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Abstract. There are two fundamental problems studied by the theory of hamiltonian
integrable systems: integration of equations of motion, and construction of action-
angle variables. A third problem, however, should be added to the list: separation
of variables. Though much simpler than the two others, it has important relations to
quantum integrability. Separation of variables is constructed for the SL(3) magnetic
chain - an example of an integrable model associated to a nonhyperelliptic algebraic
curve.

1. Introduction

Consider a completely integrable Hamiltonian system with D degrees of freedom.
According to the definition of complete integrability due to Liouville-Arnold [1] it
means that the system possesses exactly D independent Hamiltonians Hj commuting
with respect to the Poisson bracket

{HpHk} = 0, j , f c = l , . . . , D . (1)

There are three fundamental problems discussed in the theory of integrable systems.
They are listed below in the order of decreasing complexity:
• Construction of action-angle variables.
• Integration of equations of motion.
• Separation of variables.

For the wide class of finite-dimensional integrable systems subject to the Inverse
Spectral Transform Method an effective integration of equations of motion can be
performed using the techniques of algebraic geometry [2]. As for the effective
construction of the action-angle variables, it is a more difficult problem [3], especially
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when the reality conditions are carefully taken into account [4]. The case of systems
associated to hyperelliptic spectral curves is studied in detail [3,4], there being only
some preliminary results for the non-hyperelliptic case [5].

In the present paper the third mentioned problem (separation of variables) is
studied. To be precise, the separation of variables is understood here as construction
of D pairs of canonical variables x3-, p3• (j = 1, . . . , D)

{χj,χk\ = {PjiPk} = °> {Pj,χk\ = δjk > (2)

and D functions Φ3 such that

Φj{xJ,p3,Hι,H2, . . . , ί Γ D ) = 0, J = 1,2, . . . , 2 5 , (3)

where H3- are the Hamiltonians (1) in involution.
The above definition is a paraphrase of the usual definition of separability of

variables in the Hamilton-Jacobi equation [1]. Note that the canonical transformation
from the original variables to (x3-, p3) may not necessarily be a pure coordinate change,
as in textbooks on classical mechanics, but can involve both coordinates and momenta.

The problem in question, being the simplest of the three, is rather neglected in the
literature on the subject, though, in our opinion, it deserves attention at least for two
reasons. First, the variables (x3,p3) serve usually as a raw material for constructing
action-angle variables and integrating equations of motion. Second, the problem is
interesting for the theory of quantum integrability, since the construction of separated
variables usually has direct counterparts in the quantum case [7].

The construction of the variables (Xj,P3) is well known for the case of the
hyperelliptic spectral curve [3, 4, 8, 9] though its relation to the separation of variables
is not always stated manifestly. The coordinates x3 are defined as the zeroes of the
corresponding Baker-Akhiezer function, and the canonically conjugated momenta pj9

or sometimes expp j 9 usually turn out to be eigenvalues of the corresponding L-
operator taken at the values of the spectral parameter equal to x3 . The functions Φ3

are then simply the characteristic polynomials of the L-operator.
In the present paper we study the problem for the nonhyperelliptic case. The SL(3)

classical magnetic chain is chosen as a sample toy-model. Having in mind subsequent
application to the quantum integrability we make extensive use of the classical r-
matrix formalism [10]. We consider a complexified version of the model in order
to avoid the additional complications of the real case. Our construction of separated
variables is quite elementary and does not involve any sophisticated algebro-geometric
techniques.

2. Description of the Model

The model we are going to describe is the nonhomogeneous classical SL(N) magnetic
chain. It is in a sense generic for the models related to the SX(ΛO-invariant classical
r-matrix [10]. For N = 2 the model was introduced in [11,12]. The continuous
version of the model was studied earlier in [13-15]. For a degenerate case (Gaudin
model) see Sect. 5. The quantum version of the model is well studied by means of
the Bethe ansatz method [16-18].
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The model in question is described in terms of the variables S^g, ί α, β =
N \ V

1, . . . , TV; ra = 1, . . . , M; Σ &££ = 0 ) subject to the Poisson brackets
a=l J

I Oi\β\ ' Oί2β2i ^ a\β2 cx.2β\ ot2β\ θί\β2* mn ^ ^

which define the Kirillov-Kostant Poissonian structure on the direct product of M
orbits of the coadjoint action of the Lie group SL(N) on sl(N)*, see e.g. [10]. It
is well known that the center of the Poisson algebra is generated by the eigenvalues
lira) of m e matrices S^

N N

det(w + 5(m)) = J\ (u + 4m )), Σ ^ = ° ( 5 )

α=l α=l

We shall assume that /^n) are fixed numbers. The Poisson bracket (4) is thus
nondegenerate on the manifold (5) having dimension 2D = MN(N — 1) for the case
of generic orbit (all eigenvalues of S^ are distinct). In what follows we always
assume that the orbit is generic.

Let Z be an invertible TV x TV number matrix having TV distinct eigenvalues, let
δm (m = 1, . . . , M) be some fixed numbers, and wbea complex parameter (spectral
parameter). Consider the product (monodromy matrix)

T(u) = Z(u - δM + # ( M ) ) . . . (u - δ2 + # ( 2 )) (u - δx + # ( 1 ) ) . (6)

Proposition 1. Matrix elements of T(u) have the following quadratic Poisson
brackets:

^ (7)

The proof (see [10]) is based on the fact that the factors (u - δm + S{rn)) have
the same Poisson brackets (7) which reproduce themselves for the product T(u) (Lie-
Poisson group structure).

1 2

Using the notation [10] T = Γ ® id, T = id®T one can put the formula (7) into
a compact form

{T(u), T(v)} = - ^ — m T(M)T(V)] , (8)
u — v

where ζp is the permutation operator in C ^ ® CN.
Let the spectral invariants tv(u) of the matrix T(u) be defined as the elementary

symmetric polynomials of its eigenvalues

/\ v=\,...,N.

For example,

tλ(u) = tτT(u), t2(u) = \{vp- T(u) - trΓ2(u)), ...

tN(u) = detT(u) = d{u).
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Note that the central functions l^ are contained in the determinant d(u) =
detT(τx), see (5).

Proposition 2. The non-leading coefficients at powers of u of the polynomials tv(u),
v = 1, . . . , (N — 1), form a commutative, with respect to the Poisson bracket (8),
family of MN(N — l)/2 independent Hamiltonians.

Proof The polynomial tv(u) having power vM in u contributes vM Hamiltonians
(its leading coefficient is a number), the total number of Hamiltonians is M{\ + 2 +
.. . + (N - 1)) = MN(N - l)/2. The commutativity of tv(u)

{tμ(u),tu(υ)} = 0 \/u,v

is a direct consequence of the fundamental Poisson bracket (8), see [10]. The
independence of the integrals of motion is proven in [19,20] for a different model
(Gaudin model, see Sect. 5) but the proof is valid also for our case. Note that the
assumption made concerning nondegeneracy of the spectrum of the matrix Z is
essential for the independence of tv(u).

By virtue of the proposition and since the number of Hamiltonians constructed
D = MN(N — l)/2 equals exactly half dimension of the phase space the system is
completely integrable. Now we can turn to the problem of constructing the separated
variables.

Conjecture 1. There exist functions ^ and Jβ on GL(N) such that the following two
assertions are true. First, ̂ S(T) is an algebraic function and J9(T), respectively, is
a polynomial of degree D = MN(N — l)/2 of the matrix elements Taβ. Second, the
variables Xj,Pj (j — 1, , D) defined from the equations

)) = 0, P.= Λ(T(x3)) (9)

have the Poisson brackets

{xΓxk} = {P3,Pk} = 0, {Ppxk} = P3δjk (10)

and, besides, are bound to the Hamiltonians tu(u) by the relations

dεt(Pj-T(xj)) = 0. (11)

The last relation means simply that P3 is an eigenvalue of the matrix T(u) when
u — x3. Putting P3 — Qxpp3 we observe that (11) fits the form (3) since the spectral
invariants of T(u) contain only the integrals of motion.

In the present paper we prove Conjecture 1 for the cases N = 2 and N = 3.

3. SL{2) Case

Though the construction of the separation variables for N = 2 is described in [8] we
reproduce it here in order to fix notation and to prepare the discussion of the more
difficult N = 3 case.

The system has M degrees of freedom. The spectral invariants of T(u) are

t(u) ΞΞ t{(u) = tτT(ίz), d(u) = t2(u) = detT(tx),
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the trace t(u) containing M integrals of motion.
Define Λ and Jg> as [8]

^ ( Γ ) = Γ n , i ( Γ ) Ξ Γ 1 2 (12)

and Xj,Pj respectively by the formulas (9). For the polynomial B(u) = J9(T(u))
to have M zeroes it is necessary that its leading coefficient Zn be nonzero. It can
always be done by a similarity transform QT(u)Q~ι which affects neither basic
Poisson brackets (8), nor Hamiltonians t(u), since the matrix Z, by assumption, has
nondegenerate spectrum.

Since the matrix T(u) becomes triangular at u = x3 the quantity P- is an
eigenvalue of T(x-) and satisfies therefore the secular equation (11) which in the
two-dimensional case takes the form

P] - t(xά)Pά + d(Xj) = 0, j = 1, . . . , M .

Note that the secular equation defines a hyperelliptic algebraic curve relating P- and
xr

To prove Conjecture 1 it remains to calculate the Poisson brackets of P's and x's.

Theorem 1. The Poisson brackets for P3 and x3- are given by (10).

Proof. Let A(u) = Λ(T(u)) and B(u) = Jff(T(u)). Taking particular values of
indices in (7) one obtains the identities

{A(u),A(υ)} = 0, (13)

(υ)} = 0, (14)

, B(v)} = . (15)
u — v

The commutativity of i?'s (14) entrains obviously the commutativity of # [zeroes
of B(u)]. The Poisson brackets including Pj can be calculated using the implicit
definition of Xj. From B(Xj) = 0 it follows that

0 = {F,B(Xj)} = {F,B(u)}u=Xj +B\x3){F,x3}

or

for any function F. In the same way we have

{Pp F} = {A(Xj\ F} = {A(u), F}u=Xj + A\x3)

Now it is easy to prove that {P-,xk} = Pjδjk. Starting with

expanding the first term further, noting that the second term is already shown to
vanish (14), and using (15) we arrive at

(u\ B(v)} u:ζi ^ χ B(Xj)A(Xk) _ A(Xj)B(xk)

1 i ' X / c l ~ B'(xk) ~ Xj-xk B'{xk)

The last expression vanishes for x3 ^ xk due to B(x3) — B(xk) = 0 and is
evaluated via LΉopital rule for x3 = xk to produce the proclaimed result. The
commutativity of P's can be shown in the same way starting from (13).
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4. SL(3) Case

Let now N = 3. The polynomial T(u) takes values in 3 x 3 matrices.

(τn(u) τn(u) τl3(Uy
T(u) = T2l(u) T22(u) T23(u)

\T3l(u) T32(u) T33(u)y

The system has D = 3M degrees of freedom. The spectral invariants of the matrix
T(u)

tx{u) = trT(u) =λx + λ2 4- λ3

t2(u) = \(tr2 T(u) - tτT2(u)) =XXX2 + XYX3 + λ2λ3

d(u) = dεtT(u) =λ 1 λ 2 λ 3

are the coefficients of the characteristic polynomial for T(u)

det(λ - T(u)) = λ3 - tx(u)\2 + t2(u)λ - d(u)

which defines a nonhyperelliptic algebraic curve.

It is convenient to introduce the matrix ^ ( T ) for any Γ e GL(3),

Ξ Γ Λ T Ξ (T~1ΫdetΓ
ΓTΊ ΓTΊ ΓTΊ ΓTΊ ΓJ~Ί ΓTΊ ΓT1 ΓTΊ ΓTΊ ΓTΊ

~ ^23^32 ^23^31 ~ ^21^33 i 21 i 32 "" ^22^3
ΓT~\ ΓTΊ ΓTΊ ΓTΊ ΓTΊ ΓTΊ ΓTΊ ΓTΊ ΓTΊ ΓTΊ

— ^ 12^33 -̂  11 -̂ 33 ~ 1U13l 1\213\ ~ 1\\1?>2
ΓTΊ ΓTΊ ΓTΊ ΓTΊ ΓTΊ ΓTΊ ΓTΊ ΓTΊ ΓT
i12i23 "" i13i22 i13i21 ~ i l l i23 i

whose elements %aβ are algebraic adjuncts of Taβ.
Let U(u) = <%(T(u)). The Poisson brackets for T and U are calculated easily

from (8):

T(), U(υ)} = — [&*i,T(u)U(υ)], (16)
u — v

7=1

(17)

U(), U(v)} = —— [&>, U(u)U(v)], (18)
u — v

= ^ (Ua2βι(u)Uaλβ2(υ) - Uaφ2(u)Ua2βχ{v)) (19)

[the superscript t2 in (16) denotes the transposition with respect to the second space
in C3 0 C3].

The experience of the Inverse Spectral Transform Method and, in particular,
the SL(2) case suggests that in the SL(3) case the separated coordinates Xj,
j = 1, . . . , 3M should be defined as zeroes of some polynomial B(u) of degree 3M
and the corresponding momenta p- should be bound to x- by the secular equation

P% - ^(x^PJ + h{xύ)Pj - d{χ.) = 0, Pj
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It means that Pj should be an eigenvalue of the matrix T(Xj). Therefore, there
must exist such a similarity transformation

T{xά) -> T{xά) = KaT{xa)KJl

for each j that the matrix f(Xj) is block-triangular

fn(Xj) = fl3(Xj) = 0 (20)

and Pj is the eigenvalue of T(Xj) splitted from the upper block

Pj=fn(Xj). (21)

The problem is reduced thus to determining the polynomial B(u) and the matrices
Kj. Let us take the simplest possible triangular, one-parametric matrix K(k)

/ I k 0N

K(k) = 0 1 0

\0 0 1

Note that the matrix

Γ(w, k)

= K(k)T(u)K-\k)

fTn{u) + kT2l(u) Tn(u) + kT22(u) - kTu(u) - k2T2l(u) Tl3(u) + kT23(u)\

T2l(u) T22{u) - kT2l(u) T23(u)

T3l(u) T32(u) - kT3l(u) T33(u)

I

depends on two parameters: u and k. Therefore, we can consider the condition (20)
as the set of two algebraic equations

ί 1 2 θr, k) = Tn(x) + kT22(x) - kTu(x) - k2T2l(x) = 0,

fl3(x, k) = Tl3(x) + kT23(x) = 0,

for two variables x and k. Eliminating k from (22), one obtains the polynomial
equation for x,

Γ23(Γ12Γ23 - Tl3T22) - T1 3(Γ1 3Γ2 1 - TnT23) = 0 (23)

or
T23(x)U3l(x) - Tl3(x)U32(x) = 0. (24)

Since the matrix Z is assumed to have simple spectrum, the leading coefficient
J?(Z) of the polynomial J$(T(u)) can always be made nonzero by a similarity
transformation QT(u)Q~\ Eq. (24) being thus of degree 3M.
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Expressing k from f13 = 0 as k = —Tl3(x)/T23(x) and substituting it into the
definition (21) of P one obtains

P = Tn(x) + kT2l(x) = - ^ ^ (25)
1X)

So, we have constructed 3M pairs of variables %J,PJ> To prove Conjecture 1 it
remains to show that they have good Poisson brackets.

Theorem 2. The Poisson brackets for Xj and Pj are given by (10).

Proof. Let

_ rjΊ έp/ (ΓΓΛ\ ΓΓI 6?/ (rTΛ\ C^f\\

Putting A(u) = ^(Γ(ΐz)), B(u) = JB(T(u)) and using (7), (17), (19) one easily
calculate the following Poisson brackets:

(v)} = {B{u\ B{v)} = 0, (27)

{A{u\ B(υ)} = —— (A(U)B(V) - B(u)A(v)^Λ (28)

from which the wanted Poisson brackets for x0 and Pj are derived immediately in
the same manner as in the SL(2) case.

Remark. As N. Reshetikhin pointed out to us, the polynomial J?(T), see (26), is
invariant under the similarity transform QTQ~ι acting on the first and second
row/column, Q e SL(2) C SX(3). The SX(2)-invariance of J&(T) entrains invariance
of Xj and Pj. The meaning of this fact is still unclear.

5. Gaudin Model

The above construction of separated variables can be applied also to another integrable
system - Gaudin model - which was introduced first in the quantum variant [21], see
also [22,23]. Its classical version turned out to be a useful example for developing a
general group-theoretic approach to integrable systems [19,20].

The model is formulated in terms of the same SL(N) variables S^β as in Sect. 2,
see (4). Consider the matrix function

M g(πι)

where {<5m}̂ f=i are some fixed parameters and & is a traceless number matrix having
TV distinct eigenvalues. In contrast with T(u), see (8), the matrix £Γ(u) has linear
Poisson brackets.

Proposition 3.

u — v
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The proof is a matter of direct computation [10].
Consider now the spectral invariants τu(u) of the matrix

τy(u) = Xx3F(u)v , v = 1, . . . , TV .

Note that r^(u) is a meromorphic function of u

M v ^a.

N

Note that ζu = to&u and r ^ v = tr[S ( m )] I / = Σ [l^T are numbers, see (5). The

following proposition, analogous to Proposition 2, states the complete integrability of
the system.

Proposition 4. The quantities r^ , (ra = 1, . . . , M; v = 2, . . . , N; a = 1, ...,
(y — 1)), form a commutative, with respect to the Poisson bracket (29), family of
MN(N — l)/2 independent Hamiltonians.

Proof. It is easy to compute the total number of Hamiltonians M(l + 2 + . . . +
(TV — 1)) = MN(N — l)/2 which equals exactly half dimension of the phase space.
The commutativity of the spectral invariants of Jf(u) follows directly from (29), see
[19,20]. The independence of the Hamiltonians is also proven there.

The analog of Conjecture 1 for the Gaudin model is presented below.

Conjecture 2. Let ^β and Jθ be the same functions on GL(N) as that in Conjecture 1.
Then the variables x^ and Pj defined by the equations

ά)) = 0, Pj= Λ(f(xά)) (30)

have the canonical Poisson brackets (2) and, besides, are bound to the Hamiltonians
τm,u by the relation d e t ^ - ^(Xj)) = 0.

The separation of variables for the N = 2 and N = 3 cases is performed now in
the same manner as, respectively, in Sects. 3 and 4.

Theorem 3. The Conjecture 2 is true for N = 2.

Proof In the SL(2) case, the functions ^ and 3B on GL{2) are defined by the
formulas (12). Like in Sect. 3, we can always suppose that JB{β£) φ 0. The variables
χj> Pj9 3 — 1? 5 N a r e m e n determined by Eq. (30).

Let AG(u) = Λ(^(u)) and BG(u) = J&\y(u)). Taking particular matrix
elements of (29) one obtains

{AG{u\ AG(v)} = {BG{u\ BG(v)} = 0, (31)

{AG(u)ίBG(v)} = -B^UlZ^υ\ (32)

The rest of the proof follows that of Theorem 1.

Theorem 4. Conjecture 2 is true for N = 3.
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Proof. In the 5L(3) case define <A,JB by the formulas (26) and, like in Sect. 4,
suppose that J&(&) φ 0.

Let again AG(u) = ^{^(u)) and BG(u) = J8(3Γ(u)). It suffices to establish the
Poisson brackets

{AG(u), AG(v)} = {BG(u), BG(v)} = 0, (33)

{AG(u), BG(v)} = BG(v) - BG(u) - f ^ , (34)

since the remaining calculation is standard.
It is possible to verify the above Poisson brackets directly, using (29). It is simpler,

however, to avoid long computations and to use the fact [21,22] that the Gaudin model
is in fact a degenerate case of the magnetic chain. To be precise, let us replace 5 ( m )

M
in (6) by εS(rn\ Z by 1 + ε£>, and divide T(u) by J] (u - δm). Then, in the first

/ M ra=l
order in ε, we have T(u) I \[ (u - δm) = 1 + ε^(u) + O(ε2). The Poisson brackets

/ ra=l

(29) are obtained, respectively, as the linearization of the quadratic Poisson brackets
(8).

To conclude the proof, it remains to notice that

A(u) = 1 + εAG(u) + O(ε2), B(u) = ε3BG(u) + O(ε4)

and that the Poisson brackets (33), (34) are obtained in the leading order in ε from
(27), (28).

6. Unsolved Problems

The natural question arises whether the construction of separated variables presented
here for the SL(2) and SL(3) cases can be generalized to the SL(N) case and further,
to the integrable systems associated with classical r-matrices corresponding to other
simple Lie algebras. Hopefully, the generalization will elucidate the geometric and
algebraic meaning of the construction.

The SL(N) case is presently under study. The problem consists in finding a
multiparametric family of matrices K(kv . . . , kQ) such that after eliminating fc's
from the system Tn{x) = ... = TlN(x) = 0 the resulting equation for x provide
the necessary number of commuting zeroes. Another challenging object of study is
the Kowalewski top which can be considered as a Gaudin model for Sp(4) ~ SO(5)
group [24].

Since the construction of separated variables for the SL(2) case has the direct
quantum counterpart [6, 7, 8], it seems reasonable to conjecture that the same is true
for the SL(N) case.
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