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Abstract. We prove that the free energy of the Hopfield model with a finite number
of patterns can be represented in terms of an asymptotic series expansion in inverse
powers of the neurons number. The series is Borel summable for large temper-
atures. We also establish mathematically some other interesting properties, partly
used before in a seminal paper by Amit, Gutfreund and Sompolinsky.

1. Introduction

One of the first papers in which the critical temperature of the Hopfield model and
the properties of the overlaps were intensively discussed is "Spin-glass models of
neural networks" by D.J. Amit, H. Gutfreund and H. Sompolinsky [1]. In the first
part of that paper the expression of the free energy was deduced in the limit
N -» oo applying heuristically the saddle point technique to the expression of the
partition function, for N < oo. The results of that calculation were very interesting
and many of them have been checked also by numerical simulations. Obviously it
was not the aim of that paper to prove mathematically the results presented. In the
present paper, besides providing mathematical proofs, we also deduce new stronger
properties of the free energies. Let us briefly describe our main results, referring to
Sects. 2 and 3 for proofs. Consider the Hamiltonian of the Hopfield model [8] with
p patterns:

HΛξ) = ~ ί Σ ξfξfrtj, (l D
Z i V μ=ί iΦj,i,j=l

w h e r e σh i = 1, . . . , N a r e t h e n e u r o n a l a c t i v i t i e s , σ t = ± 1 , a n d

i f , i = 1, . . . , N, ξ ΐ = ± 1

is the codification of the μth pattern which we want to memorize, μ — 1, . . . , p.
All the ξf are considered to be random variables independent and equally

distributed with probability E{ξf = ± 1} = •£. The retrieval property of the
Hopfield model corresponds to the fact that the "mean value" of the "spins" is
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aligned with some of the p patterns ξf, i = 1, . . . , N. By "mean value" of the
"spins," by definition, we mean that the variables σi9 i = 1, . . . , N are random
variables whose probability distribution PN is described by the Gibbs distribution
defined by the Hamiltonian HN(ξ), for finite N and a given inverse temperature /?,
and that we take the average of σt with respect to PN.

It is interesting to have information also about the property of retrieval
averaged with respect to all possible choices of ξf, i = 1, . . . , N and so one
looks for an equation which determines the values of the overlap (order) para-
meters:

m» = TτE Σ ξt<σi>, (1.2)
i V ί = l

where E here means expectation with respect to the probability distribution of the
variables ξf and <•> is the expectation with respect to the Gibbs distribution
defined above. We say that the system retrieves a pattern when

mμ = 1 . (1.3)

Let us define as usual the neural dynamics for the discrete time t = 0, 1, 2, . . . by

Σ Jijσjit)) (1.4)

with given σ^O) and where the couplings ("synaptic efficacities") JUj - the same as
in the Hamiltonian (1.1) - are given by Hebb's rule as follows:

Jij = ̂  Σ TO- (i 5)

The pattern ξf are expected to be invariant (stable) with respect to this dynamics
only in the thermodynamic limit N -»oo, hence it is interesting to compute
the above quantities (1.2) in the thermodynamic limit. In particular one tries
to compute the mean free energy of the system as a function of the temperature
and of the mμ. The determination of its local minima should yield then the physical
values of the patterns overlap mμ. Let us introduce the partition function of the
system:

z"(£) = i Σ exp(-jMMξ)) (1.6)
Z σui=l,...,N

with a positive constant β, and then compute the averaged free energy in the
thermodynamic limit N -> oo :

f=timEFN(ξ), (1.7)

where

U
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Following [1], one can express the partition function ZN(ξ) as a p-dimensional
integral using the properties of Gaussian integrals:

ZN(ξ) = e-™* 1 Σ ( 2 π ) - p / 2 \dm' ... dm"
i = 1 ΛΓ

(1-8)

In [1] the last sum in the exponential is substituted "by the expectation E with
respect to all the ξμ in the limit N -• oo," i.e. in [1] the following quantity Z N is
studied

ZN = e-
βpl2(2π)-p/2 j d m 1 . . . dmp

xexpj -^ f (m»)2 + NE\ncosh(l^ £ m ^ Λ j . (1.9)

The legitimation for replacing ZN(ξ) in (1.8) by ZN in (1.9) is not given in [1]. In
Sect. 2 we shall provide this legitimation; in fact we prove the £-a.e. convergence of
the free energy associated with the partition function defined in (1.8) to the free
energy associated with ZN (Theorem 2.1). Let us note that part a) of the results in
Theorem 2.1 also follows from results obtained by a different (large deviation)
method by van Hemmen, see [16]. (See also [17, 9] and references therein for
further interesting discussions, and some extensions to other related models; see
also [5,15] and [11, 12, 18].) A further result, proven in Sect. 3, is that the free
energy can be expanded in an asymptotic series in the parameter 1/N. The same
results hold for the free energy of a system with additional symmetry breaking field
(necessary to consider for computation of expectations <σt > used to define the
overlap parameters in (1.2)). In Sect. 4 we prove the Borel summability of the
expansion for 0 < β < 1. The notations used in this paper are introduced in Sect.
2 and are motivated by the formulas used in the Introduction.

2. A Convergence Result for Free Energies

Let us define, for ξ = (ξ\ i = 1, . . . , AT), ξι e { - 1, + 1}*, m e Rp:

SN(m,ξ) = \rn2-±-Σ In cosh (β^m ξ1) (2.1)

with m2 = m m,'being the scalar product in Rp. ξ stands for (ξ1, . . . , ξN). The
space { - 1, + 1}P consists of 2P points which we indicate by ξa9 a = 1 . . . 2P. Let

with δξitξa = 1 for ξι = ξa and 0 if ξι φ ξa. Thus qajN is the frequency with which
a given ξa appears in (ξ1, . . . , ξN). We have

\ 2 m ξ J . (2.3)
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Let

S{m) = \m2 - Σ Uncoshiβ^m ξJ . (2.4)

Let E( ) be the expectation with respect to the variable ξ. Then

i) = 7Γ> ( 2 5 )

the δξi, ξa being independent identically distributed. Define

fN(ξ) = 1 In j dm exp( - ΛΓS*(m, f)) = FN(ξ) - ^ lnΛΓ (2.6)

and

fN = - In J dm exp( - NS(m)) = FN-j-lnN (2.7)

— 1
with FN = -

Remark. Since

we have that/#(<!;) is uniformly bounded in N and ξ; see Proposition 2.5 below.
The main result of this section is formulated in the following theorem.

Theorem 2.1. For any 0 ̂  β < oo,

a)

lim |/N(ξ) - ^ | = 0 , E-a.s. (2.8)
N->ao

b) Moreover, there are positive constants c1,c2, y such that

^\/N(') ~ / N I =—Ϊ/2 + ~ e x P ( ~ yN) (2.9)

ybr any N e N.

c) IfO^β< I then

l im/ N = 0 , (2.10)

additionally, ifO ̂  βp < 1, then for any ξ e { — 1, + 1}P

lim/*(f) = 0. (2.11)
ΛΓ-»oo

O
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Proof Trie proof of Theorem 2.1 a) and b) is based on the following lemma:

Lemma 2.2. For any 0 < ε < 1

Mξ) - - In J dmχ( \ m \ < Re) exp( - NSN(m, ξ))
N

(2.12)

for some constants 0 < C, y < oo independent of N e N and ξ e { — 1, + ί}p, and
where

2β l/2nl/2

(2.13)

Here χ(\m\ < A) denotes the characteristic^function of the set {meRp, \m\ < A}.
The same bound holds with fN replaced by fN and SN replaced by S. O

The proof of Lemma 2.2 will be given later. Using Lemma 2.2 we see that

2C
\Mξ) -fN\ S |/w..(f) -Λ.. - yN)

- NSN(m, ξ))

with

and

Writing

exp( - NSN(m, ξ)) = exp( - ΛΓS(m))exp( - N(SN(m, ξ) - S(m))

in the definition oίfNiE(ξ) and using the fact that for \m\ < Rε

1 SN(m,

we obtain:

2βp »
ε α = l

This implies that

* .

-S(m) 1 = Σ(

1
S/,.(

—

Λ

1

,»

VII

2βp

t

( β -

i,Jv(C

A..

2P

.?,

ε

fc C

ncoί

Σ

) - :

ih iβ^m L)

•
1

1

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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Using the fact that for any a = 1, . . . , 2P we have

_ 1
lim = 0, E-a.s. (2.20)

together with (2.19) and (2.14) we conclude the first part of Theorem 2.1.
To show part b) of Theorem 2.1 we observe that by taking the expectation with

respect to the measure E of both sides of (2.19) and using the fact (proven in Lemma
A.3a of the Appendix) that for any a = 1, . . . , 2P,

E = \2P 22p N1/2i

we get

This, together with (2.14) yields:

) -fN\ ^ ^ e x p ( - yN),

which ends the proof of part b) of Theorem 2.1.

(2.21)

(2.22)

(2.23)

D

Remark. Let us note that also in [9] one may find some different arguments
showing part a) of Theorem 2.1.

Now we shall prove c). To prove (2.10) let us observe that

Elncosh(j51/2m ξ0) = } dt) df βE[(rn ξ0)
2(cosh(t'β1/2m-ξ0)Γ2]

(2.24)

Therefore the action S(m), used to define^ in (2.7), satisfies the following inequali-
ties:

Hence, if 0 < β < 1, we get

j - ln(2π/N) ^fN ^ γ~ ln(2π/JV(l - β)) .

This implies (2.10). To get (2.11) we write

1 2p

= Σ qa,N(θ(\rn2 - In\

(2.25)

(2.26)

(2.27)
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and observe that

^m2^^m2- \ncosh(βί/2m ξa)

βιl2m ξay
2^-{l-βp)m2 . (2.28)

Hence we get

- (1 - βp)m2 ̂ SN^-m2 , (2.29)

whence

~ - ln(2π/JV) SfN(ξ) ^ ^ - ln(2π/ΛΓ(l - βp)) . (2.30)

If 0 < βp < 1, this shows that for any ξ e { — 1, + 1}P we have

lim fN(ξ) = 0 . (2.31)
N->oo

This ends the proof of Theorem 2.1. •

Now we give a proof of Lemma 2.2.

Proof of Lemma 2.2. Introducing a partition of unity 1 = χ(\m\ ^ Rε) +
χ(\m\ > Rε) into the integral in (2.6) we get

fN(ξ) = i I n j dmχ(\m\ ^ Rε) exp( - NSN(m, ξ))

From this we see that in order to prove Lemma 2.2 it suffices to show that

jdmχ(\m\ > flε)exp( - NSN(m, ξ)) ^

for some 0 ^ C, γ ^ oo , independent of NeN and ξ. The inequality (2.33) follows
from Lemma 2.3 given below by taking

Jrfmexpί J^™2)
(2.34)

and

7 = , jSp . (2.35)
ε

This ends the proof of Lemma 2.2. •
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Lemma 2.3.

ldmχ(\m\>RB)exp{-NSN{m9ξ))

^ Jdmexpί — m 2 )exp( — (N — 1)(1 — ε)2βp/ε2) (2.36)

and

(2.37)

O

Proof of Lemma 2.3. To prove the first inequality we remark that for | m \ > Rε we
have

Lm2- £ qaMOincosHβ^m ξ^^Um2 - β^p^lml^O . (2.38)
1 a=ί l

Therefore

$dmχ(\m\>Re)exp(-NSN(m,ξ))

^ expί - (N - 1)l-^- R2)\ dmexd - N^nA (2.39)

which is the first inequality in Lemma 2.3.
To get the second inequality in Lemma 2.3 we observe that for any 0 < α < Rε

we have

^ j" dmχ(I m\ < α)expί - N max ^ ( m , ξ)) . (2.40)

However

SN(m,ξ) = ^m2- X ^,N(01ncosh(i? 1 / 2m ^ ) ^ ^ m 2 . (2.41)
^ α = l ^

So taking

— F Ί 1 / 2

τί-Λ.2 > (2 4 2 )

we get

\^βP. (2-43)

This together with (2.40) yields the second inequality in Lemma 2.3.
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Remark. If β ̂  1, one can show that there exists an open set U a Rp independent
of ξ such that for any m e U we have SN(m, ξ) 5Ξ A < 0 for some 0 < \A \ < oo.
This allows to improve, in this case, the second estimate in Lemma 2.3.

In the following Propositions (2.4)-(2.6) we shall derive some additional in-
formation about the free energies. The first one shows that the mean free energy ΈfN

is always not less than the free energy fN.

Proposition 2.4. For any N e N

E - l n f dme-NS"im-ξ> >-ln \dme-NESN(m>ξ\ (2.44)

N J ~ N J

Proof. Let us introduce for t e [0,1] an interpolating action O

SN,t = tSN + (1 - t)ESN. (2.45)

We have

E(/w -fN) = E } Λ ~ In J dme-NS«-

~Ίl

3 0

1 t

( = 0 0 0

(2.46)

where

It follows from the definition of p t and of SN,t that the first term from the rhs of
(2.47) vanishes.

On the other hand, as follows from the Holder inequality, the second term
from the rhs of (2.47) is always nonnegative. This ends the proof of Proposition
2.4. •

Now we show that the free energy fN(ξ) is uniformly bounded in ξ. We have

Proposition 2.5. There is a constant 0 < C o < oo such that for any N e N and

ξ€{-ι, + ιy,

\fN(ξ)\<C0. (2.48)

O

Proof Since

lncosh(β1 / 2m £0) ^ β1/2p1/2\m\ , (2.49)

so

)^\m2-β1'2pll2\m\. (2.50)
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O n the other hand

- In J dm exp( - NSN(m, ξ)) = - In f dm exp( - ΛΓm2/2)

ίdmQχp(-NSN(m,ξ))

μmexp(-ΛΓm2/2) '

and, by Gaussian integration,

- In J dm exp( - Nm2/2) = - ln(N-p/2(2π)p/2). (2.52)

Using (2.50) we can estimate the second term from (2.51) as follows:

1 jdmexp{-NSN(m9ξ))< 1 fdmexp( -
= N Π j dmexp( - Nm2/2) = N Π j Λnexp( - iVm2/2)

ίϋjιαexp( —

exp( — N(ma)2/2) J

nin?
(2.53)

This yields Proposition 2.5. •

Proposition 2.5 together with some large deviation estimates allows us to conclude
that to get the essential information about the free energy for large N it is enough to
consider only "good" configurations of ξ% a fact which will be useful later on. We
have

^δ Ma = 1, . . . , 2p) . (2.54)

Proposition 2.6. For δ > 0, let

-J a 1

Xδ = X\ Qa,N — ~Z~V

\

Then

|E/^(« - E(χδfN(ξ))\ S COE(1 - χ,) = C 0Cexp( - δN^2) (2.55)

/or C o as in Proposition 2.5, and some constant C > 0. O

Proo/ We use

EfN(ξ) = EχδfN(ξ) + E(l - Xδ)fN(ξ), (2.56)

Proposition 2.5, and the large deviation estimate

E(l - χδ) ^ C exp( - δN1/2), (2.57)

which can be deduced from the definition of qa,N(ζ)l see Lemma A.I in Appendix.
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3. Asymptotic Expansion for the Free Energy

In this section we show that the free energies fN and EfN(') have asymptotic series
representations in powers of JV"1. Let us mention that a general method exists, see
e.g. [3], for investigating the Laplace integrals like those used to define the free
energies. In principle one could use this method (together with a result of [6]) to
obtain an asymptotic expansion ϊoτ fN. Application of this procedure for explicit
computation of corresponding coefficients of the series, in general, can be very
complicated.

In our work we provide another way, by which we are able to determine in
a simple way the required coefficients. Therefore our method can be useful also for
numerical studies, which are important in the domain of neural networks. Addi-
tionally, with some small modification, our method applies as well to the investiga-
tion of the free energy EfN( ). As the reader may have noticed from Sect. 2, the
behavior of free energies is essentially different in the high temperature, 0 < β < 1,
and in the low temperature, β > 1, regions. To get our expansions we need also to
apply different considerations in both regions (although both cases rely on a com-
mon basic idea). Therefore we present them in two subsections beginning from the
high temperature case.

3.1. Asymptotic Expansions: High Temperatures. In this subsection we prove the
following result.

Theorem 3.1. Let 0 < β < 1. Then for any KeΉ we have

a)

IN = ~^(N(1 - β)/2π) + Σ(K) + Rκ+1 , (3.1)

where

Σ(K)= Σ cnΛT<" + 1 >, (3.2)
« = i

with the coefficients cn satisfying the bounds

\cH\£C"n\ (3.3)

for some constant 0 < C < oo, and the remainder Rκ+1 satisfying

\Rκ+i\SCκ+1N-« + 2) (3.4)

for some constant 0 < Cκ+1 < oo.

b) Similarly we have

EfN(')= -^ln(N(ί-β)/2π) + Σ(K) + Σ(K) + Rκ+l9 (3.5)

where the sum Σ(K) is defined by

Σ{K)= Σ cnAΓ-(" + 1 ) (3.5a)
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with some coefficients cπ, and the remainder Rκ + i satisfying the corresponding

bound (3.4) with some positive constant Cκ+1 replacing Cκ+1. O

Proof of Theorem 3.1. a) For 0 < β < 1 it is convenient to split the action S(m)
from the definition of fN as follows:

S(m) = \^2~ Elnchβ1/2m ξ0 = ^—-^m2 + l/((l - β)ί/2m) . (3.6)

Then changing the integration variables m i—• ((1 — β)N)~1/2, and denoting by
Po a Gaussian measure on R p with mean zero and unit covariance we get

fN= -^ln(N(l - β)/2π) + ^lnpo(e-Nϋ(Nll2m)) (3.7)

(for any measure p and p integrable function g we use the notation p(g) = §gdp).
We will show that the second term from the rhs of (3.7) has an asymptotic
expansion in powers of N'1. To do that we introduce a parameter t e [0,1] into
the exponential in the expectation with measure p 0 . Then using Taylor's theorem
we obtain the following expansion of the X th order of the second term from the rhs
of (3.7),

U

fc-times /k=ί K

s £ o ( K ) + 0i(K + l) (3-8)

with the remainder

1 ίi tκ

K+1-times

Here we denote by pt the probability measure on R p given by

( ( m U ' ( 3 1 0 )

We used also the notation

fc-times

for the corresponding semi-invariants (cumulants, truncated correlation
functions) of the feth order. Setting t = 0 in formula (3.11) we get the semi-in-
variants, which appeared in the sum on the rhs of (3.8), defined with the Gaussian
measure p 0 .

Let us find an estimate for the remainder Θλ(K + 1).
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Lemma 3.2. There is a constant 0 < Dκ+1 < oo such that

|<91(/C + l ) | ^ ί ) J C + 1 i V - ( K + 2 ) . (3.12)

o
Proof of Lemma 3.2. Using the definition (3.11) one may easily check that

\p,(U(N-ll2m), ..., U(N-ll2m))\ g 2kklpt(\ U(N-ll2m)\k). (3.13)

Since by (3.6) and Taylor's theorem we have

= N~2(β/(l - β))2 \dh... J dt4E((m'ξ0)
4u4N-ll2m)) (3.14)

0 0

with

\u4(N-1/2rn)\ =
d'4

< Cγ (3.15)

for some constant 0 < C1 < oo, so the expectation from the rhs of (3.13) can be
estimated as follows:

^̂ Ĵ (3.16)

Using Brascamp-Lieb inequalities [2] for the measure pu (defined in (3.10) by
perturbation of the Gaussian measure with a log-concave function), together with
the Holder inequality to estimate the expectation from the rhs of (3.16), we obtain
the following bound:

(4k)\
T-2k

\{ί-β)2J \2Ak{2k)\"

= 2-kDk N~2k. (3.17)

This, together with (3.13), shows that the remainder term &i_(K + 1) given by (3.9)
satisfies the bound

with the constant 0 < Dκ+1 < oo defined in (3.17) for k = K + 1. This ends the
proof of Lemma 3.2. D

The above considerations (3.13)—(3.17) show also that each particular term in the
sum on the rhs of (3.8) is of order ΛΓ~(fc+1) respectively. (Note however that (3.17)
would imply too fast-growth of the coefficients in fc.)
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Now, to getj he expansion described in point a) we have to analyse in more
detail the sum Σ0(K) from the rhs of (3.8). First we use the representation

U(N-'l2m)= Σ a2lN-ιE(m-ξo)
2l + rκ+ί(m) (3.18)

1 = 2

coming from the Taylor expansion to the Kth order. Let us note that, as follows
from the properties of the function In ch x, the coefficients a2l from (3.18) satisfy the
bound

2 l A 2 1 (3.19)

for some constants 0 ^ a < A < oo. Inserting the expansion (3.16) into the semi-
invariants, we obtain the following representation of the sum Σ0(K) from the rhs of
(3.8):

Σo(κ)= Σ i-IkΓNk~1 Σ

• Po(E{m ξa)
2l\ . . . , E{m ξa)

2lk) + Θ(K + 1), (3.20)

where by Θ(K + 1) we denoted a sum of terms with the function rκ+1(m) appearing
in at least one of the truncated correlation functions. By similar arguments as those
used to estimate Θ1(K + 1) from (3.9) (given in the proof of Lemma 3.2), we easily
get that

\Θ(K + 1)| S D'κ+1N~iK + 2) (3.21)

for some constant 0 < D'κ+ί < oo .
Now by rearranging the terms in the sum on the rhs of (3.20) we obtain

K

Σ0(K) = Σ cnN~in + 1) + Θ2(K + 1) (3.22)

with

V ( - l ) Y A ^ f,E(m ξa)
2\...,E(m-ξa)

21* }\

fc^«,{/i,...,Zic£2} K' \ ί = l / \ fc-times /

h+ +lk~k = n

(3.23)

and with Θ2(K + 1) denoting the sum of Θ(K + 1) and all other terms from the sum
on the rhs of (3.20) which are of order N~(K+1) or smaller. Clearly Θ2(K + 1)
satisfies a bound of the form (3.21) for some ^other constant 0 < D^+1 < oo.
Denoting the first sum from the rhs of (3.22) by Σ(K) and using (3.22) and (3.8) we
get the representation

^ 12"*) = Σ(K) + Rκ+1 (3.24)

with

Rκ+1 = OX(K + 1) + Θ2{K + 1). (3.25)

Since ΘX(K + 1) and Θ2(K + 1) satisfy bounds as in (3.17) with corresponding
constants Dκ + 1 and D £ + 1 , so Rκ + 1 satisfies the bound (3.4) with the constant

Cκ+1 = Dκ+1 + D'
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Now to finish the proof of part a) we have only to prove the bound (3.3) for the
coefficients cn given by (3.23). In the proof of this bound, the central role is played
by the following lemma, which is a special case of corresponding results proven in
[4] (see also [7, 10]) and providing us with estimates of (general) semi-invariants of
a Gaussian measure.

Lemma 3.3. There is a constant 0 < c < oo such that for any k e N,

\po(E(m ξa)
2l\ . . . , E(m-ξa)

2lk)\ S ckk\ f\ (po(E(m-ξa)
2'lί)2)1/2 . (3.26)

O

Using this lemma together with Holder inequality and simple inequalities for
factorials we get the following estimate:

Lemma 3.4.

\po(E(m ξa)
2\ . . . , E{m-ξa)

2l*)\ ^ ck{2p2fh+ ''' +ι^kl Π ft!) (3.27)

O

From Lemma 3.4, the estimate (3.19) and the definition of cn in (3.23) we get

(3.28)

h+ • +lk~k = n

Changing the summation variables lt i—• lt + 1, one may rewrite (3.28) in the form

\cn\ ̂  Σ Σ ck(2A2p2f+k f ] (h + 1)! . (3.29)
kύn h ,ZkeN i = l

(3 3°)
Since for lu . . . , lk e N, /x + + lk = n we have

ί = l i = l i = l

so (3.29) implies the bound

\cn\Z (2eA2p2-(l + 2A2p2c))nn\ Σ Σ 1
fc^n i i , . . . ,/fcelN

Zi+ + Z k = n

The sum on the rhs of (3.31) is just the number of all possible representations of
a positive integer n as a sum of elements of N, which, as is known, equals to 2n~x.
Combining this information with (3.31) we get the inequality (3.3)

\cn\^Cn n\ (3.32)

with a constant C satisfying the bound

C^4eA2p2(l+2A2p2). (3.33)

This ends the proof of Theorem 3.1a). D
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Proof of Theorem 3.1 b). We consider now the free energy

EfN = ̂  £ln J dme~NS^ξ) (3.34)

defined with the action

1 2P

2 α = l

Let us note that when 0 < β < 1, it is not true in general that the point m = 0 is
a maximum point of the action for all configurations ξ. (As one may see from the
proof of Theorem 2.1c), this is the case only when 0 < βp < 1.) Nevertheless we will
make the expansion similarly as before, but additionally taking into account that
the probability of "wrong" configurations is small. We begin by splitting the action
SN(m, ξ) as follows:

SN(m, ξ) = ]-^- m2 + UζtN ((1 - β)ί/2m) . (3.36)

Then changing the integration variables m h-» N1/2(l — β)1/2m we get

Similarly as before we expand the second term to the X t h order. We get

JV

= 1 y ( ~ 1)* F (yNUξ,N(N-^2m\ . NUξ,N(N-1^2m))

N ^ tf \ Y

i V fe=l * " \ fe-times
1

Γ̂  f , . (
J at1 . . . J dtκ+1Lptk+ί I
0 0 \J V 0 0 \ fc+l-times

(3.38)

The probability measure ptκ+ί in (3.38) is defined similarly as in (3.10), but now with
the action UξtN.

Let us denote the first sum from the rhs of (3.38) by Σ0(K) and the remainder
term by ΘX(K + 1). We begin by proving the following bound

Lemma 3.5. For any k e N there is a constant C1 = C^k) such that

(3.39)
O

Proof of Lemma 3.5. Using the definition of truncated correlation functions we get

Γ-l/2m\
fNU^N-WmU . . . , NUξtN(N'1/2m)

\ fe-times

(3.40)
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For furthέr purposes it is convenient to introduce the splitting

353

(3.41)
α = l

with

and

1a,N =

ί-β

Now the expectation from the rhs of (3.40) can be estimated as follows:

i_I V

EPt(\NVξ,N(N-1/2m)\k)\. (3.42)

Let

with

,N\ S S:a = 1, . . . , 2P}

= N~1/4 .

Let us first bound the part of the rhs of (3.42) corresponding to the integration over
ξ for which \qa>N\ > δ. To get a bound corresponding to the second term in the
curly bracket in (3.42) we use the Taylor expansion of the function VξiN to the
fourth order (similarly as in (3.13)—(3.15)). In this way we obtain

E(l-UN)pt(\NVξ,N(N-1/2m)\k)

sup (3.43)

To estimate pt( | m \4k) we insert into the integral the partition of unity similar to the
one used in Sect. 2. Then we get

pt(\™n = Pt(x(\m\

S N2kRfk + pt(χ(\m > N1/2Rε)\m\4k) . (3.44)

Using similar considerations as in the proof of Lemma 2.3. one can show that

suppt(χ(|m| ^ C\{2k)\N 2k (3.45)
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for some constant 0 < C2 < oo independent of N and k e N. This together with
(3.43), (3.44) and Lemma A.2 proven in the Appendix gives us

sup £ ( 1 -
te[O,l]

g Cfc

3(2/c)!iV2fc£(l - χδtN)

^ Ck

4(2k)\N2ke2ke~Nm (3.46)

with some constants 0 < C 3 , C 4 < oo independent of N and k.
The corresponding estimate for the part of the first expectation in curly bracket

of the rhs of (3.42) is obtained by using a simple algebraic inequality, translation
invariance of E and similar arguments as before. We get

E(l-χδ,N)pt

β β

< C\k\Nkek^-N1'4 (3.47)

with some constant C5 independent of N and k. The inequalities (3.40)-(3.47) give
the following bound:

(3.48)

with some constant C 6 independent of N and k. Let us now bound the part of the
lhs of (3.40) corresponding to the integration over ξ's for which | qaN | ^ δ. For this
we use (3.40)-(3.42) together with the fact that if we have \qa,N\^δ with δ = N " 1 / 4 ,
then as shown in Lemma 3.8 (at the end of the Sect. 3) the action SN(m, ξ\ for β < 1
has the unique minimum at zero and differs from a Gaussian action jam2, defined
with some positive constant α. This last implies (by simple change of integration
variables and use of Brascamp-Lieb inequalities) the following bound:

pt(\m\2k)SCk

Ίk\

with some constant C 7 independent of k. From that we obtain

EχδtNpt(\NVξtN(N-1/2m)\k)

(3.49)

(3.50)

with some constant C 8 and

β
Eχδ,Npt ~ Σ 1a,N(

β
Col

^ Ck

9k\N~kl2 (3.51)

with some constant C 9 and where in the last step we have used Lemma A3, c)
proven in the Appendix. The inequalities (3.50) and (3.51) together with (3.40)-
(3.42) complete the proof of Lemma 3.5. •
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To estiftiate the rest term Θ^K + 1) using the above lemma, we expand it
further to the order 2(K + 1) and apply to the rest term of this expansions
inequality (3.39) with k = 2(K + 1). As follows from the considerations from the
proof of Lemma 3.5 applied to the case when t = 0 the expansion of the rest term
Θι (K + 1) contains terms which are of order higher than K + 1 in N ~* as well as
the terms which are of order less than K + 1 in N ~1. Therefore it is clear that to get
a final expansion we have to redefine the sum Σo and the rest term in such a way
that the final rest term contains only the terms of order higher than K + 1 with
respect to AT"1. The terms we have to discuss are of the same structure as those
from the sum Σo. Let us note that as compared to the first case of Theorem 3.1,
each term of Σo contains a complicated expectation with respect to ξ's and
therefore we need now to carry out a more complicated analysis involving an
additional expansion of each term. We turn now to the more detailed discussion of
the sum Σθ9 from which it will also be clear how to deal with the terms obtained by
expanding Θ1(K + 1). For that we use the following representation of the function

^2

) 2

~~ P Z α = l

) 2 - N l n c h

qa,N(m ξa)
2

+ NU(N-ί/2m) = WξtN(m) + NU(N-1/2m). (3.52)

Inserting (3.52) into the expression of each term of the sum Σ0(K) and using the

definition of Σ0(K) in (3.8) we obtain

(3.53)

with ΣX(K) given by the following expression:

x EPo

The sum Σ0(K) has been investigated before in the proof of point a) of the theorem.
To study the second sum from the rhs of (3.54) we use the expansion (3.18) of
WξiN obtained by application of Taylor's theorem:

a=l ' I 1=1 ' J

with the coefficients a2ι as in (3.18) (for / > 1) and so satisfying the bound (3.19), and
the remainder functions rx > α, a = 1, . . . , 2P.

Hence we obtain the representation

= Σ2(K) + Θ2(K + 1) (3.56)
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with the remainder Θ2((K + 1)) and

K ( _ i\fc k

fc=l n" j =

2P K-ί K k

Σ Σ Σ Π aa2ιt

E(qbi, N <?*>,,N)

'Po

k-l

(3.57)

Using the definition of Θ2(K), bounds for Gaussian integrals and estimates of the
moments Eq™N it is not very difficult to see (by arguments used before) that

\Θ2(K + 1)| g DίN~iκ+2) . (3.58)

Now we have to discuss the sum Σ2(K). Let us first note that to get the final
expansion it is still not enough to simply rearrange the sum (as was the case in the
proof of a)). This is because we have hidden small factors (proportional to some
powers of JV"1) in the expectation E(qbltN . . . qbj^Y Let us note that (from the
analysis given in the Appendix) we have that each term

E{ξbuN . . . ξbj,N) (3.59)

is a polynomial of order at most N~jf2, what follows from the Holder inequality
and the fact that

E(qa,N)2n = j

for some constant 0 < Cγ < oo and the constants dkiH satisfying a bound

\dk,n\<D" (3.61)

for some constant 0 < D < oo. (Note however that as follows from the definition of
qύfN the polynomial (3.59) contains only the integer powers of AT"1.)

Using the above information about the expectation EqbuN . . . qbjιN we can
represent the sum (3.57) as follows

Σ2(K) = Σ(K) + (D3(K + 1) (3.62)

with the remainder (93(K + 1) being of order N~{K + 2) and the sum

Σ(K)= Σ c k Λ T ( * + 1> (3.63)
fc=l

with some coefficient ck. Using (3.62), (3.55)-(3.57) and (3.52)-(3.53) together with
(3.38)—(3.39) and (3.37) we obtain the representation

EfN(') = - 2^1n(iV(l - β)/2π) + Σ(K) + Σ(K) + RK + 1 . (3.64)

This ends the proof of the point b) and so of Theorem 3.1. •
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By this we finished our first treatment of the high temperature case; see Sect. 4 for
the result on Borel summability of the expansion.

3.2. Asymptotic Expansions: Low Temperatures. For β > 1, let x denote the posit-
ive solution of the equation

x = βll2thβll2x. (3.65)

It follows from the analysis in [13] that the action S(m) given by (2.4) attains its
global minimum uniquely at the points m^GlR^ i = 1, . . . , 2P of the form

m, = (0, . . . , 0, ± xh 0, . . . , 0) . (3.66)

From that it follows that the number M defined by

M2I = D2S(mi) (3.67)

(with / the unit matrix and D2S the Hessian) and explicitly given by

M2 = l-β(chβί/2xy2 (3.68)

is strictly positive for β > 1. In this section we prove the following result

Theorem 3.6. Let β > 1. Then for any Ke~N we have the following representations:

a)

fN = - min S(m) - -^-ln(M JV/8π) + Σ(K) + Rκ+i, (3.69)

where

Σ(K)= XcnN-<»+ 1» (3.70)

for some constants c n , n e N satisfying the factorial growth condition

\cn\ < Cnn\ (3.71)

for some positive constant C, and the remainder Rκ+1 is of order j γ " ( X + 2 ) i.e.
satisfies

(3.72)

for some positive constant Dκ+1.

b)

EfN = - min S(m) - ^-ln(M Nβπ) + Σ(K) + RK+1, (3.73)

where

K

Σ(K)= £ ckN-(k+1) (3.74)
t = i

with some coefficients ck,kelN and the remainder term Rκ+i being of order N~'-κ+1\
O
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Proof of Theorem 3.6 a). Let m0 be a minimum point of S(m). In a neighborhood
{m: \m — mo\ < ε} we may represent the action S(m) in the following way:

S(m) = S(m0) + l-M2{m - m 0 ) 2 + U(M(m - m0), m0) (3.75)

with the remainder function

1 '3 / d \2

U(M(m - m0), m0) = \dtx . . . JΛ 4 — S(m0 + ί4(™ - m0)) . (3.76)

It will be useful to assume that ε > 0 is small enough, so that S(m) is negative and
the function

X-M2m2 + U(M-m,m0) (3.77)

is convex for \m\ = \m — mo\ < ε. Additionally we may and do assume that ε > 0 is
so chosen that the function mi—• (7(Mm, m0) has a convergent power series
expansion with respect to m, whenever \m\ < ε. From now on we fix m to be
equal to (x, 0, . . . , 0) and to simplify the notation we write U(Mm) to denote
U(Mm, m0). (This function should not be confused with the function U used in the
high temperature case.)

Let χ(\m — mf| < ε) be the characteristic function of the set {m: \m — mf| < ε}
and let χε

c(m) denote the characteristic function of the complement of the set
U» = i.•• '2p{m'> \m — nti\ < ε}. Using the symmetry of the action S(m) and in-
formation about its global minima we have

fN = -ln\dme-NS(m)

N

= -|-ln {2*{dmχ(|m - mo\ < ε)e-NSim) + J Anχβ

c(m)έΓ"S ( m )}. (3.78)

We shall now prove the following fact.

Lemma 3.7. There are positive constants C and y such that
~NS(m)

< ε)e-
NS™ ' l j\dmχ{\m - mo\ < ε)e-

O

Proof of Lemma 3.7. First of all let us note that for any number A > 1 we have

\dmχ{\m - mo\ < ε)e-NS(m) ^ \dmχ{\m - mo\ < ε/A)e-NS(m)

^(ε/A)pΩpQxpl -N max S(m)>, (3.80)
I \m-mo\<ε/A J

where Ωp denotes the volume of the unit ball in IRA We may and do assume that
A > 1 is large so that S(m) < — α < 0 for some 0 < α < oo and all \m — mo\
< ε/A.
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On the other hand we have

μmχc

ε(m)e-NS^ S \dmχc

ε{m)χ{\m\ < # ε) exp{ - Nmmχl(m)S(m)}

N(l-ε)

+ $dmχ(\m\>Rε)e-^-m\ (3.81)

where Rε = 2β1/2p1/2/ε and we have taken into account that for any
a = 1, . . . , 2*,

^m2-lnchβ1/2rn ξa>0, (3.82)

i.e.

S(m)>]--^m2 (3.83)

for \m\ > Rε. By our choice of ε the function S(m) is strictly convex in each set
{\m - πii\ < ε}, i = 1,. . . , 2P. Therefore

- minχc

ε(m)S{m) < - max S(m) . (3.84)
\m — mo I <ε/.4

This together with (3.80) and (3.91) implies the lemma. D

Now using (3.76) and Lemma 3.7 we see that

fN = Un2pμmχ(\m - mo\ < s)e~NS^ + (90(N) (3.85)

with
\00(N)\ < Ce'yN. (3.86)

From (3.85) and the representation (3.73) of the action S(m), by changing the
integration variables m\-^M~1/2N~1/2m + n, we obtain

fN = S(m0) - ^ l n ( M iV/8π) + Θ0(N) + UnpoCχe-™^'2"*), (3.87)

with po being the (0,1)-Gaussian measure on Wip and where for simplicity of
notation we have set χ = χ(\m\ < M1/2N1/2ε).

Let us now study in more detail the last term from the rhs of (3.87). Using the
property of the Gaussian distribution it is easy to see that

^ ^ (3.88)

with the error
e~rN (3.89)

for some positive constant / .
By Taylor expansion to the X t h order we get

- l n p o ( β

1 $

fc-times

(3.90)
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with the remainder

1 tκ / Λ \K+1 1

J «ίi J atκ+i I-Γ I τ ;

Using our choice of ε so that (3.77) is true and similar considerations as used in the
high temperature case it is not difficult to show that rκ + 1 is of order N~(K+2\ i.e.

\rκ + i\<C0N-(κ+2) (3.92)

for some positive constant Co (depending on K but independent of NelN).
Now we shall have only to consider the sum Σ0(K) from the rhs of (3.90). We

may represent it as follows:

£ ( ) ^ ( ) ?τ ; L T. Po Y
i V k = l ' C I \ k-times

= Σ 1 (K) + r i + 1 , (3.93)

where

\ / )Po I v
1=1 \ l J \ Mimes

1 / 2 r n ) j . . . , NU(N-1ι2rn)~χl
v , (3.94)

K -1 times

We have set here χc = 1 — χ. Using the fact that in each truncated correlation
function the characteristic function 1 — χ = χ(\m\ > M1/2N1J2ε) appears at least
once, together with similar estimates as in (3.13)—(3.17), we get a bound of the form

^^^^(IKy.N-'e-v"" (3.95)

for some positive constants C2 and y", i.e. the remainder r'κ+1 is exponentially
small. To finish the proof it is now sufficient to observe that the sum Σ^K) has the
same structure as the one on the r.h.s. of (3.8) analysed before. Therefore we can use
the similar arguments to get

£ (3.96)

with the sum Σ(K) as in (3.70) and (3.71) and a remainder rί+1 of order N
i.e. satisfying

for some positive constant C3(K).
By combining (3.88)-(3.97) and (3.87) we obtain

(3.97)

fN = min S(m) - ^-ln(M'Nβπ) + Σ(K) + Rκ + 1 (3.98)

with

Rκ+i = {^o(Λ0 + OΛN)} + {rκ+1 + r'κ+1 + r^+ 1} . (3.99)
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It follows from (3.86) and (3.89) together with (3.92), (3.95) and (3.97) that J R X + 1 is of
order N~(K+2\ i.e. satisfies the inequality (3.72) for some positive constant Dκ+1.
This ends the proof of Theorem 3.6 a). D

Now we shall prove the second part of Theorem 3.5. Let us mention that several
detailed estimates in the proof of this part are very similar to those used in
previously considered cases. In order to keep the space necessary for exposition
within reasonable bounds, we take advantage of this fact and present below only
the essential steps of the proof.

Proof of Theorem 3.5 b). First of all using Proposition 2.6 we have

EfN(ξ) = Eχδ(ξ)fN(ξ) + Θx{e-δNm) (3.100)

with the characteristic function χδ(ζ) defined in (2.54). As follows from Lemma 3.7
given below, we can and do assume that 0 < δ is small enough so that the action
m\-^SN(m, ξ)χδ(ξ) has exactly 2Pminima m[(ξ\ i = 1,. . . , 2P located at a distance
less than ε/2 from the corresponding minima mi9(i= 1, . . . , 2P\ oiS(m\ with 0 < ε
being the same as that used in the proof of part a).

Now we can use similar arguments as before (based on an analog of
Lemma 3.7), to drop the part of the free energy coming from integration over
me {3i = 1, . . . , 2P: \m — m[(ξ)\ > ε}. In this way we obtain

EfN(ξ) = EχδUn Jdmf | χ(m - m^e^^A + Θ2 (3.101)

with Θ2 being exponentially small, i.e.

Θ2 = Θ^e-™1'2) + Θ2(e~yίN) (3.102)

for some constant 0 < yx <oo and

χ(m-mi) = χl (m - m )̂ <

Applying again Proposition 2.6 we may represent the rhs of (3.100) as follows:

EfN(ξ)=-S0 + E-j-ln Σ $dmχ(m- mi)e-"<*v<m fo-So> + Θ3 , (3.103)

where we set

So = min S(m) (3.104)
melRP

and (̂ 3 is some exponentially small remainder. Let us define now for i = 1, . . . , 2P,

Ui(Mm) = U(Mm, mh ξ) = SN(Mm + mh ξ) - -M2m2 - So. (3.105)

Using this notation and arguments similar to those used in the proof of part a) we
obtain

EfN(ξ) = S0- -^ln(M Nβπ) + EUΠ^Σ

(3.106)
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with p0 being the (0, I )-Gaussian measure on IRΛ This can be rewritten in the
following form:

EfN(ξ) = S0- ^ l n ( M JV/8π) + Z^γP |

(3.107)

with an exponentially small remainder 0 4 .
Now we introduce an interpolating parameter t e [0,1] into the exponential in

the Gaussian expectation and generate the Taylor expansion to a finite order K.
The estimate of the remainder of this expansion can be done easily in a similar way
as in the proof of part a). Then omitting the cut-off function χ(m) in particular
terms of this expansion we get the representation

J + ' .
iyi k = 1 K ! fe-times

(3.108)

where for simplicity of notation we introduced the following probability measure:

1 Z
μf. (m) = — X poy; (m) . (3.109)

^ i = l

Now we expand each function U^N ~ 1 / 2m), with respect to N " 1 / 2m, up to order X.
By reorganizing this expansion and similar, but quite lengthy, analysis as in the
proof of part a), one arrives at the desired asymptotic expansion in the present case.
(Let us note that the additional averaging with respect to the discrete measure is
a minor complication, due to the fact that the coefficients of the Taylor expansion
of the function Ui(N~1/2rh) are in fact independent of ί = 1, . . . , 2P.) •

To finish our considerations we shall now have only to prove a lemma
providing the information about minima of the random action used at the begin-
ning of the proof of Theorem 3.6 b).

Lemma 3.8. Let δ > 0 and let

,„, 1
< ( S , α = l , . . . , 2 Λ . (3.110)

For any minimum mt ofS(m) and any ε > 0, there is δ > 0 such that, whenever ξ e Λδ9

the function

m\->SN(m,ξ)

has a unique minimum m^(ξ) such that

\mi-mi(ξ)\<s. (3.111)

Additionally ifβ < 1 and δ ^ N " 1 / 2 then for any ξeAδ, the corresponding action
SN(m, ξ) has a unique minimum at zero and is strictly convex for all N ^ AΓ0, with
some NOEΊN sufficiently large. (The same is true if one replaces SN(m,ξ) by
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Proof. We have easily from the definition of SN that —-^SN(m, ξ) exists for any

α and

—-tSN(m, ξ) = rrf -
cm

ξa«tanh(βV2mξa) (3.112)

and

-—-e-SN(m, ξ) = 5«' « - X qa,N(ξ)β[cosh(βll2mξa)Γ2ξa°1ξa"
1 • (3.113)

We see easily that (3.112) and (3.113) are continuous in m, and we have:

— Sκ(m,ξ)-—Sκ(«ί,ξ)

and

S (1 + β) Σ Nα - (m'T
α = l

5 2 a 2

For fixed m, we also see that both

ξ)

(3.114)

Σ |m α -m r α | . (3.115)!Σ
α = l

are continuous, uniformly in m, with respect to qa,N(ζ)
Now let mf be a point of minimum for S(m) i.e.:

and the matrix:

is positive definite. By the above continuity, for any ε > 0, there exists δ > 0 such
that for each ξeAδ there exists a unique point nti(ξ) satisfying

\mt - δ , (3.116)

(3.117)
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and the matrix

is positive definite, i.e. m^ξ) is a minimum.
To show the last statement we note that

SN(m,ξ) = S(m) + Σ ^ ( O t a c o s h ί j S ^ m ξ J . (3.118)
α = l

Hence clearly m = 0 is the critical point of the action. Additionally we have

8 J^
(3.119)

By our assumption about qa,N(ζ) the second term on the rhs of (3.119) can be made
arbitrarily small (uniformly in m) by taking N ^ AΓ0, for some No sufficiently large.
Since for β < 1 the action S(m) is strictly convex, the last statement of the lemma
follows. •

4. Borel Summability

In this section we shall study the partition function ZN given by (1.9) and show that
it has a Borel summable expansion in powers of λ = l/N as N ->oo. To do this we
split up the integration with respect to the variable meR 1 7 in (1.9) into an

integration over the set Aa = <melR.p\ \m\ S 2 — \> for some 0 < a < 1 and its

complement Ac

a.
From (1.9), (2.4), (2.7) it suffices to study

J dmexp(-NS(m)) = ZNta

Aa

and

Jώf!exp(-ΛΓS(m)) = Z&iβ (4.1)
A°a

Lemma 4.1. For any 0 < a < 1,

- (1 - a)^β(N - 1)1

c α = J rfmexp - - ( 1 - α)m2w/ί/z

Proo/ For mei jwe have, recalling the definition (2.4) of S(m):

S(m) = -m2 - Elnch(β1I2mξ) ^^m2 - y/pβ\m\ ^ - ( 1 - a)m2. (4.2)
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Inserting this into (4.1) we get

Zc

N,a= ldme~iN~1)S(m)

ACa

365

-S(τn)

where in the last but one inequality we have used the definition of Ac

a and in the last
inequality the definition of ca. •

This lemma then shows that the contribution Zc

Nta to ZN9 coming from the
integration over Ac

a9 is exponentially small in N9 for N -xxx
The contribution coming from the integration over Aa is controlled by the

following

Lemma 4.2. For any 0 < β < 1 and any 0 < a < 1 we have, for all \λ\ <
a

with

ZN,a = Σ (βW ί e-*m2cj(m)dm + f e~-m2Rk{m)dm,
7 = 0 Aa Aa

i=ί

Z = l

Σ « « = ;

- Σ (βλ)JCj(m).

The following bounds hold for all j

J dme-1/2m2Cj(m)dm
Aa

for some constants C, Cj (depending on a), and

J dme-1/2m2Rk(m)
Aa

for some C > 0.
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Proof. For 0 < β < 1 we have, by (2.25), i( l - β)m2 ^ S(m).
Let λ = l/N, be in C. Then, for Re N > 0, for any measurable B

f dmexp[ ^ j"dm|exp( - JVS(m))|

= $dm\eReNSim)\

B

For meΛawe have

provided

a2

Inch z is analytic in z for z such that

| c h z - 1| < 1.

In particular this is the case when

\z\ < p < 1

for some p > 0.

With z = yj~βλ(m ξ) this is satisfied, together with (4.3), when

μ| <min
2 2 , p j ,

An easy direct expansion in power series of the functions In and ch yields

7 = 0

with Cj+U C1 as given in the lemma. The series is convergent for μ | as above. An
easy estimate yields

2
| c ' + l l ^ C 2 ( 7 ί Ί j ( 4 6 )

for some C > 0. (Incidentally by the general Cauchy inequalities one knows already

the bound \Cj+1\^pj sup|lnch λ//U(m <ί;)| <oo, the sup being taken over

j - ξ = p,meAa,ϊor any p < p.)
Using that exp is an entire function we then get, for m, λ as above, the absolutely

convergent expansion

exp(\E\nch(^βλm ξ)) = £ ^ Γ Σ (βλ)j(m-ξ)2U+1)Cj+Ji . (4.17)
\ λ / n = Onl\_j = O J



Rigorous Results for Free Energy in the Hopfield Model 367

Interchanging the j and n summation we obtain

expίjElnchi^/βλm-ξU = £ {βλ)JCj(m) + Rk(m)9 (4.18)

with Cj(m\ Rk(m) as in the statement of the lemma.
Call cjtM(m) the series obtained by truncating Cj(m), setting its terms equal to

0 after the M t h order in β9 so that l i m ^ - ^ cjtM(m) = Cj(m). We have the bounds

M on n i
\r (m\\ < Γ V ^ V 9-2( j + /ι)/71w12W + n ΓT X

C ί ji/f I ill I ^ ^ v_/ 7 / ^ I UΪYl I III J,M\ j\ — / ^ t £_ι \f 1 J- O/ΊM s^ \\

tm=j. (4.19)
ί = l

Let

F(m2J, ή) = expΓ - ^ Ί ( m

2 ) ^ + M , (4.20)

defined for m2 G R, O ^ n ^ M, j e N. This function is monotone in m2 and its
maximum is given by the m-value m m a x such that

0 < m 2

m a x = 2(j + n) .

Hence

F(m\ j , π) ̂  exp [ - ( j + n)] [2(j + n)]^ + " . (4.21)

Since for meAa we have m2 < 2iC^ = —j- we distinguish the cases

j + n<Kβ, i.Q.m2

max<2Kβ, (4.22)

and

j + n ̂  X,, i.e. m 2

m a x ^ 2 ^ . (4.23)

In the case (4.22) we have from (4.21), for meAα,

F(m2J, n) S exp[ - Kβ~\ (2Kβ)
2K* . (4.24)

In the case (4.23) we have from (2.21), for meAα, that the bound (4.21) can be
replaced by the monotonicity of m2 -+ F(m2J9 n) for large m2 and the fact that
m 2

m a x ^ 2Kβ implies mmaxφAα9 by

F(m\j, n) £ exp( - Kβ)(2Kβy
+\ (4.25)

for meAα. Hence

J dme-*m2F{m2J9 n) ̂  Cexp[ - Kβ"](2Kp)
2K'9 (4.26)

Aα

in case (4.22), for some C > 0, and

$dme--m2F(m2J, n) £ Cexp[ - Kβ]{2Kβy
+\ (4.27)
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in case (4.23). Inserting these estimates into

and exploiting

JL^ 1 Q f y. f Z.^ — Z ^ I O I i V J ' / '

n = 0 \ O / ^ * m f > 0 « = 0 \ 0 / w

we get the bound

. - ΐϊE, -
J dme-*m2cjfM(m)S C2~2j

Aa

with
= max [(2X,)*', (2K,)'] exp( - Kp),

= max(l,

By dominated convergence the same bound holds with cjiM replaced by cj9 which
proves the last but one estimate in the lemma. The estimate on the remainder is
easily obtained by using Taylor's formula and the fact that integrations are on the
region Λa of finite volume. •

From Lemma 4.1, Lemma 4.2, together with the fact that by the argument given
at the beginning of the proof of Lemma 4.2,

is analytic in λ = — in the region R e - > — for any R > 0, such that

2

we have then, the following

min I 2 2 , p\ < R,p < 1, and we can use a Theorem of Nevanlinna, see e.g. [14],

Theorem 4.3. Let ZN be as in Theorem 3.1. Then the asymptotic expansion of

Theorem 3.1 in powers of— is Borel summable. •

Appendix

Let Eo be a probability measure on { — 1, + 1}P defined as the product of uniform
probability measures on { — 1, + 1}. Let ξ = (£%!*> with ξ*[ e { — 1, + 1}P being
independent identically distributed (i.i.d.) random variables. The corresponding
probability measure on ({ — 1, + 1}P)N is denoted by E and equal to the product
of the measures Eo.

For JVeN and a fixed vector ξoe{ - 1, + 1}P, a = 1, . . . , 2P we set
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and

qa,N(ζ) = aa,N(ξ)-γp' (A.2)

With the notation introduced above we have the following lemma.

Lemma A.l. For any ίelR, iVeN and a = 1, . . . , 2P we have

Eetfα."=e-^i+A(^/"_i)

(A.3)

O

Proof. The formula for Eetξa N in (A.3) follows from definitions (A.1)-(A.2) by
simple explicit calculations. To get the upper bound we use the fact that

1 * --- "A7 — l) J, (A 4)

For δ > 0, let χδ N denote a characteristic function of the event {ξ: \qa N(ξ)\ <
δ, Vfl = 1, . . . , 2p).

Using Lemma A.I we get

Lemma A.2. There is a constant 0 < Cx <oo independent ofδ>0 and ΛΓeN such
that

E(l-UN)^Cie-
δNl12 . (A.5)

O
Proo/ We have

£ ( 1 - X ^ ) ^ ΣE{\qa,N\>δ}. (A.6)
α = l

Using the following inequality for t > 0,

^ £{*>'««." + <,-*««.*> e«*} (A.7)

together with Tschebyschev inequality and Lemma A.1 we get

E{\qa,N\ >δ}ύ e~td E{e^ N + β"'*"")

| i ^ | (A.8)

Now we use (A.8) with t = N1'2 to bound the rhs of (A.6). By this we get (A.5) with

(A.9)
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Remark. By optimalisation with respect to t on the rhs of (A. 8) one can get an
improved bound (A.5) with N instead N1/2 in the exponent.

Lemma A.3.

a)

b) For any 0 < C2 <oo, there is a constant 0 < C 3 <oo independent of αe
{1, . . . , 2P}, ΛΓeN and n e N such that

. (A.ll)

c) We have with some positive constant 0 < C 4 <oo,

where the constants dKn satisfy

with some 0 < D <oo. O

Proof. Using the definition (A.I) of qΛfN we get

1 VΊ /I 1 N

- ( A 1 4 )

But using the independence of ξh ξj for i Φj and (δξuξa)
2 = δξuξa we get:

= 4 Σ £( 5!.,t,)£(V,i.) + 4 Σ

Using (A. 14) and (A. 15) we have:

From this and the Schwarz inequality, Lemma A.3a is obtained.
Let us now prove b). We have for any positive ί,

E(qa>N)2» ^ (2nγ.Γ2nEch(tqa,N) . (A. 17)
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Choosing t = (4C2ΛΓ)1/2 and using Lemma A.I we get

Hence, by application of Holder inequality, we obtain

E\qa,N\»^C3n\(C2N)-w» (A. 19)

with

This ends the proof of part b).
To show c) we use the explicit formula for E etΆa'N given in Lemma A.I. We have

for ίelR, | ί | sufficiently small

ί / 1 \ *

Eέ*"N= e-2* I 1 +-(et/N - 1) j = exp/(2- p Ar" 1 / 2 i ) , (A.21)

where

f(2-pN~1/2t) = —Y TΊN~k + ί + N Σ , \^r(et/N ~ 1) ) . (A.22)

Using (A.21)-(A.22) we have

l ^ o . (A.23)

We expand the exponential exp f(z) in powers of f(z) and use the formula

^ L & Π ^ Λ . ) ! . - . . (Λ,4,

Now using (A.22) we get for j ^ 2,

* Σ ̂ f ( ^ - - I,^ . 2N + W_Σ ^ ( ) _

(A.25)

Since

if \ V ^v(i-m)Λτ-l/2i ' (A.26)7 \ 2 N

I for ^ m
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so we get for j ^ 2,

dj

(dz)j

— —
ml

Σ
k f t i

(A.27)

Let us note that the sum aj (in the curly bracket on the rhs of (A.27)) is bounded by
2je~i2~p+1). Inserting (A.27) into (A.24) we obtain

d2n (2nV k

— — fk(z\\ - = Y * Π 2pii~*N~1/2h +1 a
(Λ-\2nJ V^/lz-O Z J . - i l l Ji

= 2p2n-kN-n+kbn,k. (A.28)

As follows from the bound on α,- the coefficients fon>fc are bounded by 24n

e~
k(2~p + 1\

Summing over k g n we obtain

d2n

P J
A 1

n-ί / i
_ 22Pn V ( 2~n + kh \\T~k

£0\(n-k)l
n-ί )

(A.29)

This together with (A.20) and the estimates on the coefficients bn k yields Lemma
A.3 c). ' •
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