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Abstract. Exterior algebras of differential forms on quantum 2-spheres S2

C,
qe\_ — l,l]\{0}, ce[0,oo] (c = 0 for q= + 1), are classified. In the definition of
exterior algebras we assume the invariance w.r.t. the action of the quantum SU(2)
group and "dimensionality conditions" (which imply that we deal with "two-
dimensional manifolds"). The exterior algebras exist only for c = 0 and are unique
in that case. The corresponding generalized directional derivatives are provided.

0. Introduction

One of the most important problems of theoretical physics is to find a consistent
theory which would generalize both the general theory of relativity and quantum
field theory. In the opinion of some physicists, in such a future theory functions on
space-time should be replaced by operators belonging to a non-commutative
algebra. In other words, space-time should be replaced by a quantum space. (The
basic idea could be that the laws of physics should be the same in each quantum
space-time.) Therefore, it is important to investigate the properties of quantum
spaces, especially those properties which could be important for physics, like the
existence of differential structures. In addition to general considerations (cf. e.g.
[W1, C, W 3, W 5, Mau]) we need also concrete examples (cf. e.g. [W 2, M, RTF,
PW, CSSW, CSW, WZ]). One of them is given by the quantum spheres S2

qc [P1],
which are homogeneous spaces of quantum SU(2) groups SUq{2) [W 2]. Quantum
spheres are generalizations of the standard 2-sphere S2 endowed with a classical
right action of SU(2) [or SΌ(3)]. (This action plays an important role in the
description of spherical symmetric, stationary systems in physics, such as the
hydrogen atom in quantum mechanics or the Schwarzschild solution in the
general theory of relativity.)

* On leave from: Department of Mathematical Methods in Physics, Faculty of Physics,
University of Warsaw, Hoza 74, PL 00-682 Warszawa, Poland



168 P. Podles

The main result of the present paper is as follows:
1. The quantum sphere Sq0 possesses a unique "two-dimensional S(74(2)-invariant
differential structure."
2. Quantum spheres Sqc \_qe(—1, l)\{0}, c>0] do not possess "two-dimensional
SL/g(2)-invariant differential structures."
For the latter case it becomes interesting to consider "three-dimensional SUq(2)-
invariant differential structures." They are not classified yet, although a related
example was presented in [P2].

The main result is presented in Sect. 1. Its proof is given in Sect. 2. We should
stress the following:
a) we overcome the difficulty related to the existence of a constraint in the left
module of first order differential forms,
b) we describe differential forms of higher orders as well,
c) non-linearity of resulting commutation relations (6)-(8),
d) the full classification of considered objects.
In Sect. 3 we briefly study related generalized directional derivatives. The results of
the paper were essentially contained in [P3] and announced in [P4].

In the following we sum over repeated indices (Einstein's convention).
Throughout the paper we use the terminology and results of [W 2, W 3, P1, P 2]
we set 4 = μe[-l, l]\{0}, ce[0,oo] for ge(-l,l)\{0} and c = 0 for q=±ί.
Moreover, jtfcC(SUq(2)) is the *-algebra of polynomials on SUq(2) and
Φ\sί-*sί®sί> κ:s/-*s/9 e'.stf^C are the corresponding comultiplication,
coinverse, and counit. Moreover, stfc C C(Sqc) is the *-algebra of polynomials on S2

C

generated by β-1? e0, eu and the *-homomorphism σqc: $ίc-^srfc®stf describes the
action of SUq(2) on Sqc. The elements e_ l 5 eθ9 eγ satisfy the relations

ef = e_i, i=—1,0,1, (1)

^lm^m = Q^ (2)

him, ififim = λek, k = -1,0,1, (3)

where the real numbers alm, blmtk, λ, ρ (/, m, fc = — 1,0,1) are given in [P1,2b-2e and
Sect. 4]. Nonequivalent, irreducible, (2ft + l)-dimensional invertible representa-
tions of SUq(2) are denoted by dn, w = 0,1/2,1,... . Then do = (I) is the trivial
representation, we choose dx = {dlfij)if j= _ l t 0> i as given in Sect. 2 of [P1]. We have

<r«fik = *m®di.mk, k= -1,0,1. (4)

We embed (see [P1, Sect. 6]) s/c into si by the formula ei = skdltki, i= —1,0,1,
where (S^^SQ^S^ equals (c1/2, l,c1/2) for c<oo and (1,0,1) for c = oo. Then

1. The Main Result

Up to now there is no satisfactory functorial way of defining differential structures
on quantum spaces. Therefore, we proceed in an axiomatic way. We first analyse
some properties satisfied by differential forms on S2. Then we classify differential
structures on quantum spheres which satisfy these properties.

Let ρ be the standard right continuous action of SU{2) on S2 «17(1 )\S£7(2) (we
use the isomorphism described in Sect. 6 of [PI]) and σ = ρ*:C(S2)
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-+C(S2)(g)C(SU(2)) be the corresponding C*-homomorphism. Moreover, we can
define a right coaction r of SU(2) on C(S2) by formula

(rβf)(x) =f(Q(x, g)), fe C(S2), g ε 517(2), x e S2.

The last two mappings are related by (id®χg)σ = rg9 where geSU(2) and χ^ is the
corresponding character on C(SU(2)). We know that C(SU(2)) = C(SU1(2)\ C(S2)
= C(S2

0), σ k o = σ l o with the identification C(Sjo)3e±1= ±i(x1±ix2)eC(S2\
C(S2

10)3e0 = 2x3eC(S2) (as in Sect. 3 of [P2], we set radius of S 2 as I? = 1/2).
Moreover, S2 is a manifold, ρ is smooth and J / O C C 0 0 ^ 2 ) (the set of smooth
functions on S2).

We set @ = jtf0. Let SA = 0 SAn, where

S Λ " = sρan{αoί/α1 Λ ... Adan: aθ9au . . . , α n e J }

is the bimodule of exterior differential forms on S2 of nth degree, which are
generated by J*. We denote the exterior derivative b y d : S A - > S A . L e t * : S A - > S A b e
the complex conjugation:

{aodaι Λ ... Λ d α j * = α j φ j ) Λ ... Λ φ * ) , α0, α 1 ? . . . , απ

We have moreover the right shifts Rg:S
A^>SA, geSU(2):

R^aodax Λ ... Λdan) = (rga0)d{rgaί)Λ ... Λd(rgan), aθ9al9...9ane8.

Alternatively, we can also consider a unique linear mapping σ A : 5 A - > 5 Λ ( χ ) j / such
that (id®χ^)σA =Rg, geSU(2). It is easy to check that ( S A , σ \ d , * ) satisfies

1) SA = © S A π is a graded algebra such that SA0 = @and the unity of SA0 is the
«=o

unity of SA.
2) σA :SA-+SA®stf is a graded homomorphίsm such that

( i d ( g ) φ A = i d , (σA(g)id)σA=(id(x)Φ)σA, σ Λ 0 =

3) * is a graded antilinear involution such that

(θΛθ')* = (-l)klθ'*Λθ*, θeSAk, ΘΈSAl

(A denotes multiplication in SA),

* on SA0 reduces itself to the standard *.
4) d:SA^SA is a linear mapping such that
a) d(SAn)cSA{n + ί\ n = 0,l,2,...,
l_\ ΛίΩ * Ωf\ JΩ A Ωf \ ί 1 \kβ A AΩ1 Ω /- C ^ fc
DJ U^(7 A U ) = UO A ϋ -\-\ — 1J C/Λ α(7 , (7 G ι3 ,

c) d* = *d,
d) (d®id)σA=σAd,
e) <2d = 0.
5) SA / l = span{aoda1 A ... ΛίiαM: α o ,α l 5 . . . ,α π e J*} fw^ omzί Λ if one of multipliers
belongs to SA0).

In the following we assume that qe\_ — l,l]\{0}, CG[0,OO] (C = 0 for q= +1)
and Λ/cC(St/β(2)) is the *-algebra of polynomials on SUq(2), & = ,
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Definition 1. We say that S A = (S Λ, σ A, d, *) is an exterior algebra on Sqc, invariant
w.r.t. σqc iff conditions l)-5) are satisfied.

The above choice of axioms is motivated by [C, W 5]. We don't introduce (and
don't know if it is in a self-consistent way possible) any conditions replacing the
classical condition

0Λ0' = (-l) f c '0Ά0, 0eSAfc, 0'eSAZ,

which does not hold in the case of a non-commutative $. Instead, we can introduce
"dimensionality" conditions as follows. Let S A be as in Definition 1 and
P = aklekdeι [_akl were used in (2)]. Using (5) of [P2] we get σA1P = P®h i.e. P is
σA1-invariant. Moreover, it is easy to check that P is unique (up to a scalar)
σA ^invariant element of ^ - s p a n ^ e . ^ d e o , ^ } . Let now q = \. Then
P = Axkdxk. Consider the exterior algebra S A given at the beginning of the present
section. In that case dxk, k = 1,2,3, generate the left module SA1 with only one
constraint, namely P = 0. In terms of ek, k= —1,0,1, it means that
6) dek, k= - 1 , 0 , 1 , generate the left module SAi (over SAO

7) For any akestfc, k= —1,0,1,

akdek = 0 o 3aestfc: ak = a-amkem, k= - 1 , 0 , 1 .

Moreover, considering sijkxidxjAdxkeSA2, where ε i jk, ι,;,fe = l,2,3, is the
completely antisymmetric symbol with ε 1 2 3 = 1, one obtains (with the basis given
by the above element)
8) there exists a one-element σA1-invariant basis of the left module SA2.

Definition 2. Let S A = ( S A , σA,d, *) be an exterior algebra on S ĉ, invariant w.r.t.
σqc. We say that S A is (?)-dimensional iff conditions 6)-8) are satisfied.

Remark. Symbol (?) reminds us that the left modules SAn are (in some sense)
(^)-dimensional, n = 0,1,2.

Theorem. For qe\_ — 1,l]\{0}, c = 0 there exists a unique (^-dimensional exterior
algebra S A on the quantum sphere S ĉ, invariant w.r.t. σ = σqc.

For qe(—l, l)\{0}, ce(0, oo] there are no ^-dimensional exterior algebras on
the quantum spheres Sqc, invariant w.r.t. σ = σqc.

The same facts hold if we restrict ourselves toSA0®...®SAk for some k = 1,2,...
(with suitable restrictions of all structures ίnSA, without * or with *), instead ofSA

(in Definitions 1-2 and in this theorem).
Moreover, for c = 0 S A has the following properties:

a) one-element σA1-invariant basis in the left module SA2 can be chosen as

(5)

b) SAk = {0},k>2,
c) the following formulae hold:

(6)

Γ = - 1 , 0 , 1 , (7)

+ q~2(ί- q2)bmnΛemάe^, r=-2,...,2, (8)

r = erω, r= - 1 , 0 , 1 , (9)

akldekΛdet = 0, (10)
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r= -1,0,1, (11)

)-2(q6-ί]cklttelletω9 r = - 2 , . . . , 2 , (12)

e.k9 fc 1,0,1, (13)

ω*=-ω, (14)

1,0,1, (15)

(16)

(aimAm,k,Cim,k> 4 ^ = -1,0,1, were used in (2), (3), and [P2, Eq. (4)]J.

Remark. According to [W4, p. 75], SUfi), «e[-l,l]\{0}, give all compact
matrix quantum groups which have the same representation theory as SU(2).
Next, quantum spheres (S2

C, σ.c), c e [0, oo] for q e (—1, l)\{0} and c = 0 for q = ± 1,
give all generalizations of S* endowed with the standard right action of SU(2)
(Theorem2 and Remarks 2-3 of [ P I ] ; in the case of q= — 1 see also [P5]).
Therefore, the above theorem classifies all generalizations of the exterior algebra
of differential forms on S2 (we consider only forms which are generated by the
Cartesian coordinates).

2. Proof of the Theorem

For q = ί all conditions are satisfied by the exterior algebra introduced at the
beginning of the previous section, hence the existence follows. The theorem holds
in this case [proof of uniqueness is similar as for q e (— 1, l)\{0} - see below]. The
case (q, c) = (— 1,0) can be reduced to the case {q, c) = (1,0) (see [P1, Remark 3 after
Theorem 2] and [P5]). In the following we investigate the case qs( — 1, l)\{0}.

We start with the following remarks. Set M = a®b@c (the first column of the
matrix M is given by the matrix α, the next three columns of M coincide with the
successive columns of the matrix b and the last five columns of M coincide with the
columns of c). Due to (5) of [P2], M intertwines dQ®d1®d2 with d1φdι. Since
a, b, c are non-zero, M is invertible. Therefore, M'1 exists and intertwines dxφd1

with do®d1@d2. Denote the matrix elements of M " 1 by Akl9 Br kl (r= —1,0,1),
CΓtW (r= - 2 , ...,2), kj= -1,0,1. Then

A (B, C, resp.) intertwines d1φdί with d0 (dl9 d2, resp.). (17)

It is easy to see that w = (df)~1 is an invertible representation of SUq(2)
(w = l(id®κ)(dί)Y). By virtue of (17) we get

m. w = B0,JdfiJdfi*, K /= -1,0,1.

Multiplying both sides from the left by wtlwsk one obtains

WtlWskβm,kA,Om = Bθ,J> S , ί = - 1 , 0 , 1 . (18)

Analogously,

W d 2 f o m = CO f S f/, s , ί= - 1 , 0 , 1 . (19)

The equation M~1M = ί gives

r, ki = 0 > aklCrf kl = 0 , ckh r,Cr kl = δrr,,

, kl — δrr' > Ckl, r'^r, kl = 0 •> Kl, r'Cr, kl = 0 JJ
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for all possible r,r'. On the other hand, MM~X = 1 is equivalent to

jcklfr = δikδjl, (21)

Uj,k,l= —1,0,1. After easy computations one can obtain

« 4)" 1, B 2 i U = 0 ,

Λ/ = 0 for

Bp>H = 0, CP i W=0 for

JVofe. Equation (5) of [P 2] and the above remarks are true also for q = + 1 . In that
case er are defined as in [P 2, Eq. (4)] (i.e. er=c,m> retem, r = — 2,..., 2) with cίm> r given
in the preceding formulae, while d2 can be determined from [P 2, Eq. (5)] for
ί=±l.

Proo/ o/ Uniqueness. Let S A = (S Λ, σ Λ, d, *) be (?)-dimensional exterior algebra on
the quantum sphere S ĉ, invariant w.r.t. σqc, qe(— l,l)\{0}, ce[0,oo]. Using
condition 4.b, (2)-(3)5 and condition 7 we obtain

i) = ρd/ - 0 = 0,

- hi, rφei) = Mer - V rekdex.

We set θr = cklr(dek)eh r= — 2,...,2. Using condition 2, condition 4.d, and [P2,
Eq. (5)], we get σAθr = θm®d2tmn r= — 2, ...,2. The analogous fact holds also for
Q'r — cklrek{de^ and for θ'^ = ckUrekbmnlemden. According to conditions 6 and 7,

as far as the transforming properties w.r.t. SUq(2) are concerned. But the
numerator of the last expression transforms according to

while the denominator according to do@d1φd2®.... Therefore, in a decompo-
sition of S A 1 into a direct sum of vector subspaces, which correspond to invertible
irreducible representations of SUq(2), there are exactly 2 subspaces corresponding
to d2. Thus, since 0'2 and θ2 are linearly independent,

r = - 2 , . . . , 2 , (22)
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for some h,beC. The above equalities and (21) yield

(de^j=λBrJJider)-Brjβ>M^l4eι + CrttjCUtrek[h dβt + b bmnaemde^, (23)

U = - 1 , 0 , 1 .
Due to conditions 6-7, for each aes/c there exist unique elements Rkι(ά) e s/c9

fc,/= —1,0,1, such that (dek)a = Rkl(a)deh # k , ( φ , = 0, fe= —1,0,1. Using (23) and
(2H3) one can easily get

+ Cr,i}ckUrek[h - δlnl+ b - bmn,Xem-Q \h + λ^e^ej J

^δiJ — Q'^eflsifiv Un,j= -1,0,1. We define rin as the superposition of the
counit e with Rin, rin = e ° Rin, i, n = — 1,0,1. Then

rin(ej)=λBnJj-Brfijbknfrsk

+ Cr, ifkUrhΌ* 'δin + b bmn, ιsm-ρ-ί(h + λb)sιatjt'],

Since Rij{x)Rjk(y) = Rik(xy), i, k= —1,0,1, x,yejtfc (the left-hand side satisfies
conditions defining the right-hand side),

jj (25)

Specializing x = /, y = em, we obtain

= 0, /c,m= -1,0,1, (26)

and atjstrjk(em) = 0. Considering the latter equation for (m, k) = (1, — 1) and (1,0) [for
c = 0: (m,/c) = (- l , -1) and (1,1)] we obtain

[for c = oo: h = q2(ί +q2){ί +^f6)"1, 6 = 0]. Inserting these data into the equation

[we obtain it by acting with r_1_1on both sides of (3) for k = 1 and using (25)] one
can easily get c = 0 (it proves the second statement of the theorem). Hence [see (22)
and the preceding formulae], (6)-(8) are satisfied. It determines uniquely Λ,d,σA,
and * on the level of S Λ 0 Θ S Λ 1 .

Acting d on both sides of akιekdex = §, we get (10) (see conditions 4.b, 4.e). We
shall now prove the property a). Let the matrix t be a nonzero intertwinner of d0

with d2φd2:

d2,mkd2,nshs = tmj , Wl, H = - 2, ..., 2 .

Then z = t^e^ e C/ (see [P 2, Eq. (4)] we use σz = z®/). Multiplying ί by a factor,
we can assume z = I or z = 0. Assume for the moment that ω = 0 [see (5)].
Considering the transforming properties and using [P 2, Eq. (5)] it is easy to see
that a σΛ2-invariant basis Ω of the left module SA2 must have a form

Ω = λίamndem A den + λ2aklekbmrif xdem A den + λ3tklekcmnt tdem A den,
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with some λί9λ2,λ3eC. But the first two components are now zero and we can
assume λ3 = l. The transforming properties give (Ω is a basis)

bmnjdemAden = a-efi, 1= - 1 , 0 , 1 , (*)

CmnβemΛde^b-eβ, /=—1,0,1, (**)

for some a,beC. Multiplying (*) from left by aklek, we get 0 = ω = aΩ, a = 0.
Multiplying (**) from the left by tklek we obtain Ω = bzΩ. Therefore, z + 0, z = 7,
b = ί. Using (21), one has

det A de0 = AiOamndem A den + Br, iObmnf rdem A den + Cr, iocnuίt rdem A den.

Combining this with condition 7, (10), and (*H**λ o n e S e t s

0 = akiekdei A de0 = akiekCr, iOerΩ,

,^r~^' Applying the counit e, we obtain the contradiction C O j O 0 = 0.
Therefore, ω + 0 and property a) easily follows (ω is σΛ 2-invariant). By an
argument similar to that in the previous reasoning we obtain (11) and

ckUrdek A deι = yerω, r = -2,..., 2, (27)

for some yeC. Then the equation 0 = akiekdeiAdeo yields (cf. the previous
considerations) Bo 00 + ̂ ^0,00 = 0. This and (27) give (12). All structures on the
level of S Λ O © J S Λ 1 0 5 ' Λ 2 are now determined uniquely.

Due to the transforming properties, ωer = ε-erω, r = —1,0,1, for some εeC.
Therefore, 0 = ω[bklrekeι — λer~\ = [ε2bkl^rekex — λεer~\ω = λ(ε2 — ε)erω, r— —1,0,1.
Hence ε = l (β = 0 leads to the contradiction ωρ = ωamnemen = 0, ω = 0) and (9)
follows [for q = 1 (9) would follow from the fact that the exterior algebra considered
in the previous section is unique on the level of S Λ °φS A ι ®SA 2 ] . Due to (10), (21),
(10-12), and (9) we get

= dekAdemAamnden

(28)

= ω A {_Qγbmn^kemden + ρ 2 d e k ] , Λ = — 1 , 0 , 1 ,

where y = q-2{l+q2)-\q6-l), βi = [ l+^ί 2 - l ) ] ( l+ί 4 ) " 1 , Qi= ~
2 4 xx (1 +q2 + q4) x (in order to prove the last equality in (28), one can check by

direct computation that

n= —1,0,1, fc = 1, multiply both sides from the right by dem use condition 7 and the
transforming properties). Multiplying both sides of (28) by bskles, using (9),

bsk, ιesbmn9 kemden = (1 - q2)bmrif semden + q2des

(it suffices to check it for s = 1 and use the transforming properties) and comparing
the obtained result with (28), one gets a>Adek = 0, k= —1,0,1. This proves the
property b). Hence, the uniqueness follows.

Proof of Existence. In Sect. 1 of [P2] the exterior algebras ΓC

A =(Γc

A,ΓcΦ
h,d, *)

on S2

C, invariant w.r.t. σqc, were described (Γ cΦ
Λ = Γ Φ A | r Λ ) . Let us consider the

element τ = aklekdeιeΓo

hί. According to [P2, Eq. (8)],

τ = (non-zero factor)•( — qe-1ω1 + q~2e1co-1— e0Γ + q{\+q2)~ι{I — eo)ξ).
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Using [P2, Eq. (6)] one can easily get τeί=e1τ. But

Hence, τek = ekτ, k= —1,0,1. Moreover,

{d^k = - τ

[we used (1)]. Using these facts we get that Q = jtfoτ is a vector subspace of Γ0

A *,
such that j / o β C β , β j / 0 C β , β * C β , Γ o Φ Λ β C β ® ^ . We put SA0 = jtf0,
SA1 = Γ0

A1/Q. The properties of Γ0

Λ imply that on the level of S Λ 0 Θ S Λ 1 all
conditions of Definitions 1-2 (for c = 0) are satisfied ( Λ , σ A, d, * are obtained from
Γ 0

Λ 1; we use [P2, Theorem l.a]). Moreover, (1) gives (13), while (4) yields (15).
Let us define Rkm, rfcw, fc, m = — 1,0,1, as in the proof of the uniqueness. It can be

easily checked that r± 1(e0) = r_ x _ γ{e0) = 1 and all other r̂ {efc) vanish. The equality

l(d® id)(σek)Ma) = σ A ((dek)a) = σ(Rks(a

implies [see (4)]

Q, kj= —1,0,1. Acting e®id on both sides we get

Rks(a) = d1,mkl(rml®id)σ(a)-]wls (29)

(w was introduced at the beginning of the section). Hence,

Km{ej) = rks{eύduknduijwsm, n,mj= - 1 , 0 , 1 . (30)

In the following we will need

Definition 3 (cf. [W 5]). We say that (M, σM, *M) is a right-covariant *-bimodule
over J / 0 iff M is a bimodule over J / 0 , σ M : M - > M ® ^ is a linear mapping,
* M : M - > M is an antilinear involution,

, (σ M )* M = (* M ® *)σM

and

°M(W) = ̂ M(Φ(O) , <>M(W) = σ(a)σM(η),

= α*f/*, (aη)* = η*a* for ηeM,

Let M = (M, σM, *M) be a right-co variant *-bimodule over jtf0. We define σ M 0 Λ ί

and *M(8)M by

if σM(m)= Σ β i ® f c i , M Σ

m,neM. Then M ® M = ( M ® M , σ M Θ M , * M ( g ) M ) is also a right-covariant
*-bimodule over s/0. Set

M ® ^ 0 M = (M®M)/span{mα®tt — m®an: m,neM9 ae^0).

We get that M ® ^ 0 M = ( M ® ^ 0 M , σ M ( % o M , * M ^ o M ) (where σM(g)^oM, * M 0 ^ M are
implemented from M ® M ) is also a right-covariant *-bimodule over J / 0 . An
element of M®^0M which is the projection of m®neM®M is denoted by
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We return to the proof of existence. We define SA 2 as a free left module (over
with basis ω. We set

b(aω) = (ba)ω, (aω)b = (ab)ω,

σ A 2(aω) = σ(a)(ω®I), (αω)* = — a*ω, a,

Then S A 2 = ( S A 2 , σ A 2 , * ) is a right-covariant *-bimodule, which satisfies (9) and
(14). We shall also consider right-covariant *-bimodule T = S A 1 ® ^ 0 S A ^ Denote

3; = < Γ 2 ( 1 + < Z 2 Γ V - 1 ) .

Lemma. There exists a linear mapping ψ: T^SA2 such that

^ A β i o ί A ) = akRkmΦι)(Pr, mier + yCr,mler)ω, (31)

for any ak,bkej/0, k= —1,0,1.

Proof, a) Let akdek = 0. Then ak = a- amkem, k= —1,0,1, for some aes/0. Due to
(26), the right-hand side of (31) vanishes.
b) Let bxάex = 0. Then bι = b- anep I = — 1,0,1, for some bes/0. The right-hand side
of (31) equals

a^JfήaflRJiβj) [Br, mldUOr + jC r , mld2f O r] (32)

(due to [P2, Eq. (4)], e(£r) = (5Or, hence

er = (e®\ά)σer = e(em)d2fmr = d2f0r, r = - 2,..., 2

moreover, er = d1>Or, r = —1,0,1). But using (30), (2), (18), and (19) one gets

ajiRnm(ej)Brf m A § o, = rks{e^andu kndu t β u blwbt)wsmBri mtdu O r

(we can set i = 0, α = 0, s = 0). After an analogous calculation for the second part of
(32) we get that the right-hand side of (31) vanishes.

By virtue of a) and b) there exists t p : S A 1 ® S A 1 - » S A 2 given by

ψ(akdek® bxdeύ = akRkm^{Br^mler + yCr,mler)ω.

It is easy to check that for any aεstf0 one has

Therefore, the desired mapping ψ exists. •

We return once again to the proof of existence. In the following we shall study
the properties of ψ. We set

aer'}9 1= - 1 , 0 , 1 .

Using (17) and [P2, Eq. (5)] we obtain σJι = Jk®dί>kh hence Jι = (e®id)σJι

= e(Jk)dukι. But e(Jk) = aOm[BOtmk + yCo,mk]=0 (we can put m = 0). Therefore,
j ι = 0, 1= - 1 , 0 , 1 . That and (31) prove that

^ ) = (BrMer + yCrMer)ω. (33)

Set A = akldek®sίQdeh Br = bkU,dek®^odeh r= - 1 , 0 , 1 ,
r= - 2 , ...,2. Using (20), we obtain

ψ(A) = 0, ψ{Br) = erω, ψ(Cr) = yerω, ' (34)

for all possible r.
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By virtue of (31) ψ(aη) = aψ(η) for all a e jtf0, ηeT. Therefore, in order to prove
ψ(ηa) = ψ(η)a (aestf0, ηeT\ it suffices to check it for η = der®^odeh a = em,
r,/,m=-1,0,1. Then ηa = (der®^e&m = RJ£ufeJ)iea®Jgodeh. Due to (30),
σRιb(em) = Rcp(en)®dUcldUnmwpb. Therefore, using (29), we get

)) = dlfSrdu cld1 p nmrst(Rcp(en))wpbwta.

N o w (33) gives ψ(ηa) = dUsrdUcldUnmGscnω, where

Gscn = rst(RcP(en))WpbWta(Br, atfr + 3>CΓ, abSr)

= rst(Rcp(eMBo,tP + yco,tp), s,c,n= -1,0,1.

But, using (24) and (25), we get

r-1-1{Rcί(en)) = BUcn + q2CUcn, c,n= -1,0,1;

others rst(R (en)) vanish if t + p = 0. Thus G 1 _ 1 0 = -q2(ί-\-q2)~2,
G_ 1 1 0 = (l + r ) ~ 2 , others Gscn vanish. That, [P2, Eq. (5)] and (34) give

ψ(Brem) = e r ^ m ω = tp(5 r)βm, r = -1,0,1,

= ψ(Cr)em, r = - 2,..., 2 .

It proves ψ(ηa) = ψ(η)a.
In order to prove ψ(η*) = ψ(η)* (ηeT) it suffices to consider η = Λ, η = Br,

r = — 1,0,1, η = Cr, r = — 2,..., 2. But then that fact follows from (34), properties of
S Λ 2 and equalities

A*=-A, B?=-B_r, C*=-C.r.

= σA2ψ.

Moreover, the equalities (34) prove

(tp(x)id)σ

Now, for 0, φ e S Λ \ we put

Moreover, for n>2, we set 5 A " = {0}. The above data determine Λ completely.
Using the properties of ψ one can check that all conditions of Definitions 1-2
(except of condition 4) are fulfilled. Moreover, (10)-(12) follow from (34).

For θ = akdekeSAί(ake<stf0, k= -1,0,1), we set dθ = dakΛdekeSA2. By virtue
of (10), d:SA1^SA2 is a well defined linear mapping. For θeSAn, rc^2, we set
dθ = 0. Hence the condition 4.d follows and the equation

Λη (35)
holds for all ηeSA\ x e <

We define Lr, r = — 2, ...,2, by the equation dder = Lrω. An easy calculation
shows that e(Lr) = 0, hence

Lr = (e®id)ΦLr = (e® id)(Lw® d2, mr) = 0.

Therefore, dd(ekem) = 0 for all k, m = — 1,0,1 (ekem are combinations of (2), (3), and
[P2, Eq.(4)]). It proves

ddx = 0, d(ηx) = (dη)x — η A dx, (36)



178 P. Podles

for η = dek, x = em. Let K C s4$ be the set of such x, which satisfy (36) for all η e S A ι.
Using (35), we get emeK, m= —1,0,1. But it is easy to see that K is an algebra.
Therefore, (36) holds for all η e S Λ * and xe<stf0. The remaining part of condition 4
is easy to check. It proves the existence of (?)-dimensional exterior algebra on S^o,
qe( — l,l)\{0}, invariant w.r.t. σq0.

The remaining statements of the theorem follow from the above proofs.

3. Differential Operators

In this section we investigate generalized directional derivatives, corresponding to
(?)-dimensional exterior algebras on quantum spheres S^o? qe(—\, l)\{0}, intro-
duced in Sect. 1. We provide classical (#-+1) limits of these derivatives.

Let S Λ be (?)-dimensional exterior algebra on S2

q0, invariant w.r.t. σq0,
qe(—l,l)\{0}. According to [PI], we set e±1 = ±i(x1±ix2), eo = 2x3, i.e.
ek = pmkxm9 for some real numbers pmfc, m = 1,2,3, k = — 1,0,1. The relation (2) takes
in the language of xk the form sabxaxb = I, where sab = paiaijpb^ a,b = 1,2,3.
Analogously, using our main result, we have that the left module S is generated
by dx1,dx2,dx3, satisfying a unique constraint sabxadxb = 0. Hence, there exist
unique generalized directional derivatives Dk: J / 0 - > J / 0 , k=l,2,3, such that

da = D\a)dxk, D\a)xk = 0,

Analogously, there exist unique operators Gkι:s/0->^0, k, I =1,2,3, such that

{dxk)a = Gk\a)dxι, Gk\a)xι = 0, fe = l,2,

Similarly as in [P2, proof of Theorem 3.a] one has

D\xy) = xD\y) + D\x)Gι\y), k = 1,2,3,

Gk\xy) = Gks(x)Gsl(y), k, I = 1,2,3,

(the right-hand sides satisfy the conditions defining the left-hand sides).
It is easy to check that

D \a) = D\a) - [D^xjs^, k = 1,2,3, ae^0, (37)

Gk\a) = Gkί(α) - [ G » x J ^ x , , k, I = 1,2,3, α e ^ 0 , (38)

where Dfc, GfcZ were introduced in [P 2, Eq. (21) and proof of Theorem 3.a] (their
defining relations hold also in SA1, which is a projection of Γ0

A1, see the proof of
existence).

According to [P2, Theorem 3.a and its proof],

UmDk = dk- (l/2)xkA, lim Gkl = δkl - xιd
k,

k, I =1,2,3. Therefore, using (37)—(38), one gets

where R = 1/2 (for q = 1 Dk, Gkl are defined in the same way as above). Similarly as
in [P2, Sect. 2], the question of finding all right-invariant differential operators
remains open.
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