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Abstract. Among the main symplectic invariants of a closed Lagrange submanifold
L of the cotangent of Rn is the tubular radius R(L) defined as the smallest tube
D(r) x Cn~l of Cn ~ T*Rn in which L can be pushed by an Hamiltonian diffeotopy
of Cn. We show here, using pseudo-holomorphic techniques, that such a submanifold
cannot collapse if the first Betti number of L is smaller than 3 and if the Maslov
class of L does not vanish; in other words, R(L) is then strictly positive and one
can actually give an explicit lower bound in terms of the Liouville and Maslov classes
of L.

1. Introduction

The study of symplectic invariants of closed Lagrangian submanifolds of cotangent
spaces - an essential aspect of the theory of Hamiltonian systems - was confronted by
some fundamental difficulties that have been partly understood during the last years.
Two different approaches have been used yielding surprisingly similar estimates. The
variational approach, for instance, has been used by Floer, Hofer, and Viterbo to obtain
explicit values of the "capacity" of some Lagrangian submanifolds and lower bounds
on the value of the "tubular capacity" of any Lagrangian embedding of the torus Tn in
Cn. Here the capacity c(E) of a subset E of Cn is defined by a minimax procedure
(see [2,3]) and is given, in the simplest case of a closed convex hypersurface of
Cn by the smallest symplectic area of a closed characteristic; the tubular capacity
R(E) is the smallest radius of a tube into which E can be pushed by an Hamiltonian
diffeotopy:

R(E) = inf{r E R+ such that there exists an Hamiltonian diffeomorphism φ of Cn

with φ(E) C D(r) xC71"1},

where D(r) is the open disk of radius r of C.

Partially supported by Research Grants NSERC OGP0092913 and FCAR EQ3518



614 F. Lalonde

On the other hand, the elliptic approach, which relies on Gromov's theory of
pseudoholomorphic curves, was the main ingredient in the recent proof by Sikorav
[11] which gave explicitly a lower bound for the tubular capacity of any "rational"
Lagrangian submanifold of Cn (see below); in the same spirit, the "disjunction energy"
of rational Lagrangian submanίfolds has been studied in a recent work by Polterovich
([10]). For a subset E of Cn, this is the minimal energy e(E) needed to move E to
a position disjoint from its initial position (see [7, 12]).

Let L c Cn be a closed Lagrangian submanifold. Since any symplectic diffeo-
morphism of Cn is Hamiltonian, c(L), e(L), and R(L) are symplectic invariants of
the Lagrangian embedding L ̂  Cn. These three invariants are related by:

c(L) < e(L) < πR2(L) . (see [12])

Despite the importance of these invariants in Hamiltonian systems and symplectic
topology, not much is known about their values for a generic Lagrangian submanifold;
for instance, we do not know, in general, whether they vanish or not. The sole results
up to now are, as we mentioned above, those obtained by Floer, Hofer, and Viterbo
using a variational approach, and by Sikorav using elliptic methods:
1) If Tn ̂  Cn is a standard torus S1^) x - x Sl(rn), then

c(Tn) = min c(SV;)) = 7r(minrJ2 , (product formula [5])

so that R(Tn) > minr and therefore R(Tn) = minr^. Moreover, Viterbo ([14])
recently showed that R(Tn) > 0 for any Lagrangian embedding of the torus into
Cn. The proof gives R(Tn) as being approximately equal to the largest radius of a
Weinstein tubular neighbourhood of Tn *-» Cn.

n

2) Since the Liouville form of Cn, λ = ^ y^dx^ is a primitive of the standard
1=1

symplectic form, its restriction to any Lagrangian submanifold L defines a DeRham
cohomology class of L, called the Liouville class λ(L). Now, if L ̂  Cn is a rational
Lagrangian submanifold, that is whose Liouville class λ(L) equals the product of a
real scalar by an integral form, then it has been shown by Sikorav that

(1)

where ρ is the largest real number such that λ(L) = ρ x (integral class) (see [11]).
The aim of this paper is to show how elliptic methods (pseudoholomorphic curves)

can be used to obtain explicitly a positive lower bound for R(L) for any (rational or
not) Lagrangian embedding of a manifold whose first Betti number is smaller than 3,
whenever its Maslov class does not vanish (the Maslov class μ(L) e Hl(L; Z) of a
Lagrangian submanifold L of a cotangent space measures the rotation along any loop
of L of the tangent space to L with respect to the fiber of the cotangent bundle; in
the euclidian case, this is simply the pull-back by the Gauss map of the generator of
H{(Λ', Z), where Λ is the grassmannian manifold of Lagrange subspaces of Cn: see
[1]). In the rational case, this lower bound improves the one given in (1). This result
is a corollary of the following:

Theorem 1. Let L -̂» Cn be a closed Lagrangian submanifold ofCn. If the restriction
λ(I/)|kerμ(L) of the Liouville form to the kernel of the Maslov class is rational, then
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R(L) > 0 and one can compute explicitly a lower bound of R(L) in terms of \(L) and
μ(L).

Corollary. R(L) > Ofor any Lagrangian embedding with non-vanishing Maslov class
of a closed manifold whose first Betti number is smaller than 3. In particular, this is
true of any Lagrangian embedding of a manifold admitting a metric with non-positive
curvature, with βl <3.

If βι(L) < 2 and μ(L) ^ 0, the kernel of μ(L) has rank not greater than 1, thus
the form λ(Z/)|kerμ(L) is rational.

Examples. Among the closed manifolds admitting a Lagrangian embedding in Cn

and satisfying the hypotheses of the Corollary, there are T2 and all manifolds of the
form Sl x K{ and T2 x K2, where Ki (i = 1,2) is a manifold with βl (Kτ) <2-i
admitting a metric with non-positive curvature and whose tangent bundle has a trivial
complexification. In particular, every hyperbolic 3-manifold with βl < I gives rise
to such manifold after product with Sl or T2.

2. Proof of the Theorem

The proof relies on Gromov's theory of pseudoholomorphic curves: to begin with,
we will put together the area estimates computed by Sikorav [11] and the bounds on
Maslov indexes obtained by Polterovich [9] when a compactness phenomenon gives
rise to families of pseudoholomorphic disks whose boundaries lie on a Lagrangian
submanifold. In fact, here, these estimates will be worked out for a generic almost
complex structure on Cn (sufficiently close to the standard one).

Let Lr be a closed Lagrangian submanifold of Cn included in D(r) x Cn-1. We
follow first Gromov's [6] and Polterovich 's [9] argument. After a slight perturbation
of Lr, we may assume that there exists a neighbourhood % of Lr and a J0-anti-
holomorphic involution τ : % —> % whose fixed point set is Lr ( J0 is the standard
complex structure on Cn). Denote by ̂  the space of C°° almost complex structures
J on Cn uniformly compatible with the standard symplectic structure ω of Cn [that is:
ω(Jv,Jw) = ω(v,w) and v\\2j — :ω(v,Jv) > Cj||ι;||2 for all v,w G T^C™, where
Cj is a positive constant and || || = : || ||j0], such that r is J-anti-holomorphic, and
whose Floer norm ||J||e is finite. See [4, Sect. 5], for the definition and properties
of the Floer norm: in fact, our space ̂  is a large subspace of C°^ perturbations of
JQ defined as the image under the exponential map T3^ — > ̂  (j?' = all uniformly
compatible C°° almost complex structures such that r is anti-holomorphic) of a small
ball centered at the origin in the subspace Tj^ of Tj ^ consisting of all j G Tj^
such that

is finite, where ε = (εfe)fceN is a sequence of positive real numbers. Lemma 5.1 of
[4] shows that one can choose the sequence ε in a such way that the Banach space
(TJ0Λ II l l e ) is sufficiently large.

For a fixed number d G (0, 1) and any non-zero class α G Hv(Lr\ Z) define

^ = {f:(D2,ΘD2) -^ (Cn,Lr)|/ is of Holder class C2+d, [f\θD2] = α

and there exists z G 3D2 such that f ~ l ( f ( z ) ) = z and Df(z) / 0} .
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Let J£a = {(/, J) G Jζ x β^djf = 0} be the subspace of 3% x $ of a11 J~
Λ / Λ Λ \

holomorphic disks whose boundaries lie in α, where dτ = - ( - — \- J—\ is theJ 2\dx dyj
Cauchy-Riemann operator for the structures i — >/— T on D2 and J on Cn. Then
J%>a is a Banach submanifold of j£ζ x ̂  (see [8] for instance) and the projection on
the second factor πa : ̂ a — + ̂  is a Fredholm operator of index μ(a) + n, where
μ e Hl(Lr : Z) is the Maslov class of Lr. If J is a regular value and π~l(J) is not
empty, then:

3 < dimπ^^J) = ind(ττα) = μ(α) + n ,

since the conformal group of the disk acts freely on π~l(J), and thus μ(a) > — n + 3.
We will fix below a value J close to J0, and regular for all projection πa corresponding
to non-zero classes a.

Finally, for each J G ̂  and each class β G Hγ(Lr\ Z), define

.̂  = {/:(D2,5D2) -> (Cn,Lr)|/ e C2+d and [/|βD2] = /?} .

We wish to define properly the codomain of the elliptic operator <9j on J^. Since the
quotient of the bundle of real homomoφhisms HomM(ΓC,TCn) -* C x Cn by the
subbundle of the (z, J)-linear ones may of course be identified with the (i, J)-anti-
holomoφhic ones and therefore to the trivial bundle (C x Cn) x Cn — > (C x Cn), we
define:

^ = {^:C x Cn -> Cn|^ G C°°, ||^||ε < oc (Floer norm), and for # viewed as a
section of the bundle of (z, J)-anti-holomoφhic homomoφhisms, # is (r0, r)-invariant
on ^o x '̂ where ^0 is a neighbourhood of 9D2 C C and TO : ̂ 0 — > ί̂ 0 is an
z-anti-holomoφhic involution}.

Let Λ^ be the subset of J^ x & of all pairs (/, g) such that <9j/ is equal to the
restriction of g to the graph of /. Then the projection on the second factor

is a Fredholm operator of index μ(β) + n. Suppose 7 is a path in ̂  from 0 to a
regular value g such that dj is transversal to 7. If Y^ 7 = θj^T) 7^ 0> then

0 < dim Y0 j / γ =

and therefore μ(/?) > — n — 1 whenever Y^ 7 is not empty.
Let us now follow Gromov's argument [6]: set β = 0, there exist an open

neighbourhood U of J0 in ̂  and an open set V of & such that the equation djf = g
has no solution on U x ΛQ x V. We will specify this open set V. But first note that
the equation dj f = (c, 0, . . . ,0) has no solution on ̂  if \\c\\ is sufficiently large:

this equation implies that / is harmonic, and applying 5jQ to the Poisson formula
restricted to the first component /} of / and evaluating at z = 0, we obtain:

2π
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< r' < r, where r' =
T* I

is the average of
—

thus \dj fι(0)\ < max l/ j ί ,

r and the smallest radius f of a closed tube D(f) x Cn~l containing Lr [note that
r > f because Lr is compact and D(r) is open]. There is therefore no solution to
dj f = (c, 0, . . . , 0) when ||c|| > r'. Without an a priori bound on the norm of Df,
this might not remain true after a slight perturbation of the almost complex structure.
This bound is given by the condition / £ 3^\

•dy

ftr

which implies that / ||D/||2 = / \\djf\\} if / € .̂ . Set
D2 D2

U = {J£^\ \\5jf - 5Jo/|| < ε, \\Df\\ for all /,

andα+^Γ^HI < \\v\\j <(l+ε 2)| |t; | | for all v

and

(2)

V = {g £ y\gλ(z,w} G Dρ(z0 = r' G C) and ||(g2, , #n)<X ̂ )|| < £3?"

for all (z, w) G C x Cn} ,

T — T
where ρ = - and D(zQ = r7) is the disk of radius ρ of C centered at the real

point ZQ = r'. The equation djf = g on U x ^Q'X V gives (compare Polterovich [9],
App.):

D'1
dy i)

< π max ,/P/ll

and

f \\Df\\ <C, I \\Df\\j <C^l (\\Df\\l
J J \ J

D2 D2 \D2

r( ( Λ'/2

1 ^V^ £'*' ^ /

/ /• λ 1/2

<c^(/,|9f <,cjr

1/2
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by Holder's inequality and (2), where

C3 — » 1 when ε1 ? ε2, £3 — > 0. Thus τr(r' — g) < πf + ττε1C3r

which boils down to £> < ε^C^r since r' - ρ — f + £>. Consequently, there is no
solution if εj , ε2, ε3 are sufficiently small.

Let us now fix a generic value J G E7 (regular for all πα) and a generic path
7 in 3̂  joining 0 to a generic g £ V [regular value of 5j \Λ^ — » ^ for all β e

#! (Lr;Z)] such that ||0(2,w)||j < r' for all (z,w) e C x Cn.
Consider now the map and its restriction to IQ = 5j1(7). On

the one hand, the inverse image djl(Q) is diffeomoφhic to Lr. Indeed, for any map

dxl'

,
= det

df
dx

df

δ/\ 2 _ / j d f _ d / \ 2

0*2 Λ
= x, x2 =

(One easily checks this inequality for J = J0, and afterwards for any compatible J
using a linear isometry which maps R(df/dxl, Jdf /dxλ, df/dx2) onto (C, J0) x R
and is pseudoholomorphic on R(df/dxl, J d f / d x λ ) . ) Thus

\ d f / d x Λ θ f / d y \ j > \ω(df/dx,df/dy)\

with equality if / is J-holomoφhic. Denote by αj(/) and αs(/) = / /*(α;) the area
of / with respect to the norm || || j and the symplectic area of /. Hence

(3)

and
αj(/) = αs(/) if / is J-holomoφhic.

Since any contractible disk f:(D2,dD2) -» (Cn,Lr) satisfies 0 = / /*λ =

/ /*ω, such a disk cannot be J-holomoφhic unless it is constant. Thus Sj^O) ~ Lr.

On the other hand, Y^ cannot be compact because compactness would imply,

by the Sard-Smale theorem [13], that YQj is a cobordism between θj^O) ~ Lr

and d~jl(g) = 0, and the image of 1̂  by the evaluation map at z = 1 G 9.D2,

eυl :F0/7 —> Lr, would then show that [ev^Sj^O))] = [Lr] is zero when considered
as an element of Hn(Lr'9Z/2Z). Therefore Y$Ί is not compact and there exists a
C°° divergent sequence {/^} C 1 7̂ (containing no convergent subsequenςe). As in
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Sikorav [11], the compactness of 7 and Lr, and the fact that Lr is Lagrangian imply
that { f τ } is C°-bounded and that their J-areas are bounded since:

/ df df
— Λ — -
dx dy

D2

df
dx

Df(z)

91
dy

=
J

according to (2),

hence
< 2ττr/2 for all i . (4)

We can therefore apply Gromov's compactness theorem (see [6], 1.5 Dl9 1.5 D2, and
1.5EΊ): there exists a subsequence of {/J, that we still denote by {/J, converging
to a cusp curve

where the ft are non-constant (maybe multiply covered) J-holomoφhic disks with
boundaries in Lr appearing by concentration of curvature in the neighbourhood of I
points {z1? . . . , ZL} c dD2 (I < k since there might be several disks bubbling off
at the same point), and where / is a disk whose boundary lies in Lr and such that
djf G 7. The precise configuration of attaching points among the disks /, ftj , . . . , ftfc,
and the reparametrizations needed to give a correct account of the weak convergence
fτ ~* foo mav be f°uncl m me detailed study [15]. We will simply need here the fact
that there is no loss of energy during the bubbling off phenomenon. Thus:

Proposition 1 (Sikorav [11]). The sum of the symplectic areas of the

than πr2.

This is a consequence of:

is smaller

j ) < lima//-) < 2πr2

The last inequality follows from (4). For the first one, let (Ulj/)ieN^l<jf</ be a

sequence of neighbourhoods of Zj/ G dD2 such that, up to reparametrization,

Then the same equality holds for the symplectic area. On the other hand,

by (3) and the fact that / f£(ω) = 0. Taking the limit gives the required inequality.
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Let us now find bounds for the Maslov indexes of the boundaries of the h . Since
k

foo — f + Σ hj comes from a sequence of contractible disks and since non-constant

J-holomorphic disks have positive symplectic areas, then hj G Ma. and / G Fβ,

where /?, α1 ? . . . , ak ^ 0 and

Finally, the choices of J and 7 imply μ(/?) > — n — 1 and μ(&3) > —n + 3. This
gives the following:

Proposition 2 (compare Polterovich [9]). There exists a J-holomorphic disk whose
boundary is a loop a in Lr, such that:

-n + 3 < μ(a) < n + 1 .

These two propositions lead to the following:

Theorem 2. Let Lr be a closed Lagrangian submanifold in D(r) x Cn-1. Then there
exists a class a G Hl (Lr; Z) with

0 < λ(α) < πr2 and |μ(α)| < n + 1 .

Now suppose that L is any closed Lagrangian submanifold in Cn such that
λ(L)|kerμ(L) is rational. There exists a basis {/31? . . . , βm} of Hλ(L\Έ) in which
λ(L) and μ(L) can be expressed as:

μ(L) =

where δ G M+ = (0, oo), x G R, l,pτ G N, and ̂  pτβτ is a primitive class of the zero
i=2

class of Hl(L\Έ}. Suppose first that μ(L) ^ 0 and let q G N be the largest integer
such that ql < n + 1. Set

Γ Γ m 1 1
ε(x, <?) = inf N ύ^x + ̂ α-p such that α 1 ? . . . , αm G Z, (αj < g >\{0} > 0.

i=2

Since gcd(p2, ? Pm) = 1? ̂ (^? ^) is the smallest non-zero difference between one of
the multiples {0, x, . . . , qx} and an integer. By construction, δε(x, q) is the smallest
positive symplectic area allowed by the constraint on the Maslov index of Theorem 2.
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Therefore, there is no Hamiltonian isotopy mapping L into a tube D(r) x Cn~l

whenever r < (δε(x, q)/π)1/2, that is:

R(L) > (δε(x, 9)/ττ)1/2 .

Finally, if μ(L) = 0, R(L) > (0/π)1/2, where ρ is the largest real number such that
λ(L) = ρ x (integral form). Q.E.D.

Remark. When μ(L) ^ 0, the lower bound (δε(x, q)/π)1/2 is in general better than
(ρ/π){/2 even in the rational case (x e Q). Here is an example: let p be a positive

integer, TV > 3 an integer, S l ( ( l / π ) 1 / 2 ) and Sl I ί 1 ) the circles in

C of areas 1 and , and Γ2 -̂> C2 their product. In the basis {ef,eϊ - ef}
p

of Hl(T2\Έ),

r)/V — \ f a. \
and

The smallest positive value of λ(T2), that is 1/p, is realized only on classes with too
large Maslov indexes. In fact, the smallest positive symplectic area among classes a
of Maslov index \(μ(a)\ < 3, is

So that the lower bound (ρ/π)1/2 gives R(T2) > J —, whereas the lower bound

(δε(x,q)/π)1/2 gives \ — which, in this case, is optimal: R(T2) = \ —.
V π V 7r
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