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Abstract. Exterior algebras of differential forms on quantum 2-spheres S2,

qe[—1,11\{0}, ce[0, 0] (c=0 for g= +1), are classified. In the definition of
exterior algebras we assume the invariance w.r.t. the action of the quantum SU(2)
group and “dimensionality conditions” (which imply that we deal with “two-
dimensional manifolds”). The exterior algebras exist only for c=0 and are unique
in that case. The corresponding generalized directional derivatives are provided.

0. Introduction

One of the most important problems of theoretical physics is to find a consistent
theory which would generalize both the general theory of relativity and quantum
field theory. In the opinion of some physicists, in such a future theory functions on
space-time should be replaced by operators belonging to a non-commutative
algebra. In other words, space-time should be replaced by a quantum space. (The
basic idea could be that the laws of physics should be the same in each quantum
space-time.) Therefore, it is important to investigate the properties of quantum
spaces, especially those properties which could be important for physics, like the
existence of differential structures. In addition to general considerations (cf. e.g.
[W1,C, W3, W5, Mau]) we need also concrete examples (cf. e.g. [W 2, M, RTF,
PW, CSSW, CSW, WZ]). One of them is given by the quantum spheres SZ, [P 1],
which are homogeneous spaces of quantum SU(2) groups SU ,(2) [W 2]. Quantum
spheres are generalizations of the standard 2-sphere S? endowed with a classical
right action of SU(2) [or SO(3)]. (This action plays an important role in the
description of spherical symmetric, stationary systems in physics, such as the
hydrogen atom in quantum mechanics or the Schwarzschild solution in the
general theory of relativity.)
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The main result of the present paper is as follows:

1. The quantum sphere 82, possesses a unique “two-dimensional SU (2)-invariant
differential structure.”

2. Quantum spheres SZ, [ge(—1,1)\{0}, ¢>0] do not possess “two-dimensional
SU ,(2)-invariant differential structures.”

For the latter case it becomes interesting to consider “three-dimensional SU (2)-
invariant differential structures.” They are not classified yet, although a related
example was presented in [P 2].

The main result is presented in Sect. 1. Its proof is given in Sect. 2. We should
stress the following:

a) we overcome the difficulty related to the existence of a constraint in the left
module of first order differential forms,

b) we describe differential forms of higher orders as well,

¢) non-linearity of resulting commutation relations (6)—8),

d) the full classification of considered objects.

In Sect. 3 we briefly study related generalized directional derivatives. The results of
the paper were essentially contained in [P 3] and announced in [P4].

In the following we sum over repeated indices (Einstein’s convention).
Throughout the paper we use the terminology and results of [W 2, W 3, P1, P2];
we set g=pue[—1,1]\{0}, c€[0, 0] for ge(—1,1)\{0} and ¢=0 for g=+1.
Moreover, &/ CC(SU,2)) is the =-algebra of polynomials on SU,2) and
DA >ARA, K: A >, e: o/ >C are the corresponding comultiplication,
coinverse, and counit. Moreover, <, C C(SZ) is the *-algebra of polynomials on S2,
generated by e_,, eo, e and the *- homomorphlsm 0, A~ 4,® A describes the
action of SU,(2) on S,. The elements e_, e, e, satlsfy the relatlons

ef=e—ia l=_1a0a17 (1)
almelem=QIa (2)
blm,kelem = }'ek s k =—- 1, 0: 1 b} (3)

where the real numbers a,,,,, b;,,, 1, 4,0 (I,m, k= —1,0,1)are givenin [P 1,2b-2e and
Sect. 4]. Nonequivalent, irreducible, (2n+ 1)-dimensional invertible representa-
tions of SU,(2) are denoted by d,, n=0,1/2,1,... . Then dy=(I) is the trivial
representation, we choose d; =(d, ;;);, j= —1,0,1 @s givenin Sect. 2 of [P 1]. We have

0pelr=€n®@dy my, k=-—1,0,1. ]

We embed (see [P 1, Sect. 6]) «, into o/ by the formula e;=s,d, 4;, i=—1,0,1,
where (s_;,50,5;) equals (c'/?, 1, ,c1?) for c<oo and (1, 0 1) for c=oo. Then
04 _Qldc

1. The Main Result

Up to now there is no satisfactory functorial way of defining differential structures
on quantum spaces. Therefore, we proceed in an axiomatic way. We first analyse
some properties satisfied by differential forms on 2. Then we classify differential
structures on quantum spheres which satisfy these properties.

Let g be the standard right continuous action of SU(2) on §?~ U(1)\SU(2) (we
use the isomorphism described in Sect.6 of [P1]) and o= Q* C(5?)
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—»C(Sz)®’C(S U(2)) be the corresponding C*-homomorphism. Moreover, we can
define a right coaction r of SU(2) on C(S?) by formula

r,/)x)=fle(x.8), feCS?, geSUQ), xeS>.

The last two mappings are related by (id®y,)o =r,, where ge SU(2) and y,, is the
corresponding character on C(SU(2)). We know that C(SU(2))=C(SU,(2)), C(S?)
=C(S1o), 0, =050 with the identification C(S}y)3ey = i(x; +ix,)e C(S?),
C(S?5)2e0=2x;€ C(S?) (as in Sect.3 of [P2], we set radius of S*> as R=1/2).
Moreover, §? is a manifold, ¢ is smooth and &/,C C*®(S?) (the set of smooth
functions on §2).

We set B=/,. Let S" = @ S"", where
n=0

S*"=span{apda, A ... Ada,: ag,ay,...,a,€ B}

is the bimodule of exterior differential forms on S? of n'™ degree, which are
generated by 2. We denote the exterior derivativebyd:S" —»S".Let *:S* ->S* be
the complex conjugation:

(apda, A ... nday)*=akd@) A ... nd(a}), agay,....,0,€5B.

We have moreover the right shifts R,:S" »S", ge SU(2):
Ryaoday A ... Ada,)=(rgao)d(ra) A ... Ad(rya,), doay,...,a,€B.

Alternatively, we can also consider a unique linear mappings” : S* »S" ® o/ such
that (id®y,)c" =R,, ge SU(2). It is easy to check that (S*,0",d, *) satisfies

1) S*= @ S""is a graded algebra such that S"° =2 and the unity of S"° is the
0

unity of :lS’_ .
2) 6" :8">S*®/ is a graded homomorphism such that

(d®e)o”" =id, (¢"®id)o"=(1dRP)c", 0"%=04.
3) * is a graded antilinear involution such that
@A) =(—1)0*A0%, OeS"k, OeSM
( A denotes multiplication in S* ),
(@")x=(x®@*)s",

* on S"° reduces itself to the standard *.
4) d:S"—>S" is a linear mapping such that
a) diS*"McSrtY n=0,1,2,...,
b) dOAO)=dOAO +(—1)OAdD, DSk, 0 eS™,
c) d*=xd,
d) (d®id)c" =c"d,
e) dd=0.
5) SN=span{ayda, A ... Ada,: ag,ay,...,a,€ B} (we omit A if one of multipliers
belongs to S"°).
In the following we assume that ge[—1,1]\{0}, c€[0, c0] (c=0 for g= +1)
and &/ CC(SU,(2)) is the *-algebra of polynomials on SU,(2), #=/,CC(S2),

0=0,.
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Definition 1. We say that S* =(S*, 0", d, *) is an exterior algebra on SZ, invariant
w.r.t. o, iff conditions 1)-5) are satisfied.

The above choice of axioms is motivated by [C, W5]. We don’t introduce (and
don’t know if it is in a self-consistent way possible) any conditions replacing the
classical condition

OAG=(—1)"0' A0, 0eS"*, eSS,

which does not hold in the case of a non-commutative 4. Instead, we can introduce

“dimensionality” conditions as follows. Let S* be as in Definition1 and

P=ayede, [a,, were used in (2)] Using (5) of [P2] we get 6" 1 P=P®I, ie. P is
Al-1nvar1ant Moreover, it is easy to check that P is unique (up to a scalar)

Minvariant element of /,-span{de_,,de,,de,}. Let now g=1. Then

P =4x,dx,. Consider the exterior algebra S” given at the beginning of the present

section. In that case dx,, k=1,2,3, generate the left module S*! with only one

constraint, namely P=0. In terms of ¢,, k= —1,0, 1, it means that

6) de,, k=—1,0,1, generate the left module S"* (over S"°=<f,).

7) For any aye o4, k=—1,0,1,

ade,=0 < Jaesd,: a,=a‘ae,, k=-—101.

Moreover, considering &;;xdx; A dx,€S"?, where &3, i, j,k=1,2,3, is the
completely antisymmetric symbol with ¢,,; =1, one obtains (with the basis given
by the above element)

8) there exists a one-element ¢ " %-invariant basis of the left module S"?.

Defimtlon 2. Let S* =(8", ",6",d,*) be an exterior algebra on SZ, invariant w.r.t.
.. We say that S” is (2)-d1mens1ona1 iff conditions 6)-8) are satisfied.

Remark. Symbol (?) reminds us that the left modules S*" are (in some sense)
(3)-dimensional, n=0, 1,2.

Theorem. For ge[—1,1]\{0}, c=0 there exists a unique (*)-dimensional exterior
algebra S™ on the quantum sphere S, invariant w.r.t. 6=0,,

For ge(—1,1)\{0}, ce(O 0] there are no (%)- dlmenswnal exterzor algebras on
the quantum spheres SZ, invariant w.rt. =0,

The same facts hold lf we restrict ourselves to S "D...DS for somek=1,2,.
(with suitable restrictions of all structures in S™, without * or with * ), instead of S A
(in Definitions 1-2 and in this theorem).

Moreover, for c=0S" has the following properties:

a) one-element " %-invariant basis in the left module S** can be chosen as

0 =aye;bp, dey, A de, )

b) $"*={0}, k>2,
c) the following formulae hold:

aulde)e, =0, (6)

by, (dey)e,=(1—g°)de,— by, ,exde;, 1=-1,0,1, ()
Cu,(deye,=cyy e [de;+q (1~ qz)bmn, emde,], r=-2,..2, ®)
we,=e,w, r=-—1,0,1, 9

ade, Ande,=0, (10)
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by, de, ndey=e,0, r=-—1,0,1, (11)

Cude Adey=q"*(1+4*)"2(q° — ey 00, r=—2,...,2, (12)
dey*=de_,, k=—1,0,1, (13)

0*=—w, (14)

ocMde,=de,®d; i, k=-—1,0,1, (15)
cMo=0®I (16)

(> i, o Com, ks L m=—1,0,1, were used in (2), (3), and [P 2, Eq. (4)]).

Remark. According to [W4, p.75], SU/(2), ge[—1,1]\{0}, give all compact
matrix quantum groups which have the same representation theory as SU(2).
Next, quantum spheres (S2, a,,.), c€ [0, co] for ge(—1,1)\{0} and c=0for g= +1,
give all generalizations of S* endowed with the standard right action of SU(2)
(Theorem 2 and Remarks 2-3 of [P1]; in the case of g= —1 see also [P 5]).
Therefore, the above theorem classifies all generalizations of the exterior algebra
of differential forms on §? (we consider only forms which are generated by the

Cartesian coordinates).

2. Proof of the Theorem

For g=1 all conditions are satisfied by the exterior algebra introduced at the
beginning of the previous section, hence the existence follows. The theorem holds
in this case [proof of uniqueness is similar as for g e(—1, 1)\ {0} — see below]. The
case (¢, c)=(—1,0) can be reduced to the case (¢, c)=(1,0) (see [P 1, Remark 3 after
Theorem 2] and [P 5]). In the following we investigate the case ge(—1,1)\{0}.

We start with the following remarks. Set M =a@®b@c (the first column of the
matrix M is given by the matrix a, the next three columns of M coincide with the
successive columns of the matrix b and the last five columns of M coincide with the
columns of ¢). Due to (5) of [P2], M intertwines d,®d, ®d, with d,®d,. Since
a, b, c are non-zero, M is invertible. Therefore, M ~! exists and intertwines d, Dd,
with dy@d, ®d,. Denote the matrix elements of M~ by Ay, B, ;; (r=—1,0,1),
Coulr=-2,..,2), k,1=—1,0,1. Then

A (B, C, resp.) intertwines d, @d, with d, (d,, d,, resp.). 17)

It is_easy to see that w=(d])"' is an invertible representation of SU(2)
(w=[({d®x)(d,)]"). By virtue of (17) we get

@y)omBm,u= BO,ab(d{)ka(d{)lb »  ki1=-1,0,1.
Multiplying both sides from the left by w,w, one obtains
WiaWg B iy, om=Bo oI, 5t=-—1,0,1. (18)
Analogously,
WiWsCrid2,om=Co. ol ,  s,t=—1,0,1. (19)
The equation M~ M =1 gives
auB, =0, ayC, =0, ¢4,C, =6, , }

20
by, B ii=0p >  Ci,pB, =0, bi,»Cr =0, (20)
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for all possible r,7. On the other hand, MM ~!=1 is equivalent to
Aijag+ B, b, + C,iCha,r =01 (21)
i, j,k,1=—1,0,1. After easy computations one can obtain
A =" 1+ A+ +q%)7",  Ago=4¢*(1+q*+q%) "
Ao =a"(1+¢*) (1 +q*+¢%) 71,
B, _1-1=0, B_; _jo=—¢(1+¢%"", B_;o-=(1+¢%7",
By, _11=q"(1+q)'(1+4q)7", By oo=01—¢)(1+g%7",
By 1-1=—q*(1+4) 7' (1+4%)7", By o=—¢(1+4%7",
By 10=(1+4¢%"", B, =0,
Cp1o1=1, C_y _1o=(14+g%7", C_jo-1=4’(1+4q)7",
Co,-11=—(1+g) A+’ +49 7",
Co,00=0*(1+¢)*(1+¢H) A +¢*+¢9 ",
Coi-1=—q°(1+g)7 (U +g*+¢%™", Cyo=(1+g97",
Ci10=q°(1+g%"", C, =1,
Ay=0 for k+1%0,
B, ,=0, C,,=0 for k+l=*r.

Note. Equation (5) of [P 2] and the above remarks are true also for g= + 1. In that
case &, are defined asin [P 2, Eq. (4)] (i.e. &, = ¢}, ,€18,, 7= —2, ..., 2) With ¢, , given
in the preceding formulae, while d, can be determined from [P2, Eq. (5)] for
g=+1.

Proof of Uniqueness. LetS* =(S",5",d, *) be (?)-dimensional exterior algebra on
the quantum sphere SZ, invariant w.rt. o, ge(—1,1)\{0}, ce[0, c0]. Using
condition 4.b, (2)~3), and condition 7 we obtain

ay(dey)e,= d(ayeve) — aye(de)=odl —0=0,
by, (de)e,=d(by, exe;)) — by, ,ei(de) = Ade, — by, e de; .
We set 0,=cy, (dey)e;, r=—2,...,2. Using condition 2, condition 4.d, and [P2,

Eq. (5)], we get 6" 6,=0,,®d, ,,,, r=—2, ...,2. The analogous fact holds also for
0,=cy, ,ei(de) and for 0, =c,, ,e;b,,, e,de,. According to conditions 6 and 7,

SA ! z'5%0()931)3'1‘1 {e— 1 e09 el}/"dc(amnem®en)

as far as the transforming properties w.r.t. SU,(2) are concerned. But the
numerator of the last expression transforms according to

([do®d,® ...)Dd, ~dy®3d, ®3d,D ...,

while the denominator according to d,@®d,®d,®... . Therefore, in a decompo-
sition of S” ! into a direct sum of vector subspaces, which correspond to invertible
irreducible representations of SU (2), there are exactly 2 subspaces corresponding
to d,. Thus, since @, and 6} are linearly independent,

0,=h0,+b0!, r=-2,..2, 22)
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for some h,beC. The above equalities and (21) yield
(de)e;=AB, ;{de,)— B, by, ,eide;+C, ;¢ e [h-de,+b-b,, e,de,], (23)

i, j=—1,0,1.

Due to conditions 6-7, for each a € o/, there exist unique elements R,,(a)€ <.,
k,1=—1,0,1, such that (de,)a=R,(a)de,, Ry (a)e,=0, k= —1,0,1. Using (23) and
(2)3) one can easily get

R;(e j) =18, ; jI —B,; jbkn, €k } 4)
+ Cr‘ijckl,rek[h ' 5lnI"'b ' bmn,lem - Q— 1(h + }'b)elasnes] s

R, (I)=0,,I — 0 'eage,, i,n, j=—1,0,1. We define r,, as the superposition of the
counit e with R, r,,=e°R,,, i,n=—1,0,1. Then

Tule j) = /1Bn, i B, ijbkn,rsk
+ Cr, ijckl,rsk[h ' 5ln + b- bmn, Sm—0 N l(h + 'lb)slatnst] s

rin(I) = 5in —@ N 1Siatnst .

Since R;{(x)R;(y)=Ru(xy), i, k= —1,0,1, x, y € o/, (the left-hand side satisfies
conditions defining the right-hand side),

1 () =ralxy). (25)
Specializing x=1, y=e,,, we obtain
aseRy(e,)=0, km=-1,0,1, (26)

and a, s, 3(e,,) =0. Considering the latter equation for (m, k) = (1, — 1) and (1, 0) [for
¢=0: (mk)=(—1, —1) and (1,1)] we obtain

_€°+eU+)1+g)e  g*(1-q)
°+(1+4%c 7°+(1+4%%

[for c=00: h=¢*(1+¢*)(1+¢°~*, b=0]. Inserting these data into the equation

r_ e )ri—1(e0) — a*r - yleo)ri—1(e))=Ar_y _(ey)

[we obtain it by acting with r_, _, on both sides of (3) for k=1 and using (25)] one
can easily get ¢ =0 (it proves the second statement of the theorem). Hence [see (22)
and the preceding formulae], (6)(8) are satisfied. It determines uniquely A,d, ¢",
and * on the level of S"°@®S"1.

Acting d on both sides of aye,de,=0, we get (10) (see conditions 4.b, 4.€). We
shall now prove the property a). Let the matrix ¢ be a nonzero intertwinner of d,,
with d,Dd,:

d2,mkd2,nstks=tmn19 m,n= _2, ...,2.
Then z=t,,6,6,€CI (see [P 2, Eq. (4)]; we use 6z=z®I). Multiplying t by a factor,
we can assume z=I or z=0. Assume for the moment that w=0 [see (5)].

Considering the transforming properties and using [P 2, Eq. (5)] it is easy to see
that a ¢” 2-invariant basis Q of the left module S$*2 must have a form

Q=Aa,,de, rde,+A,a,e,b,, de, Ade,+A3tE,Com de, A de,
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with some 4,,4,,4;€C. But the first two components are now zero and we can
assume A;=1. The transforming properties give (R is a basis)

bynde Ade,=a-eQ2, 1=-1,0,1, (*)
Com,ide Ade,=b-€Q, 1=-1,0,1, (**)

for some a,beC. Multiplying (*) from left by ae,, we get 0=w=aQ, a=0.
Multiplying (**) from the left by t,,&, we obtain Q=>5bzQ. Therefore, z+0, z=1,
b=1. Using (21), one has

de; Adey= Ayyay,de, Ade,+ B, iob,, de, Ade,+C, ;oCnn,.de, A de, .
Combining this with condition 7, (10), and (*)(**), one gets
0 = akiekde,- N deo = akiekc,, iOérQ N

a6,C, 106, =0. Applying the counit e, we obtain the contradiction C, oo=0.
Therefore, w=+0 and property a) easily follows (w is o¢”2-invariant). By an
argument similar to that in the previous reasoning we obtain (11) and

Cude,nde=yé0, r=-2,..,2, 27

for some yeC. Then the equation 0=ayede; Ade, yields (cf. the previous
considerations) By, oo+ yCo,00=0. This and (27) give (12). All structures on the
level of S"°@®S"*@S"? are now determined uniquely.

Due to the transforming properties, we,=¢-e,w, r=—1,0, 1, for some ¢eC.
Therefore, 0=w[by, ere,—Ae,]=[e*by, ere;— Aee,Jo=Ae* —¢e)e,w, r=—1,0,1.
Hence ¢=1 (¢=0 leads to the contradiction wg=wa,,ee,=0, w=0) and (9)
follows [for g =1 (9) would follow from the fact that the exterior algebra considered
in the previous section is unique on the level of S"°@S* @S " 2]. Due to (10), (21),
(10-12), and (9) we get

0=de, Ande,, A a,,de,
=WA amn[Br,kmer + yCr, kmér] den (28)

=0 A[01bpn e mde, +02de], k=-1,0,1,
where y=¢7*(1+¢*)7%(¢°=1), e;=[1+M¢-)11+¢")"", 0= —»¢’
x (1+4¢*+4¢* ! (in order to prove the last equality in (28), one can check by
direct computation that
amn[Br, kmCr + yCr, kmér] =01 bmn, k€m + Qzak; + Yl Amn€m >

n=—1,0,1, k=1, multiply both sides from the right by de,, use condition 7 and the
transforming properties). Multiplying both sides of (28) by by, ,e,, using (9),

bsk, lesbmn,kemden = (1 - qz)bmn,semden + ques

(it suffices to check it for s=1 and use the transforming properties) and comparing
the obtained result with (28), one gets w Ade, =0, k=—1,0,1. This proves the
property b). Hence, the uniqueness follows.

Proof of Existence. In Sect. 1 of [P 2] the exterior algebras " =(I.", ;. ®",d, *)
on S, invariant w.r.t. g, were described (r ®" = ®"|.). Let us consider the

element t=a,e,de, e I *. According to [P2, Eq. (8)],
7=(non-zero factor)- (—qe_ 0, +q 2e,0_, —eol +q(1 +q?) (I —e0)).
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Using [P 2, Eq. (6)] one can easily get te, =e, 1. But
ro® Nrey)= 16®d; k15 r,? Mei)= eT®d; i1 -
Hence, te¢,=¢,7, k=—1,0,1. Moreover,
t*=ay(de_j)e_,=ay(de)e,= —1

[we used (1)]. Using these facts we get that Q = .o/, is a vector subspace of I,"?,
such that #,0CQ, 0,CQ, 0*CQ, ,P"QCOR®Z. We put S"°=./,
SM=I1/Q. The properties of I," imply that on the level of S"°@S"! all
conditions of Definitions 1-2 (for ¢ =0) are satisfied (A, a ", d, * are obtained from
I''; we use [P 2, Theorem 1.a]). Moreover, (1) gives (1 3), while (4) yields (15).
Let us define Ry, 74, k, m= — 1,0, 1, as in the proof of the uniqueness. It can be
easily checked that r,(e)=r_; _;(¢p)=1 and all other r;{(e,) vanish. The equality

[((d®id)(cey]o(a)= 0" ((dey)a) = o(Ri (@) [(d®id)ae,]
implies [see (4)]
(I®dy,m) (R ®id)o(a)] =0(R (@) (IR, ),
aesly, k,1=—1,0,1. Acting e®id on both sides we get

Ri(a)=d; m[(rm®id)o(a)]w, (29)
(w was introduced at the beginning of the section). Hence,
an(ej) = rks(ei)dl,kndl,ijwsm , nmj=-10,1. (30)

In the following we will need

Definition 3 (cf. [W 5]). We say that (M, g,,, *,,) is a right-covariant *-bimodule
over &/, iff M is a bimodule over &, o,: M>M® is a linear mapping,
*,.: M— M is an antilinear involution,
([d®e)oy=1d, (oy®id)oy=>1d@®P)oy, (Tp)*y=(*y® *)oy
and
ou(na)=oy(mola),  oylan)=o(@)oy(n),
na)*=a*n*, (an)*=n*a* for neM, aes,.

Let M=(M, g,,, %) be a right-covariant *-bimodule over .«7,. We define 6,,g,,

and *ygy by
omeum@n)= > a;Q¢;@bd;
i, J

if o4,(m)= Zai®bi, oyu(n)= ch®dj, a,c;e M, b, dje of ;(m@n)y*™e™ = —n*Qm*,
m,neM. iI‘hen M®M=fM®M, Omeom *mem) 1S also a right-covariant
*-bimodule over «7,. Set

M® ,,M=(M@M)/span{ma@n—m@an: mne M, ac oL,} .

We get that M® , M =(MQ 4, M, 0pe,,, m> *moyom) (WheTe Gye . vrs ¥4, m ATE
implemented from M®M) is also a right-covariant *-bimodule over «Z,. An
element of M®,, M which is the projection of m@ne M®M is denoted by

m& . 1.
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We return to the proof of existence. We define S”2 as a free left module (over
o) with basis w. We set

blaw)=(ba)w, (aw)b=(ab)w,
o Haw)=0(a)(w®I), (aw)*=—a*w, abed,.

Then S*2=(S"2,0"2, %) is a right-covariant *-bimodule, which satisfies (9) and
(14). We shall also consider right-covariant *-bimodule T=S"'®,, S"'. Denote
y=q"*1+4*"*g°-1).

Lemma. There exists a linear mapping y: T—S"? such that
V(@ de,®y4,bide) = aiRm(b)(B,, me, + yC,, ml)w (31)
for any a,,b.e o, k=—1,0,1.

Proof. a) Let aide,=0. Then a,=a- a,,e,, k= —1,0,1, for some ae </,. Due to
(26), the right-hand side of (31) vanishes.
b) Let byde,=0.Then b,=b-a;e;, = —1,0,1, for some b € o/,,. The right-hand side
of (31) equals

@Ry (b)ajR,(€;) (B, md1,0r + YC, md2, 0r] (32)

(due to [P 2, Eq. (4)], e(é,)=J,,, hence
¢, =(e®id)oé, =e(€,)dy =420, T=-—2,...,2;
moreover, e,=d; ,,, r=—1,0,1). But using (30), (2), (18), and (19) one gets
a lenm(e j)Br, mifly ,0r = rislea jld 1, il i j(dl ,5Wb)Wsm B, mell 1,0r
=dy, i"(€)aiBo, =0

(we can set i=0, a=0, s=0). After an analogous calculation for the second part of
(32) we get that the right-hand side of (31) vanishes.
By virtue of a) and b) there exists §:S"'®S"*—>S"2 given by

Plade,®bde)=a R, (b)(B, e, + yC, mé,).
It is easy to check that for any ae </, one has
Pla,de,a®b,de;) =P(a,de, R ab,de)).
Therefore, the desired mapping y exists. []

We return once again to the proof of existence. In the following we shall study
the properties of . We set

‘]l = asmes[Br,mler + yCr,mlér] s I=— 1: 0, 1.

Using (17) and [P2, Eq.(5)] we obtain ¢J,=J,®d, ;, hence J,=(e®id)aJ,
=e(J)dy 1. But e(J)=aou[Bo,m+YCo,m]=0 (we can put m=0). Therefore,
J,=0,1=—1,0,1. That and (31) prove that

Y(de,® 4 de)=(B, we, +yC, ué)w. (33)

Set A=a,de,®, de, B,=by de,®, de, r=-1,0,1, C,=cy,de,®, de,
r=—2,...,2. Using (20), we obtain

P(A4)=0, wB)=ew, (C)=ygo, ' (34)
for all possible r.
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By virtue of (31) w(an)=ay(y) for all ae /,, n e T. Therefore, in order to prove
y(na)=vy(n)a (acH,, neT), it suffices to check it for n=de,®, de, a=e,,
r,l,m=—1,0,1. Then na=(de,®, de)e, =R, (Rple,)de,®,de,. Due to (30),
oRy(en) =R (e,)®d; 4dy umWyp- Therefore, using (29), we get

Rra(Rlb(em)) = dl ) srdl , cldl . nmrst(ch(en))wpbwta .
Now (33) gives w(na)=d, 4d; 44}, mGsentd, Where
Gscn = rst(ch(en))prWta(B r, aber + y Cr, abér)
=rst(ch(en))(BO,tp+yC0,tp)> S, 6, n=— 1’0’ 1.
But, using (24) and (25), we get
riRe-1€)=—a"B_ 1.+ Ct,n>
r—l—I(Rcl(en))=Bl,cn+q2C1,cn9 can=_1a0a1;
others rs,(Rcf e)) vanish if t+p=0. Thus G, ;o=—q*(1+4¢°)7%
G_110=(1+¢*)"?2 others G, vanish. That, [P 2, Eq. (5)] and (34) give
y(de,)=0=y(Ae,,,
w(Brem)=eremw=w(Br [ r= _13031 >
w(Crem) = yéremw = w(Cr)em s r=— 29 LEETY 2 .

It proves w(na)=y(n)a.
In order to prove w(n*)=y(n)* (neT) it suffices to consider n=A4, n=B8,,

r=-—1,0,1,7=C,, r=—2,...,2. But then that fact follows from (34), properties of
S"2 and equalities

A*=—A, Bf=-B_,, Ci=-C_,.
Moreover, the equalities (34) prove
(p®id)or=0"2yp.
Now, for §,¢peS"?!, we put

Onp=1p(0@,9)eS"?.

Moreover, for n>2, we set $""={0}. The above data determine A completely.
Using the properties of yp one can check that all conditions of Definitions 1-2
(except of condition 4) are fulfilled. Moreover, (10)(12) follow from (34).

For 0=a,de, € S"! (a e Ay, k= —1,0,1), we set d0 =da, A de, € S"2. By virtue
of (10), d:S*'—>S"2 is a well defined linear mapping. For 0eS"", n=2, we set
df=0. Hence the condition 4.d follows and the equation

d(xn)=x(dn)+dx Ay (395

holds for all yeS"!, xe.o,.
We define L,, r=—2,...,2, by the equation ddé,=L,w. An easy calculation
shows that e(L,)=0, hence

Lr = (e®1d)¢Lr = (e®id)(Lm®d2,mr) = 0 .

Therefore, dd(e,e,,) =0 for all k,m= —1,0,1 (e,e,, are combinations of (2), (3), and
[P2, Eq. (4)]). It proves

ddx=0, dnx)=(dn)x—nndx, (36)
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for n=de,, x=e,,. Let K C.o¢, be the set of such x, which satisfy (36) for allye S 1.
Using (35), we get e,,e K, m=—1,0,1. But it is easy to see that K is an algebra.
Therefore, (36) holds for all y e S* ! and x € o/,,. The remaining part of condition 4
is easy to check. It proves the existence of (*)-dimensional exterior algebra on S2,
ge(—1,1)\{0}, invariant w.r.t. g .

The remaining statements of the theorem follow from the above proofs.

3. Differential Operators

In this section we investigate generalized directional derivatives, corresponding to
(%)-dimensional exterior algebras on quantum spheres SZ), g€(—1, 1)\{0}, intro-
duced in Sect. 1. We provide classical (g— 1) limits of these derivatives.

Let S* be (®-dimensional exterior algebra on S2, invariant w.r.t. g,
ge(—1,1)\{0}. According to [P1], we set e.,=+i(x; +ix,), eg=2x;, le.
€, = DwiXm, fOT some real numbers p,,,, m=1,2,3, k= —1,0, 1. The relation (2) takes
in the language of x, the form s,x,x,=I, where s,,=p,a;p,;, a,b=1,2,3.
Analogously, using our main result, we have that the left module S”! is generated
by dx,,dx,,dx;, satisfying a unique constraint s,,x,dx,=0. Hence, there exist
unique generalized directional derivatives D*: &/, —.Z,, k=1,2, 3, such that

da=DXa)dx,, D¥a)x,=0, aec,.
Analogously, there exist unique operators G¥: .o/, — .o, k,1=1,2,3, such that
(dx)a=G%a)dx,, G"a)x,=0, k=1,2,3, acs,.
Similarly as in [P 2, proof of Theorem 3.a] one has
D¥xy)=xD*y)+ D'(x)G™y), k=1,2,3, x,yeod,,
GH(xy)=G*x)G(y), k1=1,2,3, x,yed,

(the right-hand sides satisfy the conditions defining the left-hand sides).
It is easy to check that

D¥a)=DHa)—[D™@)x,Isyx;, k=1,2,3, aesl,, (37)
G"(a)= GM(a)—[G*™(a)x,Isyx:»  k,1=1,2,3, aed,, (38)

where D*, G¥ were introduced in [P 2, Eq. (21) and proof of Theorem 3.a] (their
defining relations hold also in $"!, which is a projection of I, !, see the proof of
existence).

According to [P 2, Theorem 3.a and its proof],

lika=6k——(1/2)ka, limle=5kl—-x,6k,
k,1=1,2,3. Therefore, using (37)+38), one gets
limD*=¢*=D*, lim G¥ = 6,;— R~ 2x,x,= G

where R=1/2 (for g=1 D* G* are defined in the same way as above). Similarly as
in [P2, Sect. 2], the question of finding all right-invariant differential operators
remains open.

=12 lg=1
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