | ( 1 - P ) φ Hi ^c\\Vφ \\2

2 (4.4)

with || Vφ\\\ the Neumann form. Since — AN has 1 as eigenfunction with eigen-
value 0 and first eigenvalue π 2, (4.4) holds with c = π~2. D

Remark. The lower bound proof can be pushed to get a power lower bound on e(λ)
if, say, Λ-((x) = O(α - 1 ) but not a - λ2 bound.

5. Examples

Let us first remark that using a special case of Theorem 3, Kato [8] obtained
C = 1/16 in (1.1).

Next consider the almost periodic case. By an elementary calculation
Avε(F) -> μ(V), the Bohr mean of V. Here is a typical result that follows directly
from our theorems:

Theorem. Let V(x) = Σncne
2πBn'χ on Rv, where an are arbitrary vectors and:

(i) cn are not all zero,

( i i )Σ jc n | ( |α Π | + | α M Γ 1 ) < oo .

Then — aλ2 ^ e(λ) ^ — bλ2 for some a, b > 0 and \λ\ small enough.

Proof Let

which converges uniformly by (ii) so W is uniformly bounded. Clearly V W = V
and by hypothesis

| | F K | | 0 0 ^ 2 π Σ l c Λ | | α J < oo ,
n

so Theorems 1 and 3 apply. D

As a final example of Theorem 3, consider the Hydrogen atom Hamiltonian

H= -A + λV, V= - I x Γ 1 .

Then V(x)= V W where W(x) = — i5c/|5c| and \\ίv\\i=i Since V is not
bounded and Wis not C1, the theorem as stated does not apply but the proof does!
The net result is

e(λ)^ -λ2/4
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which is exact! It is exact, of course, because the ground state obeys W% Vφ = cφ
for the ground states (so the Schwarz inequality is an equality).

6. Two applications of the Riccati Equation

In this section we shall find the optimal constant in the Wintner-Kato estimate
(1.1). Moreover, we shall give an alternate proof of Theorem 1.

Theorem. Consider 0 + Ve L2(R/Z) with <F> := J* V(x)dx = 0. Then

e(V)> -C\\V\\2

2 (6.1)

for all such V and C = (2π)~2 but for no smaller C.

Proof H = - —^ + V has a ground state u > 0 in H% (R/Z). Its logarithmic

derivative m = u'/u satisfies

<m> = 0 (6.2)

and the Riccati equation

rri + m2 + e(V)= V. (6.3)

Taking averages before and after squaring gives

- e(V) = <m2>

and

<F 2> = <(m' + m 2 - < m 2 » 2 >

= <(m')2} + <(m2 - <m 2 » 2 >

ΞΞA + B, (6.4)

since the cross term is a perfect derivative and thus averages to zero. Here B > 0.
Indeed, m2 = <m2) and m continuous imply that m is a constant and thus zero by
(6.2). But then V= 0 by (6.3). Also by (6.2), A=\\m'\\l^ (2π)2 | |m| | | . So we get
|| VWl > — (2π)2e(V). Taking m(x) = λ cos(2πx) the inequality for A is saturated,
_ e(V) = λ2/2 and B = 0(λ4) as λ -> 0. Thus

= {2π) '

Actually, the weak coupling limit of the Mathieu equation is the only regime where
(6.1) with C = (2π)~2 is (asymptotically) saturated, for we have:

Proposition. Let V be as in the theorem. Then

> - ( 2 π Γ 2

if and only if\\ V\\2 -• 0 and \\ QV\\2/\\ V\\2 -+ 0. Here Q: L2(R/Z) ->• L2(R/Z) fa the
orthogonal projection onto the Fourier modes with | k \ ̂  2.



382 F. Gesztesy, G.M. Graf and B. Simon

Lemma. Let Q) = {me H2(R/Z)\(m} = 0, | |m| | 2 = 1} and set

Φ(m) = (||m! \\ - (2π)2) + (||m||J - 1) = Φ^m) + Φ2{m)

for meQ). Then

inf Φ(m) > 0 .
meΘ

Remarks. 1. Φ(m) is well-defined since H2 a L 4 (with bounded embedding).
2. infme^ Φi{m) = 0 for i = 1, 2.

Proof. Let {m}, me 2 be a minimizing sequence. Then 2π | | m | | 2 ^ II^Ίl2 is
bounded. Thus, upon passing to a subsequence, mw-+m* in iί? by the
Banach-Alaoglu theorem (see e.g. [14]). Since the embedding H\ a L2 is compact,
m^>m* in L2. Thus, ||m^.||2 = 1, (m^) = 0, i.e. m^eQ). Moreover, H m ^ l ^ ^
lim || m'|| 2 , 11̂ *114 ύ l im| |m| | 4, showing that infme^Φ(m) = Φ{m^). Now Φ{m%) = 0
is impossible since it implies Qm^ = 0 and then || m% \\% — 1 > 0. D

Proof of the Proposition. Note that - e(V) = \\m\\j > 0 for V + 0. Thus

™f II 2

- l + NIII v '
where m = m/||m\\2. Then || V\\2

2/( - e(V))^(2π)2 implies | |m' | | 2 / | |m| | 2 ^ 2 π by
(6.5) and || m \\ 2 -> 0 because of the lemma. Therefore,

WhJ\rr4l< INli
IImil2 l lm| | 2

 = C O n S | | m | | 2 "
and

II T/ l l .

2π
l|m||2

because of (6.3). In particular, | | F | | 2 - > 0 . Moreover, ||(1 — Q)m'\\2 =
2π || (1 - Q)m \\ 2 and || Qm'\\ 2 ^ 4π || Qm || 2 imply

Thus, \\QV\\2/\\m\\2ί ( | |βm' | | 2 + | |m 2 | | 2 )/ | |m| | 2 ^ 0 , showing | | βK | | 2 / | |K | | 2 ->0.
Conversely, let | |K| | 2-» 0, | |βF| | 2 / | |Ύ\\ 2 -» 0. By (6.4), we have

2π| |m| | 2 g | |m' | | 2 ^ | | F | | 2 a n d | |m 2 | | 2 = | |m| |I g const.| |m'| |l ύ const|| K | | i Using
(6.3) we estimate

- ^ II»«Ί|2 O | | m 2 | | 2

| | m 2 | | 2

\\v\\2 ~* •
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T h e n

I I w ι | | i ^ 11(1 - Q)m\\l = ( 2 π ) - 2 | | ( l - Q)m'\\l = ( 2 π ) " 2 ( | | m ' | | l - \\Qm'\\l)

implies | |m| | 2/| | V\\2 -^(2π)" 1 . Now || K|||/( - e(V)) -+(2πΓ 2 follows from (6.5).D

Based on the Riccati equation, we can give the

Alternate Proof of Theorem 1. By the Allegretto-Piepenbrink theorem

- Au = (e- V)u

has a non-negative distributional solution u. It is continuous and satisfies the
Harnack inequality

Here c denotes a generic constant depending only on a bound on || V\\^ or, as
below, on || VV\\^ as well. See e.g. [16] for the above. Then

u(x) = j GD(x9y)Au(y)dy + J P{x,y)u(y)dσ(y) (\x\ < 1) , (6.6)

where GD and P are the Dirichlet-Green's function respectively the Poisson kernel
for the unit ball. Indeed, both sides share the same boundary values at | x | = 1 and
the equal upon applying A. As a result Vu{x) is continuous and

\Vu{x)\^c sup|ι*(jθ| ( | x | < i ) .

Letting m = Vu/u, we then find

\m(x)\^c (xeW)

by translating the origin and using Harnack's inequality. Again, m satisfies the
Riccati equation

m2 + V m= V — e

showing I V m(x)\ ^ c for x e Rv.
Let us set </> = l im ε i 0 Avε(/) for functions/on Rv, provided the limit exists.

Then

\e-
ε{x)V m(x)dx

Avε(Vm) = > ί g - ε W ; / =O(β)

after integration by parts, and hence

e = - <m2> ,

<K2> S <(V-e)2} = <(m2 + V rn)2) ^ 2 ϊϊm (Avε(m4) + Avε(F m)2) .
ε i O

Here Avε(m4) ^ c(m2y because m is bounded, and

Avε(F m)2 = Avε((F m ) ( F - e - m2))

Avε(m2)1/2 + cAvε(m2) + O(ε)
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by integrating by parts, using the Schwarz inequality and the boundedness of m,
V'm. Summing up:

which shows that <K2> > 0 implies — e = <m2> > 0. Also, replacing V by
< 1) does not affect c and implies e(λ) ^ — cλ2 with c > 0. D
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