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Abstract. We show how to construct, starting from a quasi-Hopf algebra, or quasi-
quantum group, invariants of knots and links. In some cases, these invariants give
rise to invariants of the three-manifolds obtained by surgery along these links. This
happens for a finite-dimensional quasi-quantum group, whose definition involves
a finite group G, and a 3-cocycle ω, which was first studied by Dijkgraaf, Pasquier,
and Roche. We treat this example in more detail, and argue that in this case the
invariants agree with the partition function of the topological field theory of
Dijkgraaf and Witten depending on the same data G, ω.

1. Introduction

It is by now well established that there are deep connections between two-
dimensional rational conformal field theories (RCFT), three-dimensional topolog-
ical field theories (TFT), and quantum groups when q is a root of unity, see
e.g. [1-9].

A key element in any attempt at understanding these connections is the fact that
both RCFT and quantum groups are sources of topological invariants of knots,
links, and three-dimensional manifolds (through the TFT reinterpretation of
RCFT). For instance, the invariants of the Hopf link are the elements of the matrix
S [1,2], and consideration of a chain of three circles is the key to proving
Verlinde's formula. The construction of invariants of links from the representation
theory of quantum groups was developed in [10-12]. In its most general form it
appears in [12], where the concept of ribbon Hopf algebras is introduced.
Examples of ribbon Hopf algebras are the "usual" quantum groups [13] Uq&,
where ^ is a semi-simple Lie algebra [7], the double D(G) of a finite group G, and
many more are discussed in a recent paper of Kauffman and Radford [14]. To our
taste, the above connections are best explained in [12], where a TFT, formalized in
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the sense of Atiyah and Segal [15], is reconstructed from ribbon Hopf algebras of a
particular class called modular Hopf algebras by these authors. Roughly speaking,
a modular Hopf algebra A is a ribbon Hopf algebra with a finite set of
representations which is closed under the tensor product operation, up to
representations of quantum dimension zero; U$ for q a root of unity [7,16,17]
and D(G) [18] belong to this class.

In another direction, one may ask how to construct canonically a quantum
group, starting from a TFT. Already in the work of Moore and Seiberg [19], it is
clear that this problem is analogous to the Tannaka-Krein reconstruction of a
group G from a category of vector spaces which at the end, become representations
of G. In his work, Majid [20] gives a solution to this problem, showing that the
initial data is the category of cobordisms instead of a category of vector spaces. He
defines an algebra which has a natural coproduct, the trouble, however, as he
points out, is that in general this coproduct A will fail to be coassociative, it will be
quasi-coassociative:

) = φ(A®id)(A(a))φ-1, (1.1)

where φeA®A®A, and satisfies natural pentagon and hexagon identities (there is
also a natural ^-matrix). This kind of object, now called quasi-Hopf algebra, was
invented by Drinfeld [21] some time before, but with a somewhat different
motivation, which we explain below. We would like to mention at this point that
the relevance of quasi-Hopf algebras for TFT is clearly shown in the paper of
Dijkgraaf, Pasquier, and Roche [22, 23], where they built a very interesting
example Dω(G\ which is a "deformation" of D(G) involving a non-trivial 3-cocycle
ω of G, in order to reproduce the fusion rules of the Dijkgraaf-Witten TFT [24,25]
defined with the same data G, ω. Mack and Schomerus [26] have proposed to use
quasi-Hopf algebras in RCFT to reproduce the primary field content and fusion
rules, e.g. for the Ising model. To achieve this, however, they seem to need to
generalize even more the quantum groups, as witnessed by their definition of weak
quasi-Hopf algebras.

Drinfeld's motivation, as far as we know, was based on the observation that
when one tries to deform the coproduct A of a Hopf algebra, setting:

Af(a)=fA(a)f-1,

with feA®A an invertible element, then Af is no longer coassociative, but
satisfies (1.1) above, where

φ=f23(id®A)(f)(A®id)(Γ1)f{2

1.

Here and later, ftj means / acting non-trivially in the ith and / h place of A® A® A.
Now if one defines quasi-Hopf algebras by the property (1.1), one gets a class of
objects which is stable under the mapping A-+Af, called "twist by /." This twist
takes φ into

/iV
Twist also preserve the class of quasitriangular quasi-Hopf algebras, which will be
defined in Sect. 2.

In this paper we present a natural extension of the constructions of Reshetikhin
and Turaev [7, 12] to the case of quasi-Hopf algebras. More precisely, for any
ribbon quasi-Hopf algebra we define regular isotopy invariants of coloured ribbon
graphs, the colours being finite-dimensional representations. This result is very
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general and can be applied to a much broader set of algebras and topological
setups than those considered later in the paper, for instance to the construction of
ambient isotopy invariants of links. We intend to explore some of these questions
in a future work. Our motivation for constructing these ribbon invariants was to
be able to understand the topological field theory of Dijkgraaf and Witten [25],
whose theory was further investigated by Freed and Quinn [27], in the case of a
non-trivial cocycle ω, using only the algebra Dω(G) of [22]. We succeeded in
finding a 3-manifold invariant, considering surgery on the ribbon graphs coloured
by a representation of Dω{G\ which in the examples that we computed explicitly,
coincides with the invariant of [25]. We conjecture that this holds in general. One
advantage of our approach for constructing the invariants is that it lends itself to
practical computation from a surgery presentation of the manifold, whereas the
original definition requires the knowledge of a triangulation, which is generally
more difficult to find.

In Sect. 2, we recall the basic definitions from Drinfeld's [21] original papers. In
Sect. 3, we give an important theorem on the square of the antipode in quasi-Hopf
algebras possessing an i?-matrix, generalizing a theorem of Drinfeld [28] for Hopf
algebras. In Sect. 4 we define invariants of ribbon graphs, which are framed links
(tangles) with some open ends. These invariants are intertwining operators for a
ribbon quasi-Hopf algebra. In the particular case of graphs with only closed
ribbons (annuli), these invariants are pure numbers and similar to the Reshetikhin-
Turaev version of Jones' polynomial. In Sect. 5 we first prove that the algebra
Dω(G) is a ribbon quasi-Hopf algebra, and then we show that it even allows
to define invariants of 3-manifolds using surgery. In some simple cases we compute
these invariants, checking the properties predicted by our conjecture.

2. Definitions

Let A be an associative algebra over <C, with a unit element 1. We say that A is a
quasi-bialgebra if there are algebra homomorphisms A:A-+A(g)A, ε\A^><£ and
an invertible element φeA®A®A, such that:

aeA, (2.1)

(2.2)

(ε® id) o A = id = (id® ε) o A, (2.3)

(id®ε®id)(</>) = l . (2.4)

The map A is called the coproduct and ε the counit.
Let us briefly recall some of the main consequences of these definitions in the

representation theory of A. In this paper we will be dealing only with finite-
dimensional representations (π, V) of A, which consist of a finite-dimensional
vector space V over (C, and a representation π:^4-^EndF. We will also use the
equivalent definition of an v4-module V9 and write a v for π(a)v, aeA,veV. Given
two such representations (π1? Vx) and (π2, V2) one may construct representations
(π1 2, V1®V2) and (π2 1, V2®Vι) by setting

(2.5)
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and similarly for π 2 1 . Suppose we are given three representations (πf, ̂ ), i = 1,2,3.
Set

ΦVι V2'V3 = (πi®π2®π3)(φ). (2.6)

Then (2.1) says that φVuV2'V3:(Vί®V2)®V3-*V1®(V2®V3) is an intertwiner, and
therefore, the representations (modules) (V1®V2)®V3 and V1®(V2®V3) are
equivalent. Now take four representations. The identity (2.2) implies that the
diagram

((F1(x)F2)®F3)® F4 —• (Vί®V2)(g)(V3<g)V4) —• F 1®(F 2®(F 3® F4))

I I
(F1®(F2®F3))(g)F4 > F1®((F2®F3)(x)F4)

commutes, where the arrows are φv^v^v^v\ φVuV2,v,®v^ e t c τ h i s e x p i a i n s t h e

use of the name pentagon identity for Eq. (2.2).
Using the counit ε, one obtains a one-dimensional representation of A on (C.

Then (2.3) means that F® C = F = C ® Ffor any 4-module F. We will refer to (ε, C)
as the trivial representation. One sees that (2.2) and (2.4) together imply

(ε®id®id)(0) = (id®id®ε)((/>)= I, (2.7)

therefore, in a tensor product of three representations one may forget a trivial
factor.

A quasi-bialgebra A is called a quasi-Hopf algebra if there exists an
antiautomorphism S of A, i.e. S(ab) = S(b)S(a), and two elements cc,βeA such that:

for a e^4 and Σ α j 1 * ® ^ 2 ^ / ! ^ ) , and
i

£X(/«(13αZ( = l , where Σ*ι®5»®Zί = Φ. (2 9)

ΣS(Pj)ocQjβS(Rj) = U where ΣPj®Qj®^j = Φ~1 (2.10)

We note the following two consequences of the definitions of S,oc,β:

l , εoS = ε. (2.11)

The map 5 is called the antipode. It allows us to define the dual representation
(π*, V*) of (π, F), where F* is the dual space, by π*(α) = (π o S(a)y, the superscript t
denoting the transposed map.

In the theory of Hopf algebras, the following relation is well-known:
A(a) = (S®S)(AΌS~1(ά)X where Af = σoA, σ:a®b\-^>b®a. Later on we will

need the generalization of this, which is due to Drinfeld. Let
γ ) , (2.12)

y= ΣS(BJ)XCJ®S(AJ)OJ)J9 (2.13)
j

l), (2.14)

δ=ΣKiβS(Ni)®LiβS(Mi). ' (2.15)
i
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Then for any aeA,

S-\a)), (2.16)

where

/ = Σ(s®s)(APd) • y • mtβS(Rd) • (2 i7)
i

Moreover,
y=fΔ{a), δ = A(β)f'1. (2.18)

In fact, Drinfeld shows that / defines a twist of A, where the modified coproduct is
the r.h.s. of (2.16).

A quasi-Hopf algebra is termed quasitriangular, if there exists an invertible
element Re A® A, such that:

R-\ (2.19)

= φ3ί2Rί3φ^2R23φ, (2.20)

= φ23\Rί3φ213Rί2φ~1, (2.21)

where we have used the following notation: R(j means R acting non-trivially in the
ith and / h slot of A®A®A. If 5 denotes a permutation of {1,2,3} and

φ=Σal®aϊ®aϊ t h e n w e s e t Φs(i)S(2)S(3)= Σ α Γ 1 ( 1 ) ®αΓ 1 ( 2 ) ®«Γ 1 ( 3 ) From these

relations one deduces the quasi-Yang-Baxter equation:

The translation of (2.20) and (2.21) in the language of commutative diagrams leads
to hexagons [21]. The following property of R can be derived easily:

(ε® id)R = (id®ε)R = 1. (2.23)

The most significant consequence of (2.19) in representation theory is that the
representations (π1 2, Vγ® V2) and (π 2 l 5 F2(8)Fi) are equivalent:

)R^, (2.24)

where ίtι2'V1®V2^V2®V1 is given by Rί2 = P12(πί®π2)R and P12 is the
operator which permutes the vectors in Vt and V2.

3. The Square of the Antipode

Let A be a quasi-Hopf algebra with an /^-matrix satisfying (2.19). Generalizing a
theorem of Drinfeld for Hopf algebras, we will prove that for any aeA,

1

9 (3.1)

where u is given by the formula:

u = Σ S(QjβS(Rj))S(bp)oc apPj, (3.2)
hV

in terms of

R= Σap®b

P> Φ~ι = ΣPj®Qj®Rj- (3-3)
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Let us start by showing that:

Set (Δ®\d)Δ(a)= Σfk®Sk®K\ using (2.3) and (2.8) one has

S2{a)u = ua. (3.4)

(3.5)

and therefore,

S2(a)u= Σ S2(h)S(QjβS(Rj))S(bp)S{fk)θLgkapPj. (3.6)
j,k,p

But (2.19) implies

so that:

Σ apfk®bpgk®hk = Σ gkap®fΦp®hk, (3.7)
k,p k,p

S\a)u= Σ S(gkQ$S{hkR$S(bp)xapfkP}. (3.8)
j.k.p

Now (A®id)A(a)φ-1 = φ-1(id<8>A)A(a), (2.3) and (2.8) lead to (3.4).
Our next move is to establish the lemma:

S(φ=ΣS(bp)aap. (3.9)
P

To prove it, one performs in u the substitution

and simplifies in several steps the resulting expression for S(oc)u by use of (2.4), (2.7),
(2.8), and (2.9).

Now (3.9) implies
tιt = α, (3.10)

where we set:

] c Q ® d Q . (3.11)

Plugging (3.10) into (2.10) gives

1 =

. (3.12)

Therefore w, which has both a left and right inverse, is invertible, and S(u), too. This
completes the proof of (3.1). Some straightforward corollaries are:
1. S2(ύ) = u.
2. The element uS(u) = S(u)u is central.
3. Σ S(bp)ocap = S(φ = S(t)S(u)u = S(u)u Σ S(cq)adq.

P Q

Notice also that (2.4) and (2.11) ensure ε(w) = l.
The most important consequence of this theorem for representation theory, is

that for any quasitriangular quasi-Hopf algebra A, and for any finite-dimensional
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representation (π, V) of A, the double dual (π**, F**) is equivalent to (π, V\ the
intertwiner being π(w). This means also that the (right) dual (π*, V*) is equivalent to
the left dual representation (*π, V*) which is defined [21] by *π(α)=(π ° S'ί(a))t for
αei.

4. The Generalized Reshetikhin-Turaev Functor

4.1. Ribbon Quasi-Hopf Algebras

Let A be a quasitriangular quasi-Hopf algebra. We propose the following
generalization of the notion of ribbon Hopf algebra of Reshetikhin and Turaev.
We say that A is a ribbon quasi-Hopf algebra, if there exists a central element v e A
such that

Rl. v2 = uS(u),

R2. S(v) = v,

R3. ε(v) = ί,

R4. ^ ' 1

where / is defined in (2.17). We shall comment later on the consequence of these
conditions, and give a detailed example of ribbon quasi-Hopf algebra.

4.2. Coloured Ribbon Graphs

A ribbon graph [12] can be defined as a regular projection on a plane of a finite
set of oriented ribbons in R 3 , i.e. two-dimensional oriented manifolds with
boundaries which are the images of non-self-intersecting smooth embeddings
[0,l]x[0,l]->R 2 x[0,l] (open ribbons) or S1 x [0,1]->R2 x [0,1] (annuli).
Note that Moebius strips are excluded by this definition so that ribbons have a
"white" and a "black" side. The definition of ribbon graphs also assumes that the
white side is always facing the observer on the top and bottom of the figure.
Furthermore, the extremities of all the open ribbons are vertical and lie in
R 2 x {0,1}. Ribbons are also directed, i.e. equipped with an arrow. An example of
ribbon graph is shown on Fig. 1.

Two graphs are considered equivalent if and only if they are projections of
isotopic ribbons. Here by isotopy we mean a smooth isotopy of R 3 which

Fig. 1. A ribbon graph
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preserves the directions of arrows, the orientation of the graph surface, and keeps
the ends of open ribbons fixed. For convenience we will represent pictorially such a
ribbon graph as the projection of an oriented link (with possibly open compo-
nents). This means that we identify the graphs as in Fig. 2.

Now we define coloured ribbon graphs, or ographs for short. Let A be a ribbon
quasi-Hopf algebra. Denote by N(A)k the class of all words (formal non-associative
expressions) of the form

((((VI1 D((*S2D. ••)).. )D V?))), (4.1)

where the k letters Vt are ^4-modules, εf = +1, and V1 = V, but V~* is just a symbol,
not a module. There is no restriction on the location of parentheses, but we regard
two words with the same letters but a different distribution of parentheses as being
distinct, e.g. (VίΠV2)\JV3φV1Π(V2ΠV3). By definition N(A)0 consists of the
single word <C, the trivial representation.

A c-graph is a ribbon graph equipped with an assignment of two words
wkeN(A)k, wteN(A)t to the bottom and top ends of the open ribbons, together
with an assignment of an ̂ 4-module V to each ribbon. (Fis then called the colour of
the ribbon.) These two assignments must be compatible in the sense that the letters
of wk and wz corresponding to the ends of an open ribbon must be equal to its
colour, and its direction has to be determined by the signs εf according to the
following rule: if a ribbon end is labeled by a letter Vf\ then it is directed
downwards (respectively upwards) if εf = +1 (respectively — 1). Figure 3 shows an
example of c-graph.

These definitions can be conveniently organized into a category Grc(̂ 4) of
ographs. Its objects are the elements of N{A)= \J N(A)k9 and the morphisms are

k

the c-graphs. For example, the c-graph of Fig. 3 is a morphism F i D ί ^ D ^ " 1 )
-^(VίOV3~

1)ΠV2. Notice that our convention is that a c-graph is a morphism
from the bottom to the top. If a c-graph has no extremities of open ribbons at the
bottom or the top, then it is a morphism to or from <C. If it has no open ribbons at
all, we say that it is a closed c-graph. We stress that the bottom and top objects,

\

I
~ ίx] ~

Fig. 2. Representing a ribbon by a single line

Fig. 3. A c-graph
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(v1 • v2) D v;1 v1 π (v2 • v;1)

Fig. 4. Two different c-graphs

including the location of parentheses, are essential parts of the definition of a
morphism. This is illustrated in Fig. 4.

4.3. The Functor F

Our aim is to define a functor F from Grc(A) to the category Rep (̂ 4) of finite-
dimensional representations of A, whose objects are finite-dimensional
^4-modules, and morphisms are intertwiners. If w e N{A) then F(w) is the ̂ 4-module
obtained by replacing all formal products • by tensor products (x), and all
occurrences of Vfι by V? if εt = — 1. For a c-graph C:w^>w\ F(C) is an intertwiner
F(w)^F(wf). The image F(C) of a closed c-graph C: <D-><C is then a pure number,
which is the essential ingredient of the invariants of links and 3-manifolds which
we construct later. The definition of F(C) is based on the observation that any
c-graph C can be built from a few elementary ones by gluing and juxtaposition.
These elementary c-graphs I±

9 X±,U,D, Φ are shown on Fig. 5.
Let us define more precisely what we mean by gluing and juxtaposition.

Suppose that C:w-+wf and C: w'-^W are two c-graphs. Then by gluing we mean
the composition of morphisms in Grc(^4), C'°C:w-»w", which is obviously
defined as in Fig. 6. It is important that the top w' of C is exactly equal to the
bottom of C, including the location of parentheses.

Juxtaposition in Grc(̂ 4) is a binary operation •• For w e N(A)k9 w e N(A)l9 it is
simply wkΠwz eN(A)k+ι. For c-graphs C:w->w'9C':x->x'9 we define C\Z\C:w\Z\x
->w'Πx' by placing them side by side, as in Fig. 7.

Observe that in Grc(̂ 4) there is a class of c-graphs Ψζ\ entirely made of vertical
lines, and such that w and w' can differ only in the location of parentheses. In Fig. 8
we have displayed the case w = (F1Π(^Π^3"1))Π^4, ^ = (Vi\JV2)p(V3~

1OV4).
The functor F is required to have the following properties: it is a covariant

functor,

(4.2)

juxtaposition corresponds to tensor products:

C) = F(C)®F(C), (4.3)

and the Ψ graphs enjoy a "fusion" property, which states that whenever
w, w' G N(A)k differ only in the location of parentheses, but are such that they have a
part (Vfi\JVfi\i) = wii) in common, then

), (4.4)
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Fig. 8. A Ψ graph (V1 D ^ 2 D V 3 > V 4

where w^eN(Λ)k_1 is obtained by replacing w(I) by F(w{ί)) in w. The functor F is
then defined by its values on the elementary graphs of Fig. 5: I±, X±, U, D, Φ, as
follows:

TPί V + \ E> Ί7ί V ~ \ D ~ 1 ί Λ £\

Γ \Λ. y γμ) = J\y γy , Γ \Λ. y γy) — *^W, V ? \*'®J

F(U$)(f®x)=f(ax), feV*, xeV, (4.7)

)=f(S(φv-1x), (4.8)

(4.9)

where {ej is a basis of F, and {ej} the dual basis of V*9

j 1

j , (4.10)

Notice that the r.h.s. of these equations are all intertwiners, as they should be. One
has to show that F is well-defined. This means two things: that F preserves all
relations coming from isotopy of ribbons, and that the value of F on any c-graph is
independent from the choices made in evaluating it, i.e. cutting it into smaller
pieces until one reaches a decomposition into elementary graphs. Let us elaborate
on this latter point, which is more subtle than in the case of Hopf algebras.

We show first that F(Ψζ) is well-defined. In view of the fusion property, it is
clear that F(Ψ™') is built from φ,φ~ι, and the identity operator. There are several
ways to evaluate F(Ψ™\ however, Mac Lane's "coherence" theorem [29] states
that they all give the same result since φ satisfies the pentagon identity. The
properties of quasi-Hopf algebras involving the counit ε guarantee the well-
definedness of the c-graphs containing U or D.

To prove that F depends only on isotopy classes of c-graphs, it is enough to
prove that the relations listed on Fig. 9 are preserved [11, 12], for all possible
colorings and directions of ribbons. The proof that F preserves relations (a), (b),
and (c) is very simple: (a) amounts to Eqs. (2.9) and (2.10), (b) is trivial, and (c) is
Eq. (2.22). It can be shown that

(4.12)

(4.13)

where the c-graphs Ly,Lfi are given on Fig. 10. This implies that (d) is also
respected. Note that these two equations reflect the fact that the objects we are
dealing with are ribbons, see Fig. 2 for a graphical interpretation of (4.12).
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(a)

I

Fig. 9. Isotopy relations

(b)

(c)

(d)

(θ)

Fig. 10. The four loops V

4.4. q-Traces and q-Dimensions

Suppose C:w->w is a c-graph with the same words on top and bottom,
where weN{A\. We define the closure C of C by Fig. 11. By construction,
F(C)eΈndF(w) is an intertwiner. We put:

tr ,F(Q = tr, ( w )(F(C)/«(α)κιΓx). (4.14)
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C =

Fig. 11. The closure of a graph

The main properties of this definition are

(4.15)

, andwhere C is also a c-graph

F(C) = tτqF(C). (4.16)

The proof of (4.16) uses axiom (R4) of ribbon quasi-Hopf algebras,
(2.16) and (2.18). Consider first the case C: V1\JV2->V1ΠV2. Let
Λ = (π1®π2®π^®πf)(A®id®id)(φ)(φ~ί®l). Then

F(C) = F(Uϊ1)(id®F(Uϊ2)® id)A ~1

x Λ(id®F(D^2)®id)F(D^)

™)

[F (QΔ{βS(a))f ~ 1(S®S)(f2ί)(uv-ι ®uv~x)

= tr,F(Q.

The general case follows by induction.
Finally, we define g-dimensions by:

dim, (F) = tr,(idκ) = trκ(π(/ΪS(α)iιι?"')).

(4.17)

(4.18)

Applying (4.16) to the identity graph shows that ^-dimensions are multiplicative,

dim^Fi ® V2) = d i m ^ ) dim^(F2). (4.19)

Remark. Provided α is invertible, it is possible to give an alternative formulation of
(R4), which perhaps will be more appealing to the reader, as it takes exactly the
same form as the corresponding axiom for ribbon Hopf algebras. It is based on a
computation of Δ(u): from (3.9), (2.16), and (2.19) one derives:

Λ(u)=f-i(S®S)(y2ί

1f21)Σ(S®S)(Aχbp))yΔ(ap).
P

Using the properties of the functor F one can reexpress this as:

A(u)=f-1(S®S)f21(u®u)(R2lR12y
i.

(4.20)

(4.21)
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But since one can also show that

(S®S)R=f2ίRf~1, (4.22)

which implies

(S®S)(Rί2R21)=fR21R12Γ\ (4.23)

the expression for A(S(u))=f~1(S®S)A'(u)f becomes:

A(S(u)) = (R21R12Γ
ί(S(u)®S(u))(S®S)f2-ί

1f. (4.24)

This leads to

A(S(u)u) = (S(u)u®S(u)ύ)(R21Rί2y
2, (4.25)

in agreement with (Rl) and

) = (v®υ)(R21Rί2Γ
1. (4.26)

This condition is the axiom of ribbon Hopf algebras, which has the same graphical
interpretation in the quasi-Hopf case. In other words (4.26) is equivalent to (R4),
provided α is invertible.

4.5. Representations of the Braid Group

Any representation (π, V) of a quasitriangular quasi-Hopf algebra leads
to a representation of the braid group Bn of n strands [26]. The images
of the generators bt, i=l, ...,n — 1 are the following endomorphisms of
(((V®V)®V)®...)®V=V^n (all left parentheses at the beginning):

* i = J * 1 2 , (4.27)

fei = V Γ 1 Λ M + 1 v ί , i>U (4.28)

where

ψi = π®n(Ai

L-2(φ)®l®n-i-1). (4.29)

Here Rii+1 acts on the ith and i + 1th spaces parenthesed together, AL is defined for
any n ̂  1 by

AL(aί ®... (χ)αM) = zl(α1)(g)fl2® ® #«, (4.30)

and the notation J£ stands for ALoAL...AL (ktimes) for fe^l, Al = id. For
instance, in the case of B5, R34 is a morphism of ((F® F)®(F® V))® V and

(4.31)

The braid group defining relations:

bfo^bpt for | i - j | ^2 , (4.32)

bibi+1bi = bi+ίbibi+1 (4.33)

both come from conservation of isotopy by the functor F, (4.33) being a graphical
representation of the quasi-Yang-Baxter equation (2.22). We would like to stress
that this result is less obvious than a naive look would suggest, because of the
insertions of Ak

L(φ) operators which ensure the possibility of gluing together the
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generators contained in a word of the braid group. In other words the properties of
F imply identities such as:

which are consequences of the pentagonal identity, and can be proven directly,
although they result from Mac Lane's coherence theorem.

This representation of the braid group depends on the choice of parentheses
made in V®n. However, other choices for tensoring V with itself n times lead to
equivalent representations. The above choice allows an easy embedding of Bn into
Bn+ί when adding a strand to the right.

Let us now restrict our attention to the case where (π, V) is an irreducible
representation with dim^FΦO. Set

q q ) , (4.34)

where geBn. Due to (4.15), (4.12), and (4.13), 2Γn is a Markov trace:

(4.35)

(4.36)

where τ$ = π(v:fl)/dimq V. This trace extends to B^, for

^n(g) = ̂ m(g) if m > n , geBncBm. (4.37)

From ZΓn one can build ambient isotopy invariants of links [30, 31].

5. The Algebra Dω(G)

In this section, we recall the definition of the quasitriangular quasi-Hopf algebra
Dω(G) [22, 23]. Then we show that Dω(G) is a ribbon quasi-Hopf algebra, and
finally, we study the invariants of links all of whose components are coloured by
the regular representation of Dω(G), showing that they are in fact invariants of the
3-manifolds obtained by surgery on S3 along those links.

The algebra Dω(G) is a quasi-Hopf deformation of D(G), the double of the
algebra tF{G) of functions on a finite group G. Its definition involves a 3-cocycle
ω: G x G x G-> 1/(1), which is a normalized cochain, i.e. ω(x, y, z) = 1 whenever one
(or more) of the three arguments x, y, z is (are) equal to the unit element of G. Recall
that by definition, a 3-cocycle ω satisfies:

ω(g, x, y)ω{gx, y, zy^ωig, xy9 z)ω(g, x, yz)~ ιω(x, y,z)=ί, (5.1)

for any g,x,y,zeG. As a vector space, Dω(G)==#XG)®<C[G], where <C[G] is the
group algebra. Its structure will be given in terms of its basis *L = δg® K g>heG.

h

Here δg(x) = δgx. To avoid confusion we denote by e the unit element in G, and by

1 = X δg the unit of #"(G). Sometimes we will use the notation 11_ = 1 (χ)g. The
9

geG

algebra and coalgebra structures in Dω(G) are as follows:

(
V h

(5.2)

(5.3)
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where θg(x,y) and yh(x,y) are given by:

θg(x, y) = ω(g, x, y)ω(x, y, {xy) ~ ιgxy)ω{x, x ~ *gx, y) ~1, (5.4)

) = ω(& h, x)ω(x, x~1gx,x~ ίhx)ω(g, x,x~1hx)~ί, (5.5)

and therefore, θg(x, y) and yg(x, y) are also equal to one, as soon as one of g, x, y is
equal to e. The unit element is i|_. The elements φ and R are as follows:

Φ= Σ ω ( g Λ f c Γ 1 * L ® * L ® * L , (5-6)
g,h,keG e e e

R= £ * L ® i L . (5.7)

The pentagon identity for φ is equivalent to the 3-cocycle relation (5.1), and the
relations (5.4), (5.5) are equivalent to the quasitriangularity of R, Eqs. (2.20) and
(2.21). Using the 3-cocycle relation (5.1), one can check the identities:

θg(x, y)θg(xy, z) = θg(x, yz)θx- lgJy, z), (5.8)

7*(g> h)yx(gh, k)ω(x ~ xgx, x " 1Λχ, x ~ ιkx) = yx(h, k)yx(g, hk)ω(g, h, k), (5.9)

ΘJίx, y)θh(x, y)yx(g, h)yy(x~ 'gx, x ~ ιhx) = ΘJx, y)yxy(g, h). (5.10)

These relations imply respectively that multiplication is associative, comultiplic-
ation is quasicoassociative, and that the coproduct is a morphism of algebras. The
counit and the antipode are defined by:

( ) β t (5.11)
\ h

^ - 1 ) - 1 - - ^ - ^ (5.12)

and α,/J by:

α = l , β= Σ ω,*L, (5.13)
i- i- geG e

where we have set
ω, = ω(g,g-\g). (5.14)

Note that β is invertible, /Γ 1 = Σ ωΓ1 »L =S(/0, and also that (5.1) implies:
geG e

ω i-t = ω f "
1 . (5.15)

From (5.4) and (5.5) one finds:

^(g )g- 1)=r,(g- 1

Jg)=^(g- 1,g)=y ί /(g,g- 1)=ω,. (5.16)

Now we claim that for any aeDω(G),

S2(a) = β~ίaβ. (5.17)

To prove this, one computes explicitly the action of S2 on the basis e\_ using (5.8),
X

(5.9), and (5.10). An immediate corollary of (5.17) is that veDω(G) defined by

v = βu, (5.18)

is central. We now show that v defines a ribbon structure on Dω(G). Remark that
(5.18) implies that tr^(.) = tr(.) and dim^(.) = dim(.)Φ0. The proof of (Rl), (R2),
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and (R3) consists only of direct computations, and we omit the details. The reader
will check that:

u= I < V 2 * L , (5.19)
geG g'1

S ( « ) = Σ ' L > (5.20)
geG 9'1

»= ΣV L, (5.21)
geG g ' 1

from which the equalities v2 = uS(u), S(v) = v, and ε(v) = ί follow. It is also easy to
compute explicitly:

/ = ? = Σωfe 'SfcΛMA'Sg'SgΛΓ^L ® Λ L , (5.22)

Σ g h g g ) ( g r , (5.23)
g,h e e

thus (R4) is equivalent to the following identity:

ωxωyω~y

1 = ω(xy,y~\x~1)ω(y~\x~ί,x)ω(y~1x~ί,x,y)~ίω(x,y,y~1)~1

(5.24)
which is implied by the 3-cocycle relation (5.1).

Remarks. 1. The algebra Dω(G) is semisimple, i.e. all representations are completely
reducible. The proof of this is parallel to the standard proof that C[G] is
semisimple [27]: let p be a projector on an invariant subspace, and consider

Po = |GΓ1 Σ y^^^KV^-'L. (5.25)
g,xeG \ 9 J 9

Here \G\ is the order of G. Then p0 is a projector and an intertwiner. Hence the
complementary subspace Kerp0 is invariant.
2. The ribbon invariants of closed ographs depend only on the cohomology class
of ω in H3(G, (7(1)). Recall that ω' is equivalent to ω if they differ by a coboundary
δη, where η: G x G->C/(1) is a normalized cochain, and

δη(x, y, z) = η(y, z)η(xy, z)" ^(x, yz)η(x, y)"1. (5.26)

Now the element fη defines a twist of Dω(G), where

/ , = Σ ιKg,Λ) L ® » L . (5.27)
g,heG e e

The twisted algebra is isomorphic to Dωδη{G). Since twists preserve equivalence
classes of representations, our claim on closed ograph follows, because their
invariants are traces on representations.

In the sequel we shall consider the invariants of ographs all of whose ribbons
are coloured by the (left) regular representation of Dω(G). Let us call those graphs
regular c-graphs. Recall that the regular representation is the representation on the
space Dω(G), where the algebra acts by left multiplication. We will show that
invariants of closed regular c-graphs are in fact invariants of the 3-manifolds
which they define by surgery, and conjecture that these 3-manifolds invariants are
equal, up to a normalization factor, to the partition functions of Dijkgraaf and
Witten [25]. We will give a number of arguments supporting this conjecture.
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As a preliminary step, we give the values of F on the elementary regular
c-graphs. We find

A( Λ l_ ®9ii_ , (5.28)
9lχ2 xl

1^\_®ozio^\_ , (5.29)

F(Φ)(βχL_ (S)92[_ ( x ) ^ L W ω ( g 1 , g 2 , g 3 ) - 1 ^ L ®*2|_ ® f s L , (5.30)
^ Xl X2 χ3 ) x \ χ2 χ3

, (5.31)
ίχ

(5.32)

Let {ψgtX} be the dual basis of ί^LJ. Then (see Fig. 5):

ω-ιδguβ2δXuX2, (5.33)

=δβuβ2δXuX2, (5.34)

(5.35)

. (5.36)
g,χ

To define 3-manifolds invariants we need first to recall the definition of surgery on
a link in S3 [32], We consider framed links (L, /), where L = L1 uL 2 u. . . uLπ is an
oriented link in S3 and / = (fί9..., /„) are integers. One can think of (L, /) as being a
ribbon graph with an annulus Ct corresponding to each Lf such that the linking
number lk(dC*, 5Q") of its two boundary components dCf is equal to /f. Or one
can draw a planar projection of Lf and compute its writhe [30]:

Σ " t o , (5-37)
self-crossings c

where w(c) is defined by the rule: w(X±)= ±1, the symbols X± being the two
crossings of Fig. 5. This quantity is independent of the direction of Lt. By inserting
the appropriate number of loops Lr (Fig. 10) we then adjust the writhe so that it
coincides with ft.

Now we obtain a manifold ML f from surgery on S3 as follows: we remove from
S3 a tubular neighbourhood Ut of each Lf. Let μt be a meridian on dUi9 i.e. a loop
which is contractible in Ui9 with /fc(μί? L() = +1, and let λt be a longitude, i.e. a loop
on dUi9 which is homologically trivial in S3 — Ui with lk(λb Lt) = 0. Consider a
diffeomorphism Λ of (J 5C/f such that μi is mapped to J f = Af + yjμf for each i. Glue

Ui with S3 — [7, using h, identifying μ{ on dUt with J f on δ(53 — Uj).
The data (L,/) is called a surgery presentation of the manifold M when M is

diffeomorphic to M L / . In fact, every compact 3-manifold M is diffeomorphic to
some M L t / , in general, there are even many distinct surgery presentations of a
given manifold (see below). We claim that

f), (5.38)
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where n is the number of components of L, and CLf is the regular c-graph
determined by (L, /), is an invariant of the 3-manifold ML f, i.e. it is independent of
the surgery presentation (L,/). To prove this one can appeal to a theorem of
Kirby, Fenn, and Rourke [33], which says that ML f is diflfeomorphic to MUtf. if
and only if (L, /) and (L, /') are related by a finite sequence of "Kirby moves" (see
also Rolfsen [32]). Kirby moves are shown on Fig. 12. The most general move is
Fig. 12 c, where a part of a framed link, containing p vertical lines intersecting
transversally a two-dimensional disc bounded by a circle with framing ± 1 , is
replaced by p parallel lines forming a composite loop as indicated, or equivalently
one performs a full twist on the p lines and the framing of each line changes by + 1 .
The circle on the left disappears completely, so the number of components of the
original link decreases by one. Two important special cases are p = 0 and p = ί.
When p = 0 the Kirby move simply consists in removing from the link an
unknotted circle Fig. 12a with framing +1, which is not linked to the other
components. Figure 12b displays the case p = ί.

It is easy to verify that 3F evaluated for the two circles of Fig. 12a is equal to 1,
using (5.31), (5.32), and the rules (5.33H5.36). This means that J^S3) = 1, as surgery
on a circle with framing ±1 gives back S3. Notice that this defines also our
normalization of J% which is different than the one of [25], where they choose

OO (a)

(b)

Fig. 12. a Unknotted, unlinked circles with framing ± 1 may be deleted, b Example of Kirby
move, c General Kirby move
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instead to normalize the invariant by requiring it to have the value 1 on S2 x S1.
Our choice, which is the same as in [7], ensures the multiplicativity under
connected sums: ^ ( M 1 # M 2 ) = J^(M1)^(M2).

For the proof of invariance of !F under a general Kirby move, we will need the
value of F(C) for the c-graph C of Fig. 13, where (π, V) is an arbitrary finite-
dimensional representation:

F{Qy= Σ
g,χ,h,k

(5.39)

where yeV and r* is the dual of the regular representation. The proof that (5.38) is
invariant under any Kirby move rests on the following arguments: first we have a
very useful graphical interpretation of quasitriangularity, Eqs. (2.20) and (2.21)
given by Fig. 14. Of course, we may iterate this identification many times, thereby
allowing us to "fuse" an arbitrary number of lines in a crossing, preserving the
location of parentheses. Thus the invariant of the regular c-graph on the l.h.s. of
Fig. 12c is equal to the invariant of the c-graph on the left of Fig. 12b, but now the
line which pierces the disc is coloured by a p-fold tensor product of the regular
representation with itself, while the boundary of the disc is coloured by the regular
representation. Now for any finite-dimensional representation (π, V) colouring the
vertical line on the left of Fig. 12 b, with the ±1-framed circle coloured by the
regular representation, Eq. (5.39) implies that the value of the corresponding
invariant is

IGlφ* 1 ) . (5.40)

Since α = 1, we can apply Eq. (4.26) of the remark at the end of Sect. 4.4, whose
graphical content is the equality of F(Lγ\ where V is the p-fold tensor product

V D (reg'1 D reg)

C =

Fig. 13. A c-graph

( V 2 D V3) • Vλ (V2® V3) •

v1 • (v2nv3) v1 D (V2®v3)

Fig. 14. Quasitriangularity: these two graphs have the same invariants
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mentioned before, with the r.h.s. of Fig. 12 c. This concludes the proof of the
invariance of (5.38).

Note that the regular representation and its dual are equivalent. The reader can
check that

ψgiX^yx(g~\g)9'\ (5.41)

defines an intertwiner. Thus, #" is independent of the directions of the components
of the link in the surgery presentation.

Now we state our conjecture, which is that J^(M) is, up to the difference in
normalization which we mentioned before, equal to the partition function Z(M) of
[25], which has the form:

Σ p (5.42)
ρeHom(πiM, G)

Here the finite set H o m ^ M , G) plays the role of the set of gauge field
configurations sectors in this topological "Chern-Simons theory with finite gauge
group." The reader should consult [25] for the definition of j/(ρ). Their paper also
contains a combinatorial definition of Z{M\ a "state model" formulation in the
terminology of Kauffman: take a triangulation of the oriented manifold M, and
assign an element of G to each edge, such that the product gιg2g3 of elements
corresponding to a triangle with the induced orientation is equal to the identity.
Also identify an edge with positive orientation equipped with g e G to the same
edge with negative orientation, equipped with g~ί. Such an assignment is called a
state ρ of the model. The partition function Z(M) will be a sum over the states of
the Boltzmann weights of these states. The weight W(ρ) = exp(2πι\s/(ρ)) of a state is

W{ρ)= UWt, (5.43)

where T is the set of all tetrahedra in M, and

k) (5.44)

for the tetrahedron depicted in Fig. 15. The orientation of M is given by fixing the
order of enumeration of the vertices for any tetrahedron to be (a, b, c, d) as in this
figure.

Thus the value of Z(M) can be computed from a triangulation of M, whereas
!F{M) is computed from a surgery presentation. This is why it is not straightfor-
ward to show that the two are equal (up to a constant factor). The general form of

is

) = | G | " " Σ (Π delations, eWgl* , g», X» ' , **)
gi,...,gN,Xί,..>,XNeG (5.45)

b

Fig. 15. An oriented tetrahedron with edges labeled by group elements
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There is one pair (gί5 x, ) for each minimum in the c-graph C L / representing (L, /).
The relations appearing as δ functions are the image under a homomorphism
ρ .π^-ϊG of a presentation of πγM. Only the gf, not the xh occur in these
relations. This comes from the fact that the crossings (5.28), (5.29) in regular
c-graphs implement the relations in the Wirtinger presentation of π^S3 — L). The
additional relations in πxM resulting from surgery come from the xt: in fact, in the
computation of F(CLf)9 δ functions appear at each maximum of the graph due to
(5.33), (5.34). Relations involving both gf and xt are thus produced, from which the
xh which are only present in the second δ function of (5.33) and (5.34), can be
eliminated, at the cost of producing the surgery relations of πxM. The first δ
function of (5.33) and (5.34) contributes to the Wirtinger relations. This was
noticed independently in [35], where the case of a trivial cocycle ω is discussed.
Notice that the phase Ω disappears if the cocycle is trivial, so in this case the
preceding argument is the proof that Z(M)/Z(S3) = J5Γ(M) = |Hom(π1M,G)|, the
number of G-bundles on M (cf. [18] for examples). But when the cocycle ω is non-
trivial, the phase Ω is there, coming from the factors 0,y,ω of the rules for
evaluating regular c-graphs. So the precise form of the conjecture is that

Ω(gί,...,gmxί,...,xN)=W(ρ), (5.46)

where ρeHomfa^, G) is defined by the preceding discussion.
In order to check that 3F(M) has the correct properties predicted by our

conjecture, we have computed its values for the lens spaces LpΛ and
LPq- i,q — ̂ pq- i,p> P> # = 1 ( s e e e S [32] for the definition and classification of lens
spaces). The former is presented by surgery on one unknotted circle with framing p,
the latter by surgery on the (framed) Hopf link (two unknotted circles with linking
coefficient +1) with framings p and q. Here are the results:

Σ g,eγ\{&g%h-ιgh), (5.47)
g,h j=o

Σ
9,h,k

x Π ωfeg~"M~Wπ ωfe"*.*1""^"1*"1*). (5-48)
w = l w=0

In general, &(M) is a complex number. According to [25, 27], Z(-M) = Z(M)*
(complex conjugate), —M being the same manifold with the opposite orientation.
Hence Z(M) is real if there exists an orientation-reversing diffeomorphism on M.
By the conjecture, !F(M) should have the same properties, and so we checked them
for the lens spaces whose invariants are given above; it is easy to show from (5.31)
that p_ί

3F{-LpΛ) = \G\-' Σ < W Ϊ I ω{g^Kh-'gh)-'=^{LpΛT. (5.49)
9,h j=0

It is known that L2> x = R P 3 = - R P 3 . Therefore, (5.47) with p = 2 should be a real
number. A little exercise with the 3-cocycle identity shows that indeed it is real, for
any G and ω. Another instructive exercise is to check that the expressions (5.47)
and (5.48) are invariant under the substitutions ω t—• ωδη, see Remark 2 above.

We have also made a direct verification of the conjecture in the case of Lp l9 by
computing Z(Lp x) from a triangulation using the state model definition given
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before. A triangulation of Lpq can be obtained as follows: take p tetrahedra with
vertices labeled {abbhci9d^ and edges (gi9hiΛi) as in Fig. 15, with ie{1,2,...,/?}.
First glue together the faces (ai9bi9dι) and (<*,-+i,ϊ>j+i,cf+1), then glue together
{Ci,di,a^ and (ci+q,di+q,bi+q), for l^i^p, where p + 1 is identified with 1. This
gluing process imposes relations among the group elements (gf, hi9 fc,) of the edges,
leading to a simple expression for Z(Lpq) which agrees with (5.47) in the case q = ί.

For the cyclic group G=Έn of order n, there is also an explicit formula [19,23]
for (a representative of) the generator ω of H3(Zn9 ί/(l)), which is a cyclic group of
order n:

ω(x, y, z) = exp l-^- z{x + y - ϊc + y)), (5.50)

where x is the representative of x in the set {0,1, ...,n —1}.
Put (n,p) = gcd(n,p). It is possible to show that ^{LpΛ) for G=Έn is a Gauss

sum:

» , (5.51)

and one can prove that Z(Lpq) is always a Gauss sum for arbitrary q:

Z(LpJ/Z(S*)= in'*£1

e2inPnpq92Kn,P)29 {552)

where npq e {1,..., p — 1} is a representative of the multiplicative inverse of q in ΊLp.
(In the case G=Έ2, J^(Lp x) agrees with the expression of Z(Lp x) given originally
in [25].) The evaluation of these sums is a standard topic in the literature, see e.g.
[37]. It would be interesting to study the arithmetic properties of the invariants in
general, but for the moment we shall only remark that for any finite group G of
order \G\ = N9 and any compact, closed manifold M, #χ/lί)eQ(g), where q is a
primitive Nih root of unity, since any ωeH3{G, 1/(1)) satisfies ωN = l [38].

Using (5.50) one can compare the invariants of Lpq_ίΛ and Lpq_ίp for cyclic
groups. (Remember that πλLpq=Έp for any q) With the help of a computer
program we evaluated the expressions (5.47) and (5.48) in a few cases. We found
that J Z Γ (L 5 > 1 )=-J 2 Γ (L 5 > 2 ) = |/5 for G=Z5 and J 2 Γ (L 7 1 ) = J 5 Γ (L 7 2 ) = i|/7 for
G=ΈΊ. We plan to present a more detailed computation of the invariants of Lens
spaces in a forthcoming publication.
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