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Abstract. In the first part of this paper, for each d > 2, we construct diffeomorphisms
of the d-dimensional ball which have zero entropy, one periodic orbit with period 2n

for each n > 0, no other periodic orbits, and a single invariant Cantor set which
has a continuum of possible but, in any case, simple geometric structures. These
diffeomorphisms are C r ( d ) -smooth, where r(d) is a strictly increasing function of d,
which goes to infinity with d. The second part contains a more general result about
smooth maps obtained by an infinite sequence of surgeries, and further particular
cases.

General Introduction

This paper contains two parts.
- In the first part, we show how a few straightforward ideas combine to give simple
smooth maps at the accumulation of cascades of period doubling bifurcations, with a
smoothness which gets improved when increasing the dimension (Theorem 1). This
has the following consequence:

The minimal smoothness required to hope
for universality at the accumulation of period

doubling bifurcations increases with the dimension.

- The second part begins by a formulation of a general result, our Theorem 2,
which only needs obvious changes to the specific arguments used in the proof of
Theorem 1. Then, we give more applications of the general result, dealing with C2

diffeomorphisms of the two-disk with zero entropy having infinitely many periodic
orbits.

Here are three examples in Ck-smooth dynamics with k < oo which together,
serve as a general motivation to the present work. For simplicity, in this general
introduction, we only care about Ck when k is an integer, which leaves aside many
interesting questions!



46 J.-M. Gambaudo and C. Tresser

Example 1 by A. Denjoy. The so-called "Denjoy counterexamples" [De], first discov-
ered by P.Bohl [Bo], are CMiffeomorphisms of the circle which have an irrational
rotation number but no dense orbit.

Status of Example 1. Optimal Another theorem by A. Denjoy [De] tells us that C2-
diffeomorphisms with topological dynamics similar to the above do not exist.

Example 2 by J. Harisson. The Seifert Conjecture asserts that every vector field on
the three sphere has either a critical point or a periodic orbit. P. Schweitzer [Sc] used
Example 1 to get C 1 -counterexamples to the Seifert Conjecture, and J. Harisson later
constructed C2 -counterexamples [Hj].

Status of Example 2. Unknown. One does not know if there exists a C 3 -counter-
example to the Seifert Conjecture.

Example 3 by J. Franks andL.S. Young. In [BF], R. Bowen and J. Franks constructed
a C 1 -smooth embedding of the 2-disk with:

(i) zero entropy,
(ii) one periodic orbit with period 2 n for each n > 0 and no other periodic orbit,

(iii) a single invariant Cantor set,
(iv) a non-wandering set completely described by (ii) and (iii).

Recall that a point P is non-wandering for the map F if for any neighborhood U
of P, there is a positive n such that Fn(U) ΠU Φ 0. The set of non-wandering points
of F is the non-wandering set of F; it is denoted by Ω(F).

Because of the status of Denjoy's counterexamples (also recall that in 1976, the
best result about the Seifert Conjecture had the very same smoothness as given
by Denjoy's theory), the question arose whether the Bowen-Franks example also
had optimal smoothness. Then J. Franks and L.S. Young constructed a C2 example
satisfying (i), (ii), (iii) and (iv). It is the main new idea of this later method that we
plan to extend to any dimension d > 2, so that when d increases, we get smoother
and smoother "challengers" to the real analytic d-dimensional examples adapted from
[GST]. This new idea in [FY] consists in performing two period doubling bifurcations
in the first approximation to the map they construct (it will become clear why this
trick is so helpful).

The examples in [BF] and [FY], as well as the last ones we shall construct in Part
I, do have all their periodic points hyperbolic. Some of these examples are built with
the Kupka-Smale property, which means that all periodic orbits are hyperbolic with
transversality of any pair of invariant manifolds of periodic points. Since all examples
naturally carry a filtration corresponding to the hierarchical method of construction,
the transversality part of the Kupka-Smale property, if not built in, is always easily
obtained by local surgeries which are arbitrarily smooth (see below and [GST]).

Status of Example 3. Not Optimal. One knows [GST] that there exist real analytic
embeddings of the 2-disk satisfying (i), (ii), (iii) and (iv). The method in [GST] is
not quite constructive, and it seems reasonable to believe that the best one can do
constructively is C 3 ~ ε , but in Part I, we shall show that the method of Franks and
Young gives constructive examples of increasing smoothness when working in higher
and higher dimensional balls instead of the 2-disk.
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I. Rigidity, Smoothness and Dimension

A. Introduction and Statement of the Result

In this first part of the paper, we describe a simple method which yield
smooth embeddings of the ^-dimensional ball with d > 2 with:

(i) zero entropy,
(ii) one periodic orbit of saddle type with period 2 n for each n > 0 and no other

periodic orbit,
(iii) a single invariant Cantor set, which contains a small affine copy of itself, scaled
by any ratio chosen from an interval,
(iv) a non-wandering set completely described by (ii) and (iii).

We use the notation [x\ for the integer part of x, and we notice that 1 + [Vd\ is not
an optimum choice for the smoothness. We choose this as an example of an increasing
function r(d) which goes to infinity with d: this divergence is for us the main new
observation and 1 + [Vd\ allows the construction to be as simple as possible. We
will also briefly indicate how 1 + [Vd\ can be replaced by r(d) = d + 1 — ε, where
ε is an arbitrary small positive number.

The main point is that all the Cantor sets we shall construct will have a simple
kind of scale invariance. In fact, generalizing to d > 2 the construction presented in
[GST] (i.e. by perturbing to a diffeomorphism of the d-dimensional ball the singular
fixed point of renormalization constructed by P. Collet, J.-P. Eckmann and H. Koch
[CEK]) one gets embeddings of the d-ball satisfying (i), (ii), (iii) and (iv) which
are real analytic. However the invariant Cantor sets constructed this way have a
complicated geometry, inherited from the complicated scaling function of the one
dimensional quadratic-like fixed point.

The existence of the simpler, hence "exotic," examples constructed here, means
that one generally needs arbitrarily high smoothness to hope for complete rigidity,
or global universality, of the cascade of period doubling bifurcations. This simple
observation suggests a new perspective on the theory of dynamical rigidity.

The already mentioned works by Harisson [Hj] and Franks-Young [FY] and the
one by G.R. Hall [Hg] give examples of papers concerned with the question of
relationship between smoothness and dimension (see in particular the introduction
sections of these papers). Clearly the idea that:

"there are relations between the optimal smoothness
of some examples in dynamics and dimension",

is not new. The new point of view that we like to convey here is that the recent concept
of Mostow-like dynamical rigidity [Su], called universality in physics [CEK,CT,Fe],
should play a crucial role in this central question of smooth dynamics. A naive
(and still imprecise) conjecture is that rigidity (accompanied by complicated scaling
geometry) prevails in any dimension when the smoothness is so high that self-similar
constructions cannot anymore be carried out: see [Tr] for related results in one
dimension.

We now state the main result of Part I:

Theorem 1. For any k > 0, there exists a small 7 > 0, a d > 2 and a Ck -smooth
Kupka-Smale embedding of the d-dimensional ball with:
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(i) zero entropy,
(ii) one periodic orbit with period 2n for each n > 0, which is a saddle, and no other

periodic orbit,
(iii) a single invariant Cantor set which contains a small affine copy of itself, scaled

1 1 - 2.7 1 - 7 Γ
by any factor in the interval 7= , 7= , for any small 7 > 0,

y J i + 2>/3'1 + 2V3ΓJ Γ
(iv) a non-wandering set completely described by (ii) and (iii).

Remark. These embeddings will be constructed as solutions of the functional equa-
tion:

G = Λ~ιoG2d oΛ,

where A is an affine transformation with norm:

„<=
+ 2.V3' 1 + 2.VS

B. Proof of Theorem 1

To simplify the presentation, we first construct diffeomorphisms which badly fail
to be Kupka-Smale: they have continua of periodic orbits which form shells (i.e.
complements of d-balls in larger concentric d-balls), and act as translations on these
shells. The construction of these degenerate examples will be carried out in three
steps. In the fourth step, the non-hyperbolic periodic points will be removed as we will
transform the degenerate diffeomorphisms to Kupka-Smale embeddings. Altogether,
the proof has two main ingredients: a sequence of simple geometric constructions
and a pair of obvious and well known, but quite powerful lemmas, which we call the
Isotopy Cutting Lemma and the Norms Rescaling Lemma. These lemmas give us the
control of the smoothness we need and play also a central role in [GT].

Step 1. The first approximation. Let Dd stand for the d-dimensional unit ball in Rd for
d > 2, and D'd for the concentric ball with radius 1 —7, so that the complement of D'd

in Dd in a thin spherical shell AQ with radius 7. The d coordinate hyperplanes split the
complement of their union in D/d, into 2d disjoint open regions D^, 0 < 1 < 2d — 1.
Each of these regions contains a closed ball with radius:

l - 2 . 7

and there is enough room left to move rigidly any par of these balls, until they
exchange their positions, without touching the other balls, see Fig. 1.

We then define Fo as any diffeomorphism of Dd which:

- preserves the boundary ΘDd,
- is the identity in the shell Ao,

- exchanges by translations the 2d balls D^

- is a Morse-Smale diffeomorphism in Mo = Dd\{A0U \J DQ.Z}, with exactly
0<i<2d-l

one periodic orbit with period 2n for each n such 0 < n < d and no other periodic
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γ<

A d-dimensional

picture: ||VJ| = 2aV"d
1-γ

Fig.1

l+2Vd

0 a

orbit in Mo. Furthermore, each of the periodic orbits is a saddle with a single unstable
direction.
- the set (J Dfyi is an attractor for F o , while the shell Ao is an attractor for

0<i<2d-l

the inverse map F^~ι.
Nothing prevents Fo from being constructed as a C°° diffeomorphism. An isotopy

from Fo to the identity map Id acting on Dd is realized by a torus flow {^ t}0 < t < 1

which suspends F o in the solid torus Dd x Sι. We choose this suspension so that for

all t with 0 < t < 1, Ψι maps rigidly the DQ.^S an<^ l e a v e s t r i e shell Ao pointwise

invariant. We write Fo as the composition:

F0 = ^ 0 ^ - 1 ° F0;2^-2 ° ° F0;0 >

where F^ is the restriction of the map Ψ1!1 defined by:

— Ψ

The choice of the radius r 0 in
two imperatives:

I - 2 . 7 1-7
corresponds to the following

rigidly for all

f2.\ΛΓ l+2.Vd
- r 0 has to be small enough so that the isotopy moves the disks
d> 2,

- r 0 has to be large enough to allow a good control of the C 1 + ^ - l norms in the
construction of our model.

We postpone to the last paragraph of Part I, where we improve r(d)'s value, a few
hints on the way to improve the value of r(d) up to d + 1 — ε for any ε > 0.

Fo is represented in Fig. 2 in the cases when d = 2 and d = 3.
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Fig. 2

Step 2. Renormalίzation. Let Ti be the translation which carries DQ.O to D^, Ro be

an affine dilation which carries DQ.O to Dd and let us write Ri = R0oT^1. We define
F{ by:
_ F^P) = F0(P) if PisinD and not in a £$ ; i ,

This new map Fι is again a C°° diffeomoφhism and has the three following
important properties:

1) Fx has 22d balls with the same radius rx = (r 0 ) 2 which are exchanged by

translations. We denote these disks Df^j, where 0 < i, j < 2d — 1. Here i means

that Df;ij belongs to D^. More precisely, Df;ij belongs to the complement in DQ.%

of a shell A\.{ with radius -^ such that dD^ is also the exterior boundary of A^.

Furthermore:
\d

yl;(i+l)mod.2d,0'+l)mod.2d

and Fγ acts on each shell Af.t like a translation.
2) Fj is a Morse-Smale diffeomorphism in

Ml=Dd\{AU

with exactly one periodic orbit with period 2n for each n such 0 < n < 2d — 1 and
no other periodic orbit in Mv Furthermore, each of the periodic orbits is a saddle
with a single unstable direction.
3) The set (J ^i ίj *s a n a t t r a c t o r f° r F\>tne s n e H ^o ^s a n f a c t o r

0<i<2d-l,0<j<2d-l

for the inverse map i^" 1, and the set (J ^4^ is an attractor for the restriction of
0<2<2 d - l

Fx to Mo, but an attractor for the restriction of the inverse map F[~ι to (J Z}^.
0<i<2 d-l

A construction similar to the one giving Fx in the cases when d — 2, is represented
in Fig. 2.

More generally, assume we have constructed Fn which has (2d)n balls
^ n 20 ίi in e χ c n a n β e d by translations according to:
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Then we set:

and:

i&i^... , i n ) = i0 + (2d) i t + . . . + ( 2 d ) n " 1 in ,

in = ^ l

we denote:

" ΓίKn;io,ii,..,in) t h e t r a n s l a t i θ Γ l w h i c h C a Γ r i e S

and:
- i?n.o 0 0 the afίine dilation which carries D^.o 0 0 to Dd,
and we write:

This allows us to simply define F n + 1 by:

- Fn+ι(P) = F n ( P ) if P is in D and not in a £>2;<Oi<lf..., in,

^ + υ θ F n ; 2 0 i 1 i n ° Rg{n^M \in)(P^ l f P 1 S

For each m, the map Fm constructed by this inductive process is again a C°°
diffeomorphism: the shell Ao and its successive reduced copies A^.iQ ̂  in allow
the surgery which transforms Frn_ι into P m to be arbitrarily smooth. Furthermore,
for each m, let us define the set:

Mm=Dd\{AnU

-u U 4 , , In-,u U
0<i<2d-l

Then the map Fm restricted to M m is a Morse-Smale diffeomorphism with exactly
one hyperbolic periodic orbit with period 2 n for each n such 0 < n < ( r a + l ) d— 1
and no other periodic orbit. Again:
- Each of the periodic orbits is a saddle with a single unstable direction.
- The set (J ^n ι0 %λ in

l* a n attractor for Fm, the shell Ao is an attractor

for the inverse map i 7 ^ 1 and each of the sets of the form | J ^ i

is an attractor for the restriction of Frn to M m , as well as an attractor for the restriction

of the inverse map F~ι to (J ^n;<0>i l ϊ...,tn_p_1

< 2 ^ l
The next thing we want to understand is the smoothness of the map F obtained

as the limit of the Fm

9s.

Step 3. Limit and Control of the Smoothness. The sequence {Fm} is made of C°°
diffeomorphisms, but has no chance to converge in the C°° topology. The problem is
of course on the small scales, where Fp differs from Fp+ι as p becomes unbounded.

However:
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Claim.

{Fm} is a Cauchy sequence in the C^+Lv Ĵ topology.

This claim insures that our example (the limit F of {F^} in the C1"1"^-! topology)

is a C 1 + ^ J diffeomorphism of the disk. Assuming that the Claim is true, to prove
Theorem 1, it only remains to get rid of the degenerate orbits and to treat the
transversality of the invariant manifold crossings. Hence we postpone the proof of
the claim which is the only small analysis part.

Step 4. Kupka-Smale Embeddings with the Right Non-Wandering Set. When d = 2,
an easy modification of our construction yields Kupka-Smale diffeomorphisms with
properties (i), (ii) and (iii): it is enough to change Fo by imposing a rigid rotation
with irrational rotation number θ in the annulus Ao, and by imposing a rigid rotation

with irrational rotation number - in each of the 4 disks DQ.Z. These changes then

propagate by self-similarity, using obvious modifications of the isotopies, but all this
is not enough to give us property (iv) of the theorem.

A naive generalization to arbitrary dimensions of the same modifications would
not even yield Kupka-Smale diffeomorphisms when d ^ 2, but we shall present a
two point procedure working for all d > 2.

Remark. Each of the following points should be accompanied by a modification of
the flow Ψι which yields the isotopy, whose detailed construction is left to the reader.

Point 1. We change Fo to FQ by modifying Fo:
- first in the neighborhood of a shell Ao, so that D be mapped inside itself (recall
that we had arranged the shell Ao to be a repeller),
- then in the neighborhood of | J DQ.^ so that the image of M o is not contained

0<i<2d-l

in itself, but in M o U |J Af. (recall that we had arranged the shells Af.Λ to be
o<;<2d-i

attractors on one side, and repellers on the other side).
These changes then propagate by self-similarity. At this stage we have gotten rid

of all degenerate periodic points, but might have introduced heteroclinic tangencies.
Notice that these modifications of the map Fo to FQ could be made arbitrarily small

in the C°° topology: radially for Ao in Dd and for A\.{ in DQ.{, this corresponds to
modifications as illustrated in Fig. 3.

Point 2. We change FQ to FQ by suppressing all possible non-transversality of the
invariant manifolds of the periodic points. Of course, no tangency was present when
starting with F o , since the invariant shells at each stage isolated successive hierarchical
levels of the construction. Since we are left with a filtration after Point 1, the situation
is easily handled by suppressing any degeneracy successively at finer and finer levels
of the construction. The filtration insures that the only tangencies which can occur are
between the unstable manifold of a 2n-cycle with the stable manifold of a 2m-cycle
with m > n.

The fact that one has to work at finer and finer scales is not an obstacle to
whatever smoothness we like: in order to suppress a degeneracy, the change, which
is performed in a fundamental domain, can be made as small as one lilies. If we
choose these surgeries as being e.g. more than exponentially smaller when working
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Fig. 3

at the exponentially finer successive scales of the construction, the Norms Rescaling
Lemma insures that we do not loose any of our control on the regularity.

We shall refer to the construction described in Points 1 and 2 as the Cleaning
Construction. D (Theorem 1).

Proof of the Claim. The truth of the claim itself depends on the fact that in the

C 1 + ^ norm, | | . | | 1 + L v ^ j , | | F m + 1 - F m | | 1 + | y3 j decreases as C Γm for some

positive constant C, where Γ — ρa° < 1, with a0 = — - — ,

ρ — -p— and δ < 7.

Of course, all the contribution to IIJPL.i — ί L J I i . i ΓΆ\ comes from the balls

•Dm i0 i{ im> s m c e t m s ^s m e 0Ώty p l a c e where the two maps differ (more precisely

the two maps differ in the complement, in these disks, of the small copies of the shell

A>)
Up to the translations and (which does^ . i i m ) + 1 ) m o d 4 m + 1

not contribute to ||. | | r for r > 1), the restriction of Fm+l to Dm.t i im is just a

rescaled copy of Ψ1/4™\Dx{g(m;io,iι1...,im)/4rn}' ^ f°U°w s m a t m e exponential decay

C 7 m of Hi^+i — ̂ mlli+iv^l ^s a s i m P l e consequence of the two following

elementary but fundamental lemmas:

Isotopy Cutting Lemma. Let GbeαCr dijfeomorphism of the ball and Gt an isotopy
going from the identity Go to Gx = G. Then there exists a constant K > 0 such that,
for all N >0and0<i< N:

\\G(i+l)/no(Gi/NΓι-ld\\r<K/N.

Norms Rescaling Lemma. Let G be a Cr dijfeomorphism of the unit ball D, and A
be an affine map sending another (not necessarily round) ball D' with radius ρ to D.
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Then for any integer k <r:

In our problem, when m is large enough, the Norms Rescaling Lemma implies

that | | F m - Id | | 1 + | y3 j = | |D ( 1 +L v^-l )(Fm) | | 0 . Consequently, when estimating the norm

~ Fm\\i+ιVd\>the I s o t o P v Cutting Lemma gives us:

The Norms Rescaling Lemma then implies:

\\Fm+ι - fJli+LVϋj < Λ!Ί+S ba{ Π (Claim).

About the Lemmas. Both lemmas are already implicit in [RT], and might as well be
older. The Isotopy Cutting Lemma (without the name!) is stated in a particular case in
[FY], together with a proof, which, up to a trivial rewording, covers all our needs. The
Norms Rescaling Lemma is a trivial computation hidden e.g. in the ||. | |2 estimates
of [FY]. Our only contribution is to have isolated these statements. They are quite
useful:
- as powerful tools for self similar constructions,
- as simple guides in the approach to rigidity ideas.

Let us mention two ways to understand the Norms Rescaling Lemma:
a - affine self-similarity does not go along well with high smoothness,
β - topological self similarity might need complicated metric rescalings to be realized
by very smooth maps.
For other applications, see also [GT] and the next part of the present paper.

Improving r(d)'s Value.
1. From standard estimates, it follows that F is indeed slightly more regular that just

C 1 + L^J. More precisely F is of class c ι + ί ^ + a for any a such that 0 < a < a0,

and we notice that a is greater than one when d is large.
2. To obtain r{d) = d-\-1 - ε for all ε such that ε > 0, instead of the r(d) = 1 + [v^J
we had gotten so far, it is enough to systematize the way [FY] improved on [BF]: more
precisely, it is enough to incorporate more and more period doubling bifurcations at
the level of the first approximation Fo to get closer and closer to d + 1 which stays
unreachable by such surgical attempts. The computation goes as follows:
- Combining the Isotopy Cutting Lemma and the Norms Rescaling Lemma, one
would need n balls with radius ρ such that n ρd > 1 in order to get an F of class
C d + 1 , but the same n ρd > 1 just means that there is not enough room in the unit
ball.
- In order to obtain Cd+ι~ε, it is easier to first remark that the Norms Rescaling
Lemma can be used as well for fractional powers. Then, in order to get an F of class
Cd+ι~ε, we just need the number and radius to satisfy n ρd~ε > 1, and a system
of identical balls satisfying this last inequality can well fit inside the unit ball if n is
chosen to be large enough.
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II. A General Result and Some Applications

A. A General Result

There are many results similar to Theorem 1. In order to avoid more repetitions, we
formalize a general procedure which follows the steps of the proof of Theorem 1.

Let Z be a set of indices and let the set of 1-models {Fz}zeZ be a collection of
C°° diffeomoφhisms of Dd, isotopic to the identity map lάDd on Dd, and such that:
- Dd contains n = n(z) small identical disjoint closed d-balls {Dd j}j^so \ n-\\
with:

- Fz(Dd

zJ) = Dl(j+l)modJF),
- Fz\Dd (Fz) is an isometry.

- there are tubular neighborhoods:
- FzofdDdinDd\{ U £>*.},

0 < j < l

and:
- Cz • of each dDd

zj in Dd \ {Cz U | J Dd }
0<j<n-l

such that:
- F\Cz and F\Cz . are isometries of Cz and of the C^/s, with F(CZ) = Cz,

and:
- Cz is a repeller, and the Cz ^'s are attractors, at least marginally.
An isotopy from F to the identity map \άDd is realized by any suspension

{^i}o<ί<i °f Fz

 m Dd x Sι. We choose this suspension so that for all t with
0 < t < 1, Ψ\ maps isometrically Cz and the Dzj 's. For any m > 0, we write Fz as
the composition:

= Fz<m_ιoFZίm_2o...oF
zfi,

where Fz i is the restriction of the map Φy m defined by:

— ψ1/™-
Dx{i/m]

Now choose any pair (z0, zx), and let Kz % be an affine dilation which carries Dd

 i

to Dd.

This allows us to simply define gZQ}Z — g(FZQ,FZι) by:

" 9zo,Zι(
p) = FZQ(P) if P is in Dd and not in a B ^ ,

" ^ , ^ ( ^ ) = R;0Wi)mod.n ° Fzui ° R^,i(^) if P is'in Df0?i.

The set of 2-models is by definition the set of C°° diffeomoφhisms of Dd which

can be constructed as gZQjZι. They all are isotopic to the identity map lάDd on Dd.

The isotopy can be realized by a suspension {Ψι

g F } 0 <t<i of gz Zχ in Dd x Sι; we

choose this suspension so that for all t with 0 < t < l,Ψg maps isometrically Cz

and the C ^ 's as well as the small copies of CZχ and of the CZui

9s in the CZQj9s.

Consequently, understanding the gZQ Zι's as 1-models glued in 1-models, one can
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make an obvious generalization of the construction yielding the gZQiZι's, and define
9zQ zι z = 9(FZ >gz z ) as a 2-model glued in a 1-model. Continuing inductively, we
obtain m-models for each m > 1.

For each ra, the maps gz z constructed by this inductive process is again

a C°° diffeomorphism: the tubular neighborhoods C and their successive reduced

analogs C z at each scale p, allow the surgery which transforms g z

into gz Zγn to be arbitrarily smooth.

The C ^s and the analog C ^ _ ^;'s at each scale p give the room to perform

the modifications corresponding to the Cleaning Construction (i.e. points 1 and 2 in

Part I), if necessary. For each m, we define the set:

(J
Kp<m

U
\<p<m—l j k

and anything defined there will remain unchanged by further steps of the construction.

Theorem 2. a. {gZ0}...}Zm}m is a Cauchy sequence in some Ck topology, where
k > kmin = 1 always olds.
b. kmin = 1 can be improved using the combination of the Isotopy Cutting Lemma, the
Norms Rescaling Lemma and, if any, the decay of all the Cr norms | | F m | | r of Fm as
m —» +oo.
c. If all the Cr norms \\Frn\\r decay fast enough, then k — +oo.
d. The optimal smoothness k is not affected by the Cleaning Construction.
e. The non-wandering set Ω(FOO) of the limit map F^ is made of the disjoint union of
the pieces in the %Rm's coming from the Ω(gz Zm^'s' a s e t °f degenerate periodic
points at each level of gluing new pieces when passing from gZQ z to gz Zm,
and a Cantor set. The degenerate part is destroyed by the Cleaning Construction.

Theorem 2 is proven by obvious adaptations of the arguments used to prove
Theorem 1. Details are left to the reader.

B. Some Applications

Our example in [GT] of a C2 diffeomorphism of the two disk with infinitely many
Axiom A strange attractors is an application of Theorem 2 when all 1-models are a
same diffeomorphism with an Axiom A strange attractor and n = 4. Here, we shall
concentrate on maps with much simpler dynamics.

The periodic orbit structure of orientation preserving diffeomorphisms and embed-
dings of the two disk with zero topological entropy has been described in [GST].
Since, it has been asked whether infinite hierarchies of periodic orbits can coexist for
zero entropy embeddings of the two disk which would be smooth enough., It seems
to us that a complete answer to this question would involve much more theory than
attainable now. We have
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UnJ
Theorem 3. Let < - ^ \ be any sequence of rational numbers written in reduced

v 0
form with — = - . There exists a C2 diffeomorphism of the two disk, F, with zero

topological entropy, such that for all n>\:
- F has a pair of periodic orbits On = {M l 5 M 2 , . . . , MP } and O'n with the same
period Pn = qx q2 ... qn,
- FPn splits On+ι in Pn periodic orbits {Oni]ielPn with period qn+v each having

linking number n + 1 with one point Mi of On.

Theorem 4. There exists a Kupka-Smale diffeomorphism like in Theorem 1, with no
other periodic orbit and such that for all n > 1 the periodic orbits On is a sink.

Theorem 5 [Ka]. The examples in Theorem 3 and in Theorem 4 can be made C°° by
P

letting — go to zero fast enough when n —> +oc.

Remark. Theorem 5 describes a situation, called "unbounded renormalization", which
is the most difficult case, still misunderstood, in the case of endomorphisms of the
interval or of the Riemann sphere.

From [GST] we also have:

Theorem 6 [GST]. The examples in Theorem 3 and in Theorem 4 can be made C°°
p 1

by letting — be - for n large enough.
q 2

Hints for the Proofs of Theorems 3, 4, 5. If for all n large enough, qn > 3, we
p p

associate a 1-model of F to each — in the form of the rigid rotation with angle — ,
*-n j-n

modified in its CF and CFi's according to the -^-^ one wants to plug in its D^FYs;

these are quite degenerate maps that can we further modify to be Morse-Smale (i.e.
Kupka-Smale with finitely many periodic orbits) out of CFUUCFi. It then only

p 1
remains to apply Theorem 2 (see Fig. 4 when — = - , for each n):

Qn 4

- First, Theorem 5 is quite simple: slow rotations are good approximations of the
identity map, so that this result has been rediscovered over and over again. To our
knowledge however, it first appeared in [Ka].

- Then, we remark that if qn > 3, qn small disks of radius greater than — can fit in

the unit disk, so that the combination of the Isotopy Cutting Lemma and the Norms
Rescaling Lemma yields the C2 result.

If infinitely often, we find a qn < 3, we adapt the main idea of [FY] and introduce

1-models which combine to successive values ^ ^ - and — , so that qn+ι qn small

disks of radius greater than can fit in the unit disk. Again, the combination
Qn+l * Qn

of the Isotopy Cutting Lemma and the Norms Rescaling Lemma then yields the C2

result.
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