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Abstract. The general n-point massless p-aάic Feynman amplitude with arbitrary
parameters of analytic regularization for each line is calculated. This result is presented
in the form of a sum over hierarchies of a given graph. The structure of ultraviolet
and infrared divergences of p-adic Feynman amplitudes is characterized and the star-
triangle uniqueness identity in the p-adic case is derived.

1. Introduction

In the past four years p-adic analysis [4, 15, 21] was applied in quantum theory [1,
7-10, 12, 13, 16-20, 22, 27, 28]. Several approaches were used. Within each of these
approaches something was considered to be p-aάic rather than real. For example, this
can be the world sheet of a string (see, e.g., [7-10, 17]), or, our space-time itself [28].
In a paper by Lerner and Missarov [16] a generalized Koba-Nielsen amplitude was
explicitly calculated and it was explained how an arbitrary one-dimensional p-adic
massless Feynman amplitude can be computed.

The purpose of this work is to calculate the general p-adic massless Feynman
amplitude with arbitrary parameters of analytic regularization in arbitrary space-time
dimensions. The result will be written as a sum over hierarchies of the set of vertices
of the given graph.

The paper is organized as follows. In the next section the main definitions of
p-aάic analysis are given and basic integrals are listed. In Sect. 3 auxiliary vacuum-
type p-adic Feynman integrals are computed, and in Sect. 4 calculation of the general
massless Feynman amplitude is presented. In Sect. 5 results of Sect. 4 are applied
to simplest Feynman amplitudes. Furthermore, ultraviolet and infrared divergences
of Feynman amplitudes are characterized and the star-triangle uniqueness identity is
derived. Finally, in the Conclusion, the possibility of adelic formulae for massless
Feynman amplitudes is discussed.

Supported by Alexander von Humboldt-Stiftung



624 V. A. Smirnov

2. p-Adic Analysis and Basic Integrals

Let Q be the field of rational numbers, and p a fixed prime number. Any x G Q can
be represented as x = flm/n with integer v, and integers m and n which are not
divisible by p. By definition [4, 15, 21] the p-adic norm is \x\p = p~v. (A remarkable
theorem due to Ostrowski states that on Q there are only two nontrivial versions of
the norm: x\p and the absolute value \x\ = |x|oo ) The completion of Q in respect to
the p-adic norm gives the field of p-adic numbers Qp. Any x G Qp can be represented

00

as p" Σ aiPl i with a$ integers, 0 < a$ < p, ao 7^ 0.
i=0

To define the Fourier transformation the p-adic exponential [4, 11, 26] χ(x) —

exp(2π{x}) is used. Here {x} — p" Σ aip1 is the non-integer part of the p-adic

number. The integration of functions on Qp with values in the field of complex
numbers is presented in [11, 26]. Furthermore, in [26] the space of distributions in
the p-adic case is described. For example, the distributions \x\p and δ(x) are defined.
The corresponding Fourier transforms are

j \x Xχ(qx)άx = Γ(λ + 1) \qp~
X-\ ί δ(x)χ(qx)άx = 1,

QP Qp

where Γ(λ) = (1 — pλ~1)/(l — p~λ) is a version the p-adic Γ-function [4, 11, 26].
The d-dimensional p-adic space Qp is defined with the norm \x\p = max X i \ p ,

x = (#ι, ... , Xd) £ Qp. The corresponding Fourier transform is defined with the
exponent χ(qx) = χ(q\x\ + ... + qd%d) [26].

Feynman rules of a perturbative diagram technique are determined by a suitable
choice of a propagator which is inserted into the functional integral. A priori there is
no unique choice in the p-adic case. In [22] a p-adically natural propagator \q, m|~2,
with \q,m\p = max{|^|p, |m|ς}, was proposed. In the d-dimensional case the Fourier
transform of the analytically regularized propagator looks like [22]

D(x, m)= |<?, m\pχ(qx)άx = Γd(λ + d)ω(mx) (|^J~λ~ - \pm\x+d). (1)

Qd

P

Here ω(x) = 1 for \x\p < 1 and ω(x) = 0 otherwise. Furthermore,

-
Γd(X) = Λ

 P

 λ (2)
1 — p~λ

is a version of multidimensional p-aάic .Γ-function. In the massless case without
analytic regularization (i.e. for λ = — 2) we have

D(x) = Γd(d - 2) \χ$-d. (3)

For example, in four-dimensional space D(x) = x^~2.
To calculate an arbitrary massless p-adic Feynman amplitude we will compute

a number of auxiliary integrals. First, reading the formula (1) from right to left,
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expressing the Fourier transform of the right-hand side as the integrand of the left-
hand side, and putting then q = 0 and m = 1 we obtain

/
M<ι

(4)

From now on we omit for brevity the index p in the p-adic norm. (As usual, the same
symbol denotes also the number of elements in the corresponding finite set, but this
should not lead to misunderstanding.) Using a suitable change of variables and linear
relations between involved integrals we have the following list of basic d-dimensional
p-adic integrals:

1 ΎΓd

τ |λH n(Λ+d) 1 ~ P / rxj,\ (λx — p λ j , ^j;/
\x\<Pn

|z λdz=pn ( λ + d )(l-p-d), (6)

|x|=p«

1 /«—d

ί
J

l^^l^r. ^n(Λ+rf) ^ r /"7\
I dx = P ..-I-Λ 7 V7)

|χ|>Pn

In particular, for λ = 0 and n = 0,

/ άx = p~d , / άx = 1 - p (8)

x|=l

Let us now take xi9 ί = 1, ... , k with Xi G Q% and \xτ — Xj\ — 1. Let us calculate

the integral J άx. It can be represented as

k

I άχ-Σ άx.

|x|<l *=1 |x-xi|<l

Therefore, from (8),

/ dx = 1 - /cp"^. (9)

Consider then the integral

I(V)= ί dx, (10)

Vυ.cfeV

where V is a finite set, x = {xv:v E V}, άx — ]~[ dxυ, and VQ is a fixed
υeV,v^-i{)

element of V. Choosing some other v\ G V we have

= / π
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Thus, by (9), we obtain

I(V) = (1 - (\V\ - Dp-VOΛίvi})

By repeated applications of (9) we come to the following result:

I(V) = c(F), (11)

with
c(V) = (1 - p~d) (1 - 2p~d)... (1 - (\V\ - l)p-d). (12)

Let now V\ = V U {^i}, and

dz, (13)

where άx is the same as in (10) (i.e. written for the set V). Proceeding recursively in
the same fashion as for I(V) we obtain

_ -d

c(V). (14)
t _

Let us now define the domain

= {x : \xv — xvι is independent of v, v' € V} ,

and let us for x G &(V) define μγ(x) = \xυ — xvf\. Using (11) we have

/ dxμv(x)x = (

|a;v-χt;/|=Pn

Vυ^'eV

Furthermore, applying this formula, we come to

where μι?2 = pni)2 for some integers ni and n^. In particular, for μ\ = — oo and
μ2 — oo this, respectively, gives

' (17)

μv(x)<μ

• (18)

μγ(x)>μ
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Similarly,

) , (19)

and

'" ' > , (20)

where

XY = {xv:v G V} , V ί = V U { ι ; ι } , dxy = JJ dxυ .

By the same technique it is easy to calculate the following integral with v\ a fixed
vertex:

Γ 1

άxμv(x)x \xvι

3. Partial Vacuum Feynman Amplitudes

Let us now consider some "partial" vacuum Feynman amplitudes which will be later
used in the next section when calculating the general Feynman amplitude. The first
of them is a d-dimensional version of the integral which is a generalization of the
Koba-Nielsen string amplitude

/>
Hr TT IT —T ,|α(υ>υ/) n^\ux j^ \d,v djvι\ . \^^)

|χv |<l V"V'^/

Here ^ is a given vertex set. As before άx is the product of άxυ except for some
fixed vertex VQ. Due to translation invariance we may put XVQ = 0. For d = 1 the
integral (22) was calculated in [16]. In the case of arbitrary dimension the following
result holds.

Lemma 1.

A veA'

where the sum goes over hierarchies on 9^, A' = {V G -A.' |V| > 1}, V- — {Vf G
A:V+ = V}, V+ is the minimal element of A incuding given V G A,

r(b)=l/(pb-l), b(V) = a(V) + (\V\-l)d, (24)

and [16]

α(10 = α(V,VO, o(V,V")= o(«X). (25)
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We recall the definition of the hierarchy (see, e.g., [16]). A set A of subsets V of
a given finite set ̂  is an hierarchy on ̂  if i) ̂  G A and {υ } G A for each v G 9̂ ;
ii) for any V, V G A either V Π V = 0, or V C V, or V" c V.

Proof of Lemma 1. We use a multidimensional generalization of the technique applied
in [16]. Let us first decompose the integration domain in (22) into subdomains (sectors)
&A associated to hierarchies on ̂ :

&A = {X' \xv -xv'\<\xv- xv" Vc, v1 G V, I/'G V; F G v4} . (26)

If we use the notation [16]

M(V)= max{|αv-2v|}, (27)
υ,υ'eV

then \xυ — xvt = M(V"), where V" is the minimal element of A including both v
and v1 [16]. The sets &A form a partition of Q^d [16], i.e.

Thus,

FV = ΣpA' pA = I d^ Π Xv" ^r(v>v/) - (28>
A v,vl€.'?'/'

\~xv\<l

Let us in ^A introduce the new (sector) variables

j- f / V^Ί /-V f / V^
ς = |ς /veΛ'ί ς = {ξy

Here σ is an arbitrary function σ:V — >• σ(F) G F_. Thus, there will no variable
£^(V). However it is convenient, formally, to put ξ^v^ — 0. Now, we define the new
variables by

χυ = Σtv = ^M + ̂ >+ + (29)

V9υ

Let us define

Clearly, VF3^(y) such that |σ^(i/)(F)| - 1. Let us introduce the function σβ(V\V) =
r(V). For example, τ(9Π = {^o}. With this notation it is easy to derive that

ξV = xT(V) ~ Xτ(V+ ) (30)

Note that the above partition of the integration domain and introduction of the
new integration variables resembles the well-known procedure used for real-space
Feynman amplitudes. For example, in the α-representation technique one uses sectors
and auxiliary sector variables to resolve the complicated structure of ultraviolet and
infrared divergences - see, e.g., [5, 23, 24, 29].

The sector &y in the new variables looks like

&, = {ξ G &(V*):μv*(ξv) < μv>*(ξV') VF C V'\ V, V G A} . (31)

Here F* = V/V-. However, for the sake of brevity, let us omit this asterisk. There-
fore, ξ G &(V) will mean that \ξVf - ξv» is independent of V, V" G VL.
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By expressing the integrand in (28) in the new variables we thus obtain

Ύ(V\ (32)
J ~ γ*^,

where
s(V)=

The integration is performed with the help of the formulae of the previous section.
We begin with minimal elements of A1 '. If V is such an element we apply (17) to
obtain

ά f v uv(£v}s(V) - c(V} _ -αξ μvίξ ) - w

Then the integration is performed "at the next level," i.e. for those V which contain
in V- only minimal elements of A! and elements from A\Af. Here it is necessary to
take into consideration contributions to the power of μy from the result of previous
integrations. Using the formula

) + (|V'| - l)d) - a(V) + (\V\ - l)d - (|F_| - l)d

we finally come to (23).
Suppose now that VQ is a minimal element of A' '. Another partial Feynman ampli-

tude which will be later necessary looks like

ί dx JJ \Xv-Xv,\

' <

a(υ'V' (33)

v,v'e<^

μ0<M(Vb)<...<Λf(Vr

fc)<μ fc+1

where Λ^ — {^}i=ι,...,jfe = {̂ ί C . . . C T4 = ^} is the nest of elements of A
including VQ. The following assertion is valid.

Lemma 2.

(34)
VeA' VeA"

k k \
=f =

U=0 Z=0 I'φl )

with A" = A'\^, bτ = b(Vi).

Proof. Let us use the same change of variables as in the above proof of Lemma 1.
We thus obtain

ί

J

(36)
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The integration over the variables {ξv, V G A"} is performed as in the case of the

integral (32). The "first" integration connected with the nest Λf is over ξv°. Using
(16) with V = VQ we have (for μ = μ0)

= c(V){μv+(ξv+)b^-

The rest of the integrations over ξVί for i = 1, ... , k — 1 is also performed by use
of (16), and the last integration over ξVk by (18). To prove the explicit result (35) it
suffices to use induction on the number k.

4. General Feynman Amplitude

Consider now an arbitrary n-point massless Feynman amplitude

Fq/ (x) = I dx' TT xυ — x /|α(υ'υ/) (37)J f L

where x = {xv:v G ̂ ext}, dx' = Π dχv, ^/>ext(^/4nt) is the set of external
ve7Ant

(internal) vertices of the given graph with 9^ — 97*ext U 9/*mt. In the p-adic case it is
explicitly calculable for arbitrary values of dimension and regularization parameters
a(v, v').

Theorem . Let AQ be a fixed hierarchy on 9rext. If x G ^AO, then

Π C(V~Ϊ Π r(6(F))

} VeA' VeA"

x Π f$+/Ϋ(M(V),M(V+)), (38)
VeA0

where the first sum is over the set A{9^\A^\ of hierarchies A on ̂  such that the
family {V :V = V\%/^, V £ A} coincides with AQ, the function f£ ,γ is given by

(35) with the nest VQ = V/V-, Vk = V+ /V-, V is the minimal element of the hierarchy
A including the set V G AQ, A" = A'\ U Λy , and Ay are the nests generated by
elements V, V G AQ. \VeA0

Proof. We shall restrict ourselves to the cases n = 2 and n — 3. Then it will be
clear how the arguments are generalized for arbitrary n. In the case of the general
two-point Feynman amplitude (n = 2), (38) is rewritten as

Ξ / dx JJ
J vv'e

χυ -

Σ Π
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where άx = Π <&<,, 9^ = ^\{^}, x' = {xv :v G '̂}, i?(F) = - b(V) if

F C VQI or V Π Vbi = 0, ,0(10 = b($r) - b(V) if Vbi C F c 9̂ , and F0ι is the
minimal element of the hierarchy A including both external vertices.

We first decompose the integral in (39) into subintegrals associated with hierarchies
on the set ̂ ':

/ Ac Π
J - . / ,- .-y

-*V ' iα ( i M ). (40)

Second, let us apply the following partition (which was introduced in [16] for another
purpose):

{Xl G Qd

p] = (J &v , ^v = ̂ v U^2

y (41)

with

Vυ G V} , (42)

^ = {Xl e Q^ MOO < xi - xυ\ < M(V+) Vv G V} (43)

and M(V) given by (27).
Consequently, the Feynman amplitude is represented as

V—^ Y—^ ΈI—> Λ V^ = Σ Σ Σ Fι'
1=1,2

Observe that the fixed element V of the given hierarchy A on ̂  generates the
nest Λy of elements of A including V. Let us enumerate them in the natural order:
V = Vι C VΊ C . . . C VN = ,̂ and let Vn be the minimal element including both V
and VQ. It is easy to show that M(Vn) = \x\ — XQ\. Then, as in the previous section,

we turn to the variables {ξγf}veA^ by use of (29, 30), and obtain

μv,(ξvγv'^ f[ μvί(ξv^y^-^v^^ . (45)

For F2 ' , in the corresponding representation it is necessary to substitute the factor

for i = I in the integrand by \ξyl + η\a^^ with η — ξγ2 + . . . + ξvn_ι ~ (χι — ̂ o)

The integration over ξv with V G A'\Λγ is performed as in the proofs in
the previous section. It results in the factors c(V_)r(b(V')) and the corresponding
contributions to the powers of μγi. In the case / = 1 the integration over ξVl is

performed with the aid of (20), and the integrations over ξVi, i = 2, . . . , n with the

aid of (19). For / = 2, all integrations over ξVi, ί = 1, . . . , n are performed with the

aid of (21). The integration over ξVί, ί = n + 1, . . . , N is the same in both cases

and is performed by use of Lemma 2 with μ0 = \x\ — #o|
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Eventually, this gives

Π

Π

A v'eA'
n-l

Σ Π

(46)

where

= Π r(-
Finally, the sum in (46) is rewritten as a sum over subsets Vn and over hierarchies

including Vn on the whole set of vertices 9 .̂ (In fact, {xv,v G 9 '̂} G ̂ 4 and
#ι G J^ for some V G A if, and only if {xv,v G 9 }̂ G ^4* with a certain

uniquely defined hierarchy A* on 9 .̂) Consequently, this yields (39).
In the case n = 3 we have four hierarchies A$ on the set of three external

vertices. The corresponding domains of external coordinates are \XQ — x\ < \XQ —
#2 1 = \x\ — X2\, the other two domains of this type, and the second-type domain
|#o — xι\= XQ — X2\ = \x\ — %2\ Ξ M. For the first type the result (38) is written as

Π c(V-) [[ r(b(V))
AeA^' Ao} VeA' VeA"

where VQI is the minimal element of the hierarchy A including the external ver-
tices VQ and υ\, and Vbi2 is the minimal element of the hierarchy A including all
the external vertices. Furthermore, fy ,v is given by (35) with the nest VQ —

For the second type the result looks like

F9,(x0,x^x2) = (1 -p^Γ1 (1 - 2p~dΓl

where Ω(V) = - b(V) if V C ^012 or V Π Vbi2 = 0 and Ω(V) = b(^) - b(V) if
^012 C V C ^.

A proof can be achieved as a generalization of the proof of the corresponding
result for n = 2. The integral (37) is first decomposed into subintegrals associated
with hierarchies on the set 9 '̂ = 9^nt U VQ. Then partition (41^3) is used both
for x = XQ and x — x\. Consequently, the Feynman amplitude (37) is represented
as a sum over V\, VΊ. If VQI is the minimal element containing VQ and V\ we have
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= \x\ — XQ\. Then one turns to the variables {ξv }v'eAf by use °f Eqs (28,
29).

In the case of the first-type domain A is represented as A = A" \JΛ" with ̂  the

nest of elements V\ , . . . , VQI , . . . , Voi2, . , ̂ ' The integration over £y/ with V G
AfΓ\A" is performed as in the proof of Lemma 1. For V — V\ , ... , VQI the integration
procedure is the same as in the case n — 2. Then, for V = (Vbι)+ , , Vbi2, it is
necessary to apply Lemma 2. for V = (Vbi2)+ > > '̂» °ne uses the same lemma
(the final integration is with μk+\ — °°) In me case of the second-type hierarchy
the integration is the same as for n = 2. Finally, the obtained results are naturally
rewritten as sums over hierarchies on the whole set of vertices ^.

As was demonstrated in [22] by simple examples one can introduce various renor-
malization schemes: analytic [24], dimensional [5, 25] and BPHZ-renormalizations
[2, 3, 14, 30]. However, in the massless case, we have the explicit result (38). It is
easy to observe that the divergences manifest themselves in the factors r(b(V)) =
\/(pb(V^ — 1), where V generally takes the form of a reduced graph V f / V f f . If the
subgraph generated by the set V does not involve isolated vertices, then ω(V) —
— b(V) = —a(V) — d(\V\ - 1) is nothing but the (ultraviolet) degree of divergence
ωy. Therefore the amplitude does not contain ultraviolet and infrared divergences if
the degree of divergence of each reduced graph of the form V /V" is not equal to
zero. In other words, the p-aάic Feynman amplitudes can possess only logarithmical
ultraviolet and infrared divergences. (The infrared degree of divergence of a subgraph
7 in Γ can be naturally defined as minus ultraviolet degree of some reduced graph -
see [23].)

5. Examples

Let us apply the general formula (39) for the graph shown in Fig. 1. There are 24
hierarchies on the set of four vertices. For α(0,1) = 0 and α(z, i') — — 2 elsewhere,
and arbitrary dimension d = 4 -f δ, we have

F(x) - |xι - x0\
a(+ (1 - 2p~) (1 - 3p~) (1 - p~d) (1 - 2p~d)

1
p2-2δ _

(p2+2δ - I)(p2+δ - I) (p2~2δ - I}(p2+δ - I) (p2+δ - I)2

Consider now the star Feynman diagram with three external {1,2,3} and one
internal {4} vertices with α(z,4) = λ; and a(i,i') — 0 elsewhere. Using general
results (48, 49) we have

F(x) = B(λι, λ2) \Xl - x2\
λ^χι+d \Xl - x3|

λ3

A2, A3) |xι - x3|
λl+Λ2+λ3+cZ (51)
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for the domain \x\ — x^\ <
d)/Γ(\ι + X2 + 2d)), and

F(X) =\Xι-:

X

= \x\ —xι\9 (here B(X\, λ2) = Γ(X\

- 1

(52)

for the domain \x\ — x^\ = \XΊ — xι\ = x\ — £3 . For d = 4 and λ^ = — 2 in the first
case we have

F(x) = |xι - x3\~2 (1 + 4p~2

I
and in the second case

F(x) = \xι -

(53)

(54)

Let now Σ ^ = ~~ 2d. Using the above explicit results (5 1 , 52) we obtain the

following identity:

-xι \-Xi-d (55)

which is generalization of the corresponding star-triangle identify for the real-space
Feynman amplitudes [6].

6. Conclusion

In four-dimensional space we obtain a simple and symmetrical expression for the
graph of Fig. 1:

Fig. 1. The master two-loop diagram

FP=^Ϊ(I (56)

(We now restore the index p as well as explicit dependence on p.) In the real space
this diagram is not calculable for arbitrary values of the analytic regularization. In the
absence of the regularization the corresponding result is

1
6C(3) (57)

with ζ(z) the Riemann zeta-function.
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In [10] it was discovered that the product over all prime numbers of N = 4 p-adic
string amplitudes Ap times the real-space string amplitude AQQ is equal to one (see
also [1,8, 20]). Thus, the adelic string amplitude ^4adeiΐc seems to be very simple at
the tree level. Attempts to generalize this adelic formula to other string amplitudes
did not lead to such simple identities (see, e.g., [17]).

Let us now return to Feynman amplitudes. It is tempting to multiply the result (57)
and the results (56) over all prime numbers p. The simplest product formula [4, 15]

Y[ — = ζ(z) seems to be insufficient for this product to be calcualted. Never-
p I — p

theless, this product is convergent. This fact allows one to suppose the existence of
product formulae of adelic type. Perhaps, they are not so simple as the simplest adelic
formula for strings. To guess what kind of adelic formulae can exist a calculational
experience based on the derived explicit result for the general Feynman amplitude
could play a decisive role. As a consequence of such adelic formulae one could obtain
new calculation methods for real-space Feynman amplitudes.
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