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Abstract. Conditions for the construction of polynomial eigen-operators for the
Hamiltonian of collective string field theories are explored. Such eigen-operators
arise for only one monomial potential v(x) - μx2 in the collective field theory. They
form a w^-algebra isomorphic to the algebra of vertex operators in Id gravity.
Polynomial potentials of orders only strictly larger or smaller than 2 have no non-
zero-energy polynomial eigen-operators. This analysis leads us to consider a
particular potential v(x)=μx2 + g/x2. A Lie algebra of polynomial eigen-operators
is then constructed for this potential. It is a symmetric 2-index Lie algebra, also
represented as a subalgebra of U(sl(2)).

1. Introduction

Matrix models, i.e. quantum mechanics models with &N xN matrix as dynamical
variable, were originally introduced as an approach to non-perturbative aspects of
gauge theories [large-iV limit of sw(ΛΓ)] [BIPZ, Co]. It was recently realized that
they could be viewed as a natural regularization of string theory (in space-
dimension ^2) and thereby allowed a non-perturbative approach to it. This
approach turned out to be extremely fruitful and has recently seen a lot of activity
[BK, DS, GM, GMi, GKN].

The collective field method [JS, DJe] was applied to 1-dimensional matrix
models as a natural description of the dynamics of the singlet sector (eigenvalues
of the matrix). The resulting field theory was then extensively studied [P, G, K].
Perturbative computations were achieved [DJR1, 2] and found in agreement with
results from other approaches [Mo, DK]. On the other hand, it was shown that the

* Work supported in part by the Department of Energy under contract DE-AC02-
76ER03130-TaskA

** Work supported by Brown University Exchange Program P.I. 135
*** On leave of absence from LPTHE Paris 6, France



150 J. Avan and A. Jevicki

collective field theory was classically [AJ1] and quantum mechanically [AJ2]
Liouville-integrable [Li, Ar], in the sense that an infinite number of commuting
(local) functionals of the dynamical field oφc, ί) could be constructed. Of crucial
importance in this theory is the existence of a w^-algebra [AJ 1,2; MPZ, MS, AS,
D D M W ] . It is given, both at the classical and quantum level, by momenta of
powers of the field cc(x, ί); the w^ algebraic structure of these functionals being
triggered by the 1/(1) x 17(1) Kac-Moody algebra structure of the field α(x, t).

An infinite-dimensional Lie-algebra was seen to play the role of a spectrum-
generating algebra for the particular potential v(x) = μx2 [AJ 2]. It gave an infinite
sequence of discrete states. In the collective approach they appear as composite
operators. In the continuum, conformal theory language, they are the discrete
higher modes of a string in 1 + 1 dimension [Po, K P o ] . The intertwining
w^-algebra is given in terms of operator products in this language [Wi, K P o ] .

Exact eigenstates were also constructed for the constant background [φc) = 0]
[Je, N o ] . They are given by character polynomials of su(N), in a way strongly
reminiscent of the free-fermion, infinite Grassmannian approach of the Kyoto
school [ JM]. Such a result is not surprising, given the close relations between
matrix models, collective field theory and fermion theory [ G K ] .

It must be understood that Liouville-integrability as defined above does not
guarantee the existence of action-angle variables, or more loosely, of variables
linearizing the equations of motion (but not necessarily action-angle stricto sensu
- see for instance [OP, Pe]). This is only true in mechanics (finite number of
degrees of freedom) [Li, Ar]. The question is therefore legitimate, whether
physically meaningful angle-type variables or operators also exist for the collective
field theory. As mentioned, it is already known that an algebra of polynomial
eigen-operators for the collective-field Hamiltonian exists for a potential
v(x)= ±x2 [AJ2], but this remains yet an isolated construction.

We want to address here algebraic aspects of the collective field theory. They
are directly related to the question of complete integrability. "Complete Integra-
bility" now means for us the existence of an infinite algebra of eigen-operators of
the original Hamiltonian and not simply a hierarchy of commuting Hamiltonians.
In the same (formal) way quantum integrable systems are characterized by the
existence of the quantum group structure which in turn leads to an exact
construction of the complete spectrum of quantum states [SFT, Dr, Ji, F ] . We
shall see in fact that the algebraic structures arising in our particular theories are
linear, not quadratic, and one can therefore consider these algebras as the simplest
spectrum-generating structures [Wi, K P o ] .

Of course, we must put restrictions on the type of operators we are considering,
since one can formally construct any kind of eigen-operator for any given
potential, as will appear in the derivation. First of all, we shall restrict ourselves to
collective theories with polynomial potentials v belonging to (D^x^x'1). We then
ask that the eigen-operators be polynomial (or possibly rational) in the dynamical
field (x(x,t) and the variable x itself. The reasons for this choice are that:
1. the conserved Hamiltonians themselves have this form;
2. <x(x,ή is to be identified with the tachyon field, and we wish in ulterior
constructions to define an action of these operators on the tachyon Fock space.
The finite powers of α certainly exist as well-defined operators. Any additional
operator has to be separately constructed.
3. In particular, the physical meaning of an infinite series ~ £ cnocn is anyway not
quite clear: in fact, strictly speaking, this operator would not belong to the vector
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space generated by the w^-algebra. Inclusion of such operators requires an
extension of the original w^ -framework.
4. It is consistent to ask for polynomial dependence in x since we are only
considering potentials v(x) in C ^ x " 1 ) .

This restriction will then naturally reflect on which potentials v(x) do lead to
integrable collective field theories.

The plan of our paper is as follows: We first restrict ourselves to monomial
potentials in the matrix models. We show that only v(x) = ± x2 has polynomial
eigen-operators with non-zero eigenvalues. The algebra of these operators is a
WQQ -algebra. Its two indices are interpreted as the energy ( = eigenvalue under
adjoint action of Hamiltonian) and momentum Pφ of the eigen-operator. This
operator Pφ describes a translation-like invariance of the equations of motion
[MPZ], but the corresponding quantum number is not conserved under the Lie
bracket. This algebra is isomorphic to the (+)-algebra of vertex operators
constructed in [Wi, KPo].

We then consider general polynomial potentials. We show that potentials
containing only monomials of orders larger than 3 or smaller than 1, do not have
polynomial eigen-operators with non-zero energy.

From the previous analysis, we are lead to the construction, on algebraic
grounds, of a polynomial potential with polynomial eigen-operators:

v(x) = μx2 + —2. This construction has some features of unicity, closely related to

properties of particular elements in the w^ -algebra, which makes believe that it
will be a more difficult task to construct other integrable polynomial potentials,
although it cannot, of course, yet be ruled out. We then establish the structure of
the algebra of polynomial eigen-operators: it is a 2-indices symmetric Lie algebra.

It is described in terms of the enveloping algebra of 5/(2) as: \(J3f(J+)2(J-)b/2,

neN, feeN, —bgm^3fe|, where s/(2) = {J+, J~, J 3}; such a representation
with three indices is actually redundant.

Before we begin our discussion, let us fix our notations and recall the essential
features of collective string field theory. It is described by a Hamiltonian:

The string field φ(x) is the continuum limit of the dynamical quantity

φ({λ})= Σ δ(x-λ,{t)) (1.2)

when λlή are the eigenvalues of the matrix field M(t), dynamical variable of the
corresponding 1-dimensional hermitian matrix model.

Π(x) is its canonical conjugate:

{Π(x),φ(y)} = iδ(x-y). (1.3)

v(x) is the potential function of the matrix model; μ is the Fermi momentum, or
equivalently a Lagrange multiplier implementing the normalization condition:

$φ(x)dx = N. (1.4)
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J dx is understood as § dx acting on an analytic function, as it naturally arises when
H is obtained from a canonical coadjoint construction such as described in [AJ 3].
It is therefore assumed that φ(x) is meromorphic in x. H, given in (1.1), is in fact the
large-iV limit of the collective Hamiltonian. Lower-order non-local terms also
arise, and are described in [Je]. They will be ignored here, since we set ourselves in
the JV-»oo limit.

Introducing the (7(1) x (7(1) Kac-Moody current algebra:

ot±(x) = dxΠ±πφ{x); {α±(x),α±(y)}= ±2iπδ'(x-y),

{α+,α_}=0,

we define two classical w^-algebras:

I," _ f_ΐ xm~1dx (ί 6)

m—n

with the well-known Poisson bracket relations [Ba 1,2]:

{^m1? h%2} = 2iπ{(m2 — l)nί — (mί — ί)n2}K}ί

+

+

n^2-2 (1-7)

We assume in principle that m — n^.0 and m ^ l , but the w^-algebra can be
extended to negative powers using the definition of J dx as a contour integral § dx.
We shall in particular allow m ̂  1 in order to include potentials v(x) with negative
powers of x. A central charge (1 + m1)δmi+m2+2 is then generated in (1.7).

The Hamiltonian H is now written as:

u Γα3

+ at , , x wH= J—- - — +(v(x)-μ)(oc+ -α_)dx, (1.8)
o o

an element of w^φw^. The +/— decoupling in both H and the w^-algebras
allows us to consider solely from now on the + (or —) part in the diagonalizing
problem.

The quantum algebra reproduces exactly the classical one. We introduce the
analogous i/JJ, operators:

m-n

Note that we have no normal-ordering convention. Introducing it would add
central extensions and further linear deformations to the w^-algebra, turning it
into a W^-algebra [PRS]. The non-normal-ordered operators, however, do not
exhibit such deformations of the algebra, because in this case the reordering terms
which generate such deformations exactly cancel by symmetry (see [AJ 2]).

Let us finally recall the form of the commuting Hamiltonians which guarantee
the (weak) Liouville-integrability of (1.8).

Theorem 1.9. The operators h(n) = Jdxjdα(α2 + 2φc))n, neN, commute amongst
themselves. In particular, H in (1.8) is h{1)/2.

Proof. It immediately follows from the Poisson structure (1.5) - after part-
integration - for the classical quantities, and from the exactness of the identific-
ation between the classical Poisson algebra and the quantum Lie algebra, for the
quantum operators. •
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2. Monomial Potentials

We have restricted ourselves to polynomial eigen-operators [i.e. polynomial
functionals of α(x, ί)]. They belong to the w^-algebra defined above, and can be
expressed as:

(2.1)

p, q belonging to a finite set S of integers, and Cq

p being constant coefficients.
We shall now discuss in an exhaustive way the case of monomial potentials

v(x) = \gxn, neN*, geR. The corresponding Hamiltonian reads:

H = J ̂  + ! x"α + + (minus-term). (2.2)
6 2

The eigenvalue condition [#,<9] = ε<9 translates into a recursion relation

^ + 1 . (2.3)

The study of this recursion relation leads us to the

Theorem 2.4. Polynomial solutions of the eigenvalue equation [if, Θ~\ = εΘ with
non-vanishing energy only exist for v(x)= ±x2.

Proof The recursion relation (2.3) relates 3 coefficients of the unknown operator
Θ. These coefficients live on a 2-dimensional integer lattice (p, q) and take non-zero
values only on a finite number of sites. For εφO, (1.3) gives the value of Cq

p as a
linear combination of two coefficients sitting on lattice sites separated from (p, q),
respectively, by lattice vectors (1,2) and (n — 1, n). For n Φ 2, these two vectors are
non-colinear; one can therefore redefine the reference axis of the lattice in a way as
to have (p +1, q + 2) and (p — n +1, q — n) on the same axis, but not (p, q% namely by
setting q = (n + 2)p — mj.

Defining the new lattice-indexation as P (parallel to the lattice vector (n + 2, «)),
Q (perpendicular to this lattice vector), (2.3) now expresses values of coefficients
C{P, Q) as linear combination of C(Pr, Q + Q). Since only a finite number of C's are
non-vanishing, there exists a value of Q beyond which all C vanish. By recursion,
therefore, all C's on the other side of this limiting line also vanish; hence no
solution exists to (2.3) with ε=|=0. •

For n = 2, this argument is not valid, since all 3 coefficients are on the same line.
This argument is not valid either when ε = 0. Indeed, the commuting hierarchy of
Hamiltonians described by Theorem 1.9 gives us a set of polynomial eigen-
operators for any monomial (even polynomial!) potential. However, in view of our
original purpose in constructing such algebras of eigen-operators, having only
operators which commute with the Hamiltonian is insufficient to define a quantum
"integrable" system, and we do not intend to address here the question of finding
all operators commuting with H, and their algebraic structure.

These conclusions are not modified by the inclusion of the central term
[hp'~

1,hl~1'] = (p+l)δp+q+2 of the w^-algebra. This central term would simply
add a supplementary equation to (2.3) defining the coefficient of 1 = h% in Θ, and
not modify Eq. (2.3). Theorem 2.4 can therefore be immediately extended to
negative-order monomials v(x)=x~n.
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We shall now describe the algebra of polynomial eigen-operators for
v(x)= ±x2. Some features of this algebra were already described in [AJ2].

The recursion relation becomes (reabsorbing 4iπ into ε):

(2.5)

We redefine

p = K, q = 2 + 2K-N, leading to:
( 2 ' 6 )

As expected, the recursion relation degenerates into decoupled 1-index relations
for all values of N. Finiteness of the series (2.1) imposes that (2.6) be consistently
truncated at 2 points, namely for K ^ iCmax and K ^ Kmin. It follows from (2.6) that
one has necessarily:

Kmin = U Kmax = N-3 (2.7)

corresponding, respectively, to monomials inα~f + and $xN~4a+. Normaliz-

αJV~3

ing the coefficient off + to be 1, we obtain from (2.6) the first terms of the eigen-

operator Θ as:
Θ = H*-N+^H6

2-
N+ .... (2.8)

Once N and ε are given, the operator Θ can be recursively constructed from (2.8)
and (2.6).

The algebra of such eigen-operators can immediately be computed: Define
ΘU2 = [Θί,Θ2):
a) the energy is conserved by application of the Jacobi identity to (H,Θl9Θ2),
hence Θ x 2 is an eigen-operator with energy εx + ε 2 .
b) From (2.8) and (2.6) it then follows that:

Proposition 2.9. Θ(N,ε) form a Lie algebra defined to be:

6,εi +

This algebraic relation is valid for any value of N and ε, independently of the
finiteness of the formal series (2.8) giving Θ. We now implement the finiteness
condition by first stating two propositions.

Proposition 2.10 a. C^ is given by a polynomial of order K — ί in ε.

This is obvious from (2.6) and (2.8). •

Proposition 2.10b. The truncation relation Cκ = 0 for K = N—3 is equivalent to a
(N — 3)-degree polynomial equation for ε.

Indeed, rewriting (2.6) for K = N — 4,N — 3, gives:
• εC N _ 4 = 2(N-4)C N _ 3 -4C i V _ 5 . This gives CN_3(ε) as a (N-4) order
polynomial.
• ε C N _ 3 = — 2C N _ 4 . This is a consistency condition, written as a polynomial of
order N — 3 in ε. •
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Hence for a fixed N, there exists N — 3 values of ε such that the recursion
relation (2.6) leads to a polynomial eigen-operator of eigenvalue ε.

We now explicitly construct these operators. Redefining the canonical dynam-
ical variable oc(x9t) as:

(2.11)

(the two signs are equally allowed and lead to two different sets of operators)
induces a rewriting of the Hamiltonian in terms of canonically transformed
generators H(S) of the w^-algebra:

H=HΪ2±2H°2 (2.12)

depending on the ± sign in (2.11).
The operator if° has the unique feature of stabilizing individually elements of

WQQ as [#2, ̂ C] ~ H™. It follows that generators Hϊn are natural eigen-operators
of H with eigenvalues ±2n (n^O in order to have polynomial functionals of α).

~ (α + x)
Since Hi"±) = §—=—-—dx, comparison with (2.8) allows us to identify:

{ ) =±2ri). (2.13)

The algebraic relation (2.9) then leads to:

Proposition 2.14.

? flϋ J] = nmΘ(n + m + 2,2{n - m)).

This operator is therefore automatically polynomial in α. Since for each value of
N = n + m + 2 one has exactly N — 3=n+m— 1 allowed values of ε, and since
(n — m) takes precisely (n + m — ί) distinct values when n + m is fixed and (n + 0,
m + 0), the set Θ(n + m + 2,2(n-m)) completely solves (2.3).

Finally, from (2.14) and (2.9), we end up with:

Theorem 2.15. The algebra of polynomial eigen-operators for the potential
v(x)= —x2 is a w^-algebra defined by:

• [B(J1,m1),B(J2,m2)]=(J2m1-J1rn2)B(J1 + J 2 - l ,

(J, m) behave as angular momentum variables (J, j3); indeed, it follows from the
definition in (2.15) that J e J N and m = - J, - J + 1 . . . + J. The operators B(J, m)
are the quantum, continuum version of the "angle" variables used in [Pe] to solve
exactly the Calogero-Perelomov integrable mechanics problem [Ca, OP]. A direct
proof of the equivalence of the collective field theory dXv = x2 and the Calogero
model is indeed given in [AJ1].

This algebra is remarkably similar to the algebra of ( + )-type vertex operators
for 2-dimensional gravity introduced in [KPo]. The similitude extends beyond the
formal identification of the Lie brackets, once we describe the physical meaning of
the two indices J and m in (2.15). m is clearly the energy eigenvalue for the operator
B(J, M). Interpretation of J requires a first

Lemma 2.16. The classical equations of motion induced by the Hamiltonian H:
α t t = x — αα x have a translation-like invariance: δoc= —xd
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The proof of this lemma, formulated in [MPZ], is immediate. This translation-
like invariance acts on the classical w «>-algebra as follows:

Proposition 2.17.

(obviously follows from partial integration once (2.16) is plugged into hn

m).
Hence one can formally define the associated "quantum" operator by its action
on //£, namely

Definition 2.18.

Pφ Hn

m = (2m-ή)Hn

m.

It must be emphasized that Pφ is not generated by the action of an operator
inside w^, since its eigenvalues are not conserved under the Lie-bracket of wΛ. In
fact, Pφ loses 4 units under the Lie bracket. Although Pφ is not an internal
morphism of the algebra, it is not surprising, that the eigen-operatprs of the
Hamiltonian (which classically induces the equations of motion, and therefore
generates a flow commuting with the P -̂flow (2.16)) are also eigen-operators of
PΦ

Proposition 2.19.
) = 2(J+l)B(J,m).

The quantity which is really conserved under the Lie bracket, however, is Pφ — 4
= 2(J—1). This is precisely twice the Liouville energy of the vertex operators in
[KPo]. Since the Liouville mode φ in 2-dimensional gravity can be understood as
a space-like variable, the Liouville energy is also the eigenvalue of a space-
translation-like operator.

We therefore see a one-to-one equivalence between the collective theory
w^-algebra (2.15) and the vertex operator algebra for the Liouville-2d gravity
formulation. Let us finally mention that it is proposed to consider this w^-algebra
structure to be the fundamental object in a first-principle approach to string theory
[Wi,AJ3].

3. Polynomial Potentials. General Case

The problem of classifying all integrable polynomial potentials is much more
involved. The recursion relation generalizing (2.3) now contains as many terms as
the potential has many monomials, but simple convexity-type arguments such as
the one used to discard all but x2-monomials, are available for particular classes of
polynomial potentials.

We now prove the following

Theorem 3.1. Polynomial potentials of the form v(x) = £ akx
k, and v(x) = £ bkx

k,
k>2 fc<2

only have zero-energy polynomial eigen-operators.
Proof. For a general polynomial (allowing negative powers of x) potentials of the
form v{x)= X ckx

k, k belonging to a finite set S in Z, the eigenvalue condition
keS
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applied to an operator defined by (2.1) reads:

Ui (3-2)

generalizing straightforwardly (2.3). When εφO, this gives the value of C\ at a site
(p,q) of the lattice Z x Z a s a well-defined linear combination of coefficients
located at sites translated by the lattice vectors (1,2) and (— k +1, — k) for all k e S.

If v(x) contains only monomials of order k > 2 or monomials of order k < 2,
these lattice vectors are included in a sector of angle smaller than π, limited by the
most external vectors (1,2) and ( - 2, - 3) (for k> 2) and (1,2) and (0, -1) (for k < 2).
We now shift the origin of the lattice to (p, q).

For k>2, we define two half-planes with boundary 5p—3q= — 1. The new
origin of the lattice lies on the strictly positive side (5p — 3q +1 >0), the extremity
of all translation vectors (i.e. the lattice points defining the value of C at the origin
point) lie on the negative side (5p — 3q + \ = — 2fc + 5?gO). Defining now a
relabeling of the lattice points, as Q = 5p — 3q, we have shown that (3.2) gives a
linear, well-defined for ε=f=O, relation between the coefficient C at a given (p,Q0)
and coefficients C with Q<Q0.

For a polynomial eigen-operator having only a finite number of non-vanishing
coefficients in (2.1), there exists a Qo such that all C vanish for Q < (50, and one C at
least is non-zero for Q = Q0. However, we see that C(Qo) = ΣqnC(Q<Qo) = 0.
Hence no polynomial eigen-operator exists with ε + 0.

For fc<2, the demonstration runs on similar lines: the half-plane boundary is
here defined by the equation 3p — q — 1 =0. •

The theorem does not preclude zero-energy eigen-operators. Indeed, Theorem
1.9 guarantees the existence of a class of such operators for any potential v(x),
namely the hierarchy Hamiltonians Jdajdx(a2-hi;(x))n.

If v(x) contains a term x2, the two translation vectors (1,2) and ( —fc +1, — fc),
k = 2, become colinear. The translation sector is flat, and the convexity argument
allowing the introduction of the new index Q is not valid: the origin of the shifted
lattice now also lies on the boundary of the half-plane defined by the externmost
vectors (1,2) and (-1,-2).

Finally, if v(x) contains both terms of order k>2 and k<2, the translation-
vector sector has an angle θ > π and the convexity argument collapses as well, the
origin of the shifted lattice being now inside the negative half-plane.

The general study of these potentials, leading to non-convex recursion
relations, is certainly much more involved since we lack the previous simple
geometric arguments. We are, however, able to construct at least one explicit
realization of a finite non-convex recursion relation, using a restricting hypothesis
which will considerably simplify the study.

4. An Integrable Potential: v(x) = μx2+ \

In order to obtain an integrable potential, we have to break from the structures of
v(x) described in Theorem 3.1. We now describe what appears to be the most
natural construction of v(x) on such lines.

i. Construction of the Potential. The mildest assumption in order to get an
integrable potential is to allow an x2-term. We accordingly formulate:
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Hypothesis 1. The potential v(x) contains a μx2 term.
This makes it possible, using the redefinition a->(a±ij//Lc), to rewrite

(4.1)

where (t -term) means all remaining linear terms in α induced by $(v—μx2)otdx. In
this way, since H\ is the stabilizing element of the w^-algebra, the general
recursion relation for the coefficients Cq

p in (2.1) loses one term.

Hypothesis 2. There exists polynomial eigen-operators diagonalizing simulta-
neously (5i"2 + (i;-term)) and H%.

Although H\ is a stabilizing term, this is a rather strong restriction, but it will
ultimately considerably simplify the problem. Indeed, in many similar algebraic
problems, the best way of diagonalizing a Hamiltonian is in fact to diagonalize a
family of Hamiltonians, and the quantum inverse scattering method [SFT, F]
relies precisely on such a formulation. In this particular case, we know that:

Proposition 4.2. H\ is diagonalίzed by linear combinations of operators in w^ with
the same n-index (obvious from (1.6)).

Proposition 4.3. The operator (H^ 2 + i;-term) has polynomial eigen-operators h{±\

This is immediately obtained from the fact that this operator is exactly the
collective field theory Hamiltonian for a potential ϋ=(v—μx2), and therefore, there
exists an infinite set of commuting Hamiltonians according to Theorem 1.9.

Hypothesis 3. These Hamiltonians also diagonalize H\.
This hypothesis, although again restrictive, is fortunately not empty and will

provide us with a (unique) example of integrable potential.

Proposition 4.4. The potential v(x) = g/x2 is the only one which fulfills Hypothesis 3.

Proof In order for the Hamiltonians hin) to diagonalize H^, they must be expanded
as elements of the w^-algebra (1.6) with the same n-index. Since n is equal, up to a
constant, to (degree of x) minus (degree of α), it follows that v(x) must be a
monomial of order —2 to fulfill Hypothesis 3. •

The Hamiltonians tfip have an eigenvalue ±γμ2nπ under the complete
Hamiltonian for v = μx2 + g/x2. We shall usually disregard the factor 2π]/μ in the
energy, except when explicitly required for need of a demonstration.

The use of the operators h(n) in the last hypothesis is actually almost
unavoidable. If we do not want to solve directly the recursion relation (3.2) for the
potential ϋ(x), we have to use the eigen-operators known originally from Theorem
1.9. Moreover, in the (in principle) simplest case when v(x) is a monomial φx 2,
Theorem 2.4 precludes the existence of any other diagonalizing polynomial
operator. So does Theorem 3.1 when ϋ(x) is a polynomial of order 3 and more, or 1
and less.

We see therefore that any deviation from this set of three hypotheses leads us
necessarily to directly tackling the general, non-convex recursion relation (3.2)
without any further help from the algebraic structure w^. In this sense, the

potential φc) = μx2 + —̂  has unique features.
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We now describe a naturally generated algebra of polynomial eigen-operators
for v(x) = μx2 + g/x2. Although it is not proved to be the full algebra of such
operators, it exhibits nevertheless interesting structures which makes it worthy of
investigation.

2. Algebra Associated tov = μx2 + g/x2. The algebra of eigen-operators which we
are going to construct is formally obtained by taking successive commutators of
the Hamiltonians H$ with themselves and with the successively generated
operators. Our problem is to describe explicitly what this enveloping algebra is.
We shall consider for the moment that the w^-algebra of generators §xm~γam~n

has no central terms. We have previously mentioned that such terms actually
appear in commutators K 1 ? ^ 1 ] when n + m= — 2, and we shall study their
effect later.

We now define candidate eigen-operators as polynomials in α of the form:

* = Σ idxfJtx)-. (4.5)
« = i n

The eigenvalue condition [H,B~] = εB is equivalent to the recursion relation:

n_ί. (4.6)

This relation is simply the identification of the functional coefficients of α" in the
eigenvalue condition. The following proposition is now obvious:

Proposition 4.7. The giving of ft and ε is necessary and sufficient to define the
operator B.

This now helps us to write the first orders in αw of B:

Wx)+£Sdx x ψ} *
μx •+• g/x

(4.8)

We now assume a particular form for fγ{x). We already have an example given by
the Hamiltonians h{$ in Proposition 4.3, for which:

T (4.9)

In fact, the most general form of ft for eigen-operators obtained from U$ is:

/ ^ ( - μ ^ + g / x ^ W + g/x2)*; £i,&6N. (4.10)

This follows from

Proposition 4.11. The eigen-operators Bia'b)(ε) defined under Proposition 4.7 by the
energy ε and an initial function fγ of the form (4.10), form a closed Lie algebra. This
algebra reads:

Proof First of all, it follows from applying the Jacobi identity to the operators H,
Bu and B2, that the l.h.s. is an eigen-operator with eigenvalue ε1 + ε2.
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Now in order to apply Proposition 4.7, we must compute the linear term in α on
the l.h.s. of (4.10). For two general operators of the form (4.5), respectively, defined
a s : α2 α2

+

the commutation relation (1.5) for α implies that the linear term of [Bl9 B2~\ reads:

i fΰ. (4.13)

Inserting now (4.10) and (4.8) into (4.13) and using the fact that xdx(μx2±g/x2)
= μx2 + g/x2 leads us immediately to (4.11). •

We now need to establish the set of values for a, b, and ε obtained by the
repeated action of h{$ = B(Otn)(±n). In the first place, commutators [h+,h_] and
[/z_,/ι_] obviously vanish since h+ and Λ_ are canonical transformations of
original commuting Hamiltonians for g/x2 = v(x). We then prove

Lemma 4.14.
{[5(°'̂ ( + n 1 ) 5 #i-n 2 )] ) n l 5 n 2 eN}

= {B{ί'b\ε% fceN,εeZ, \ε\^b, ε = b,b-2...-b}.

Proof. From (4.11), these commutators only generate B{lfni+n2'2)(n1 — n2) for
nl9 n2 strictly positive integers. For a fixed b = n1 + n2 — 2^0, nί can take all values
from 1 to b + 1 and respectively, n2 goes from b + 1 to 1. Hence ε = nί — n2 goes from
b to b-2... to -b. •

This leads us to consider the set Q = {(ft, ε) ε Z x N, b ̂  |ε|, ε = b, b - 2... - b). It
is a square sublattice of Έ x Z, limited by ε = + fc with lattice spacing 2. We
now prove

Lemma4.15. For any al9a2eN, the commutator [B(f l l'bl)(ε1),B(f l2' ί>2)(ε2)], where
(b^εj and (b2,ε2) belong to Q, yields only B-operators with (b,ε) inside Q.

Proof. Consider the commutation relation (4.11). Such a commutator yields two
terms:
1) One has a = a1 + a2 — 1; (b9ε) = (bί,εi) + (b2,ε2). The lattice Q is closed under
addition in Έ x Έ since:

|ε1 + ε 2 | ^ | ε 1 | + | ε 2 | ^ 5 1 + b 2 , Vb1,ί?2,ε1,ε2 in Q.

Hence the first term in the commutator is inside Q.
2) The other term has a = ai + a2 + l; (b,ε) = (bί,ε1) + (b2 — 2,ε2). The closure
argument applies here unless ε 2 = ±b2, and since one also has (b,ε) = (b1 — 2,ε1)
+ (b2,ε2), it again applies unless εί = ±bί. Two different cases are yet to be
discussed:
a) εx = ±bu ε 2 = ±b2: in this case the coefficient in front of the term vanishes
(see (4.11)).
b) εt = +bu ε 2 = ±b2. One can then rewrite, respectively:

either {b, ε) = (bl9 bγ — 2) + (fc2 — 2, — b2 + 2) e Q by closure property,

or (b, ε) = (bl9 — bt + 2) + (b2 — 2, b 2 — 2) e β by closure property.

This demonstration holds unless fc1=0 = ε1; then the coefficient in (4.11)
vanishes anyway. •
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The natural counterpart of (4.15) is:

Lemma 4.16. The repeated adjoint action of B{0'b)(ε\ (b,ε)eQ, generates all
{ ( b > }

Proof. Assume we have constructed B(0'b)(ε), (b,ε)eQ (we shall soon prove this
assumption). Lemma 4.16 now follows by recursion:
1) α = 0 is true by assumption.
2) Once (4.16) is valid for α e N up to aθ9 we act by B ( 0 5o)(ε0) on £ ( 1 ' 5 l ) ta ) . From
(4.11) we get two terms:
a) aoε- B{a°~ίtbo+bί\ε1+ε0): already constructed by recursion hypothesis.
b) (b1εo-boεί)B{ao+1>bo+bί-2Xεί+εo)~Bia<>+1>bXε).

To get any operator with non-zero energy, use εo = 0, bo — b-\-2 — |e| + 0
(automatically since (b9ε)eQ), b1 = |ε1 | = |ε|Φ0 and thus (b1εo — boε) + 0. To get

ε = 0, use bo = bί = - + l (for ε = 0, b is necessarily even-positive, in Q) and

fio=-fii = l •

We have left as an assumption the existence of J5(0'b)(ε). We now prove:

Lemma 4.17. J3(0>b)(e), (b,ε)eQ, ε=|=0, are polynomial eigen-operators generated by
{#°> K±n)}.
Proof. Lemma 4.14 proved directly the existence of Bia=1) for (b, ε) in Q. We now
apply again B (O>1>(±1); according to (4.11):

[β ( O 1 ) (±l) ,B ( 1 6 ) ( ε ) ] = + l β ( O 6 + 1 ) ( ε ± l )

+ (ε-b(±l))Bi2'b+1-2\ε±ί). (4.18)

Hence we explicitly construct:

For εφb, let us consider B+(ε)-B~{ε + 2). We get,

(4.19)

(4.20)

Hence for all values of ε + 1 except ±(6 + 1) and 0, Bi0'b+1)(ε +1) is obtained as a
linear combination of successive commutators of Bi0'n)(±ri). Finally, we have
identified in (4.8) the Hamiltonians /z(|} as the eigen-operators B(0'n)(±ή). •

We now prove directly the

Lemma 4.21. Operators JB ( O 'Π )(0) are polynomial eigen-operators of H.

Proof. The recursion relation (4.6) for zero-eigenvalued operators reads:

n^. (4.22)
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j

Γ x Ί
^ 7 7 ^

L - ^ +g/X J
Application of the operator | 2 ι _f 2dx \ on a function of the form

- μ x 2 + - ^ μ x 2 + ^ % leads to

—μx2 + -% I I μx2 + —2 ) Hence it decreases the global degree by 1 without
x J \ x /

creating negative degrees if b initially is even. Successive applications of (4.22) on
an initial function fx with b = 0 leads to 0 after (a +1) steps. Therefore, the recursion
relation (4.22) leads to a polynomial operator B(0'M)(0). •

We can now state the major

Theorem 4.23. The operators {B(fl)5)(ε); α e N ; (b,ε)eQ\ form a closed algebra of
polynomial eigen-operators for the potential μx2 + g/x . The algebra structure is:

[ β ( α i ' b l ) ( ε j , £ ( α 2 ^

Proof. This follows obviously from (4.17) and (4.21), when aί = 0; and from (4.16)
recursively, when aγ φ θ . •

The commuting Hamiltonians constructed in Theorem 1.9 are here B{n'°\0).
Now the 3-index representation is in fact very much redundant, although it was
maintained until now for practical purposes. From (4.9) and (4.7) one has in fact

Proposition 4.24. For all allowed values of α, b, ε,

β(a + 2. ft)φ _ β(a

It follows that the values of a are actually reduced to a = 0,1. The algebra (4.23)
reduces to a 2-index symmetric Lie algebra:

Corollary 4.25. The set of linearly independent eigen-operators can be chosen as
{Bi0>b)(ε\B{1>bXεl (b,ε)eQ}. The algebra reads:

lB°{bl9 εx), B°(b2, ε2)] = {bγε2 - b2εγ)B\bγ + b2 - 2, εγ + ε2),

lB°{bl9 ε±), B\b2, ε2)] = {bxε2 - ε,{b2 + l))JB°(b1 + b2, ε, + ε2)

+ 4μg(bίε2-εib2)B°(b1+ b^l.ε.+ε,), (4.25)

lB\bl9 8,% B\b2, ε2)] = ((b, + l)ε2 - φ 2 + l p ^ i + K β2 + β2)

+ 4μg(b1ε2-b1εί)Bί(bί+b2-2,ε1+ε2)b2.

The above algebra generalizes the w^ -algebra of the oscillator potential. It will
be interesting to address the question of a physical interpretation of this algebra in
terms of discrete states of some 2-dimensional theory.

3. Effect of Central Terms. We have now constructed an algebra of eigen-
operators defined by the commutation relations (4.25). The addition of the correct
central terms in the w^-algebra does not modify sensibly this demonstration. Such
terms arise only when computing commutators of linear terms in α. In particular,
operators defined as in (4.5) get a central term ~§fγdxgγ in their Lie bracket. The
induced changes are as follows:
(1) in (4.5), B acquires a term f0 1,
(2) in (4.6), one must add a recursion relation for / 0 :

g/x3)- (4-26)
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For β = 0, however, we prove that:

Proposition 4.27.

Proof. Inside our initial algebra (4.11), ε = 0 implies b even. Hence

=. . . 0 after reaching b = 0. •

Hence (4.26) consistently determines f0 for ε + 0. Proposition 4.7 is not
modified. Proposition 4.11 could only be modified by a central extension, but
the Jacobi identity applied to Bl9B2 and H implies:

[H, \BU B J ] =( f i l +ε2) [B^BJ (4.28)

since Bl9B2 are now exact eigenstates of H; from (4.25) it appears that no extra
central term can be generated in the exact commutators of the exact eigen-
operators. Since all further derivations follow from (4.11), we conclude that the
central extension of the w^ -algebra does not modify the 2-index symmetric
algebra of eigen-operators for μx2 + g/x2.

4. Relation with sl(2). It is easier to work here with the 3-index redundant
representation. This 3-index algebra (4.23) can be interpreted as a subalgebra of
the enveloping algebra of 5/(2), at least at the classical level, and allowing negative
integer powers of the generators. Introducing the classical Poisson sl(2) algebra as:

sl(2) = {J3,J+,J_}; {J3,J±} = ±J±>

{J+,J_} = - 2 J 3 ;
we now prove the

Proposition 4.30. The classical Poisson-bracket algebra corresponding to (4.23) is
isomorphic to the subalgebra of U(sl(2)) = ̂ :

^ = {Ja

3J
ε

+

+b/2Jψ; ae¥f;(b9ε)eQ}.

Proof. From the definition in (4.30), we compute directly the Poisson bracket of
two generators of ^ as:

bί+b2 fci+b

— {aίε2 — a2εί)J3 J+ J _

J- 2 •
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The occurrence of S/(2) is not surprising in a problem concerning a potential
v(x) = μx2+g/x2, which has an associated 5/(2) symmetry [DFF]. The energy of an
eigen-operator is understandably obtained as the difference between the exponents
of J+ and J~ while the spin is identified as a + ε + b ̂  0. One notices that the set of

exponents allowed for J + and J ~ is asymmetrical since b/2 e ̂ N and ε + b/2 = —,

—— 2... — - . The redundancy of indices is associated here to the existence of the

Casimir operator J\—J+J~ which all but reduces (4.30) to the 2-index symmetric
algebra.

5. Limits of the Algebra. It is finally interesting to study, in the light of the results
in Chap. 2, the two monomial limits of the potential υ(x) = μx2 + g/x2.
a) μ->0. The potential becomes a "non-integrable" monomial according to
Theorem 2.4. We recall that the energy eigenvalues are here normalized by a factor
2j/μ, hence they become 0 and the theorem is valid (it only mentions non-
vanishing eigenvalues).
b) g->0. The potential becomes μx2. In this case, it is clear from (4.10) that a and b
are totally redundant variables and the only meaningful quantity is (a + b).
Accordingly, the algebra (4.23) reduces to a 2-index algebra:

)] = (b2εx -b^B*^ ~ %, + ε2). (4.31)

Reinterpreting the indices bt and the energies εf leads to understanding this algebra
as the integer-spin subalgebra of the full eigen-operator algebra described in (2.15).
Due to the fact that the form (4.10) automatically leads to even powers of x for a, b
integers, one cannot obtain the half-integer spin subset. In order to get it, one
should, in particular, allow half-integer indices for the hierarchy Hamiltonians hf$.
Although formally correct, this approach, however, induces infinite series of
powers of α when g φ 0, and thus goes beyond our restricted definition of eigen-
operators inside the w^ -algebra, and beyond the span of this present study.

Note. We have noticed that from Propositions 4.24 and 4.30, we can in fact identify
the algebra (4.25):

Proposition 4.32. The algebra (4.25) is the classical limit of the extended W^(c)
algebras (for c = 4μg).

These extended algebras were constructed in [PRS 2] precisely as sub-algebras
of the enveloping algebra of sl(2) quotiented by the ideal generated by
J2 — :J+J~:=c. Their classical limit is identified as a subalgebra of the symplectic
algebra on an s/(2)-coadjoint orbit defined by the quadratic equation
z2-xy = 4μg.

This orbit is either a cone (g = 0, corresponding to a pure w^ algebra as we have
seen) or a 2-sheet hyperboloid (μg<0) or a 1-sheet hyperboloid (μg>0). It may
therefore be that the most relevant underlying fundamental algebra for string
theory is not the particular cone-symplectomorphism algebra w^, but the more
general quadric-symplectomorphism algebras w^ic).
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