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Abstract. A construction of a quantum analogue of principal bundles is discussed.
Deformations of quantum groups in the sense of Woronowicz allow to relax the
condition of local triviality of a principal bundle; the fibres need not be all identical
any longer. This leads to deformations of structure group and bundles. There is still
a classifying space in the sense that homotopy classes of bundles are classified by
homotopy classes of maps from the base space into the classifying space.
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1. Introduction

In particle physics as well as in differential geometry, principal fibre bundles play
the key role of making precise the notion of local symmetry. One may ask whether
the concept can be generalized to include quantum groups as fibres.

The proper setting for this question would of course be noncommutative
geometry, but it seems quite difficult to formulate a notion analogous to local
triviality in the noncommutative setting. If one formulates the theory in completely
categorical terms in the category of topological spaces, one needs categorical
products. One cannot translate these directly to the category of C*-algebras, they
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496 A. Mϋller

would have to be replaced by coproducts in the category of C*-algebras, but the
tensorproduct, which is the coproduct in the subcategory of commutative C*-
algebras, is not the coproduct in the whole category.

G. Maltsiniotis has come upon a similar problem in his recent definition of
quantum groupoids [4]. A groupoid is a category in which all morphisms are
isomorphisms, a topological groupoid is a groupoid such that the set of objects and
the set of morphisms are topological spaces and the structure maps (source and
range of a morphism, composition of morphisms, identity morphism) are continu-
ous. A principal fibre bundle is a groupoid where source and range maps coincide
and all endomorphism groups are isomorphic, the base space is the space of
objects. In Maltsiniotis' definition, the algebra corresponding to the space of
objects is a commutative algebra, i.e. a "real" space. We therefore restrict ourselves
to topological spaces as base spaces.

We should probably be less strict about local triviality for the following
reason. In the topological theory, we would like the fibre to vary continuously
with its base point. For Lie groups as fibres there is not much space to move,
Lie groups are completely rigid, hence all the fibres are the same; only the way
they are put together matters. By enlarging our set of fibres a bit, e.g. in allowing
quantum deformations of Lie groups, we may get different fibres over different
points.

In Chap. 2 we discuss the most obvious generalization of the notion of a G-map
G -> G, where G is considered as a right G-space. These are the endomorphisms of
the "algebra of functions" on the quantum group considered as a right comodule
over itself. For groups we know that all such maps are invertible and are given by
left multiplication by some group element. A similar statement holds for Hopf
algebras. This means that the right comodule maps form a group which we can
identify with the classical points of the quantum group.

Chapter 3 is devoted to deformations of quantum groups and representations.
In Chap. 4 we construct bundles with quantum group fibres and their classifying
spaces. For this we mimic the classical construction, taking right comodule
homomorphisms for the transition functions. This restricts our construction
to a semiclassical situation, but it is the only way that allows to retain the
comodule structure. Chapter 5 presents as an example the quantum group SUμ(n)
of [8].

2. Coequivariant Maps

Let G be a topological group, which we also consider as a right G-space, G acting
by right multiplication. Then every continuous G-equivariant map /: G -> G is
given by/(#) = %, where /ze G is some group element. Similar statements hold for
the left action of G upon itself. In this section we generalize these observations to
quantum groups.

2.1. Hopf Algebras and Comodules. Let H be a Hopf algebra over some fixed field
/c, with multiplication m\H®H-*H, unit η: k -> H, comultiplication A: H ->
H (x) H, counit ε: H -» k and antipode i'.H^H (we use the notations of [5]). All
tensor products are over k unless explicitly indicated. Also all homomorphisms of
algebras are (unital) homomorphisms over k.
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A right-//-comodule is a fc-vectorspace E with a linear map δE: E -» E ® //, the
coaction, such that the diagrams

E®H

δκ/ x
,£®//®// "Y | i d £ ® ε (1)

^ A£®/c
E®H

commute. A linear map/between comodules/: E± ~> £2 is a πiap of//-comodules
if the diagram

£2 ® //

commutes. We could call such a map coequivariant or //-map. We denote the set of
H-comodule maps by HomH(£1? £2) If EI and £2 carry some additional structure
(like being fc-algebras) we mean by HomH(£l5 E2) the subset of the morphisms of
the appropriate category preserving the //-comodule structure.

2.2. H-Maps ofH. We want to generalize the concept of a G-selfmap of G. H itself
is an H-comodule on the left and on the right, the diagrams defining the structure
of H yield immediately that the diagrams (1) commute, if we take A as the coaction.
In the sequel, we will only use the right-/ί-coaction on //, writing EndH(H) for
//-maps of H is therefore unambiguous.

The "geometric" structure of H is reflected in the algebra structure, so in
requiring that/also be a k-algebra homomorphism, we obtain a close analogue of
a G-map G -> G.

Lemma 1. Let f'.H^H be an H-map. Then ξ:=ε°f:H-*k is a k-algebra
homomorphism and f can be written as f=mkίH°(ξ®idH)°A, where
mk,H: k ® H -> H denotes multiplication.

Proof. Since ξ is a composition of homomorphisms of /c-algebras, it is itself
a homomorphism of fc-algebras. We have to show that the diagram

H®H ^— H

/c®// —Ξ-* //
mfe,H

commutes. But this diagram is obtained by stacking the first of the following two
diagrams on top of the second.

H®H^—H H®H^—H

/®idJ / e(x)idH

\f i

H®H^—H k®H > H



498 A. Mϋller

The first of them is commutative because /is a map of //-comodules, the second is
one of the axioms for the counit ε [5]. D

The lemma justifies the following definition.

Definition 1. A k-algebra homomorphίsm H -> k is called a character, the set of
characters is denoted by X(//). The map χ : EndH(//) -> JL(H):f H-» ε ° f ί s called the
character map.

The inverse of the character map sends ξ e X(//) to mk j H ° (ξ ® idH) ° A. Hence
characters correspond bijectively to //-maps of //, and 3£(//) inherits a composi-
tion from EndH(H) via χ. If/i and/2 are two //-maps of//, then their composition
is also an //-map, the corresponding character ξ can be computed using the
previous lemma: ξ = s°fι °/2. But if ξt = χ(fi\ i = 1, 2, then

m f e H ® idk) o (idk ® ̂  ® idH) ° (£2 ® idH ® H) ° (idH®A)°A

mk)o(^2(8)^ι ®ε)°(idH(x)z1)ozl

) idfc) ° (ξ2 ® ζi ® ε) ° (zl (x) idH) ° zl

(ξ 2 ® ξ i ) ° ̂  ] ® ε) o Zl

In the last step we used one of the axioms for the counit β. With this composition,
χ becomes a homomorphism of semigroups.

What we have done so far holds in any coalgebra. The interesting things begin
to happen with the antipode i:

Proposition 2. Every H-mαpf\ //-»// is ίnvertίble. Ifξ = χ(f) is the character off,
then ξ ° i is the character off ~ 1 : ξ ° i = χ(f " 1 ).

Proof. We have to show that /i := f° mfe> H ° (ξ ° i i ® idH) ° A = iάH and
/2 •'= Wfc,H ° (^ ° i (x) id/ϊ) °A°f= idH. Since idH has ε as corresponding character, we
only have to show that χ(f1) = ε and χ(/2) = ε. We compute

= mfc ° (ξ (x) idfe) ° (idH ® ε)° A°mktH°(ξ°i® idH) ° A

ε) ° J ° mfc>H ° (ξ ° i ® idH) ° Zl

= ξ°η°ε = ε .

In the last step we use the fact that ξ preserves the unit and is /c-linear. The
computation for/2 is completely analogous. This completes the proof.' D
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The character map is therefore not only a homomorphism of semigroups, but of
groups. We can sum up the results of this section in the following corollary.

Corollary 3. EndH(H) is a group. The set 3£(H) with the maps

is a group. The map χ : EndH(H) -> 3ί(H) is a group homomorphism. D

2.3. The Character Group of a Quantum Group. Quantum groups in the sense of
Woronowicz [8] are C*-algebras, and the relevant maps have to satisfy some
compatibility conditions with the ^-structure. More precisely, H is a C*-algebra
with unity and there are elements uikeH that generate a dense subalgebra H°.
There is a C*-homomorphism A : H -> H (x) //, which satisfies

Furthermore, there is a linear antimultiplicative mapping i: H° -> H° such that
i(i(h*)*) = h for all Λe#°, and a hermitian character ε:H°-*(C such that H°,
equipped with these maps, is a Hopf algebra (a hermitian character is a C*-
homomorphism). The character ε satisfies ε(uik) = δik. The only obstruction for
H to be a Hopf algebra is that i and ε are not defined on the whole of H.

In some cases ε can not be extended to the whole of H, and then ε °/ might not
be well defined for some C*-homomorphisms which respect the //-coaction. It is
therefore necessary to restrict the concept of H-map to C*-homomorphisms which
preserve H°:

Definition 2. Let H be a quantum group, and f: H -> H a C* -homomorphism such
that f(H°) a HQ and the diagrams (1) with E = H and H replaced by H° at
appropriate places commute. Such anfis called an H-map ofH. The set ofH-maps of
H is again denoted by EndH(H).

So we are only interested in maps which induce a H °-map of H°, and for these
we can apply the results of the preceding section. In particular, every H°-map is an
isomorphism H° -» HQ, and every character of an //°-map is hermitian. For our
purposes, only hermitian characters are interesting, we therefore define X(H) to
contain only hermitian characters, and we will have to say more about continuity
in a moment.

H° is very special, it is generated by the elements uikEH, the character asso-
ciated to an H-map f is therefore uniquely determined by the values on these
elements. Furthermore, the composition of Corollary 3 can also be expressed by
these values of the character. Let ξl and ξ2 be two characters of H°, then their
composition ξ = ξ^ ξ2 has the following value on uik:

ξ(uik) = m<c o (ξ2 (x) ζ 1 ) o A (uίk)

n

= W < C 0 ( f 2 ® £ l ) Σ Uij®Ujk
7=1

n

= Σ ξ2(Uij)ξι(ujk) .
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But this is almost matrix multiplication. Let us define

^MM(<C): ξ ι-> (xίk):= (ξ(Uik)Y .

This map respects the composition; it turns ξιmξ2 into the matrix product o f φ ( ξ ι )
and φ(ξ2) Since the set of characters is a group, im φ is a subgroup of GLΠ((C), or in
other words, φ is a group homomorphism, and we know that it is injective.

The problem with all this is that ε might not be continuous. This means that we
cannot expect χ(/) to be continuous either, although /might be. In many interest-
ing cases of quantum groups, ε is continuous, for instance for SUμ(n) discussed in
Chapter 5. Thus we reach our final definition of

Definition 3. If H is a quantum group, then J£(H) is the set of continuous hermitian
characters of H, i.e. unital C*-homomorphisms H -> C.

But even for ξ e J£(H) it is not entirely clear that the candidate for the character
of the inverse, ξ ° i, which is only defined on H° a priori, can be continuously
extended to H and thus gives an //-map. That such a thing can not happen is
shown in the next proposition. If ε is continuous, then J^(H) is nonempty, the next
proposition also gives some kind of a converse to this statement.

Proposition 4. Let H be a quantum group such that J£(H) is nonempty. Then J^(H) is
in a canonical way a compact Lie group.

Proof. The idea of the proof is as follows: we first show that X(//) is a compact
subset of GLΠ(C), closed under multiplication. Then we show that such a set is
automatically a group, contained in some compact Lie group. The Lie group
structure then follows from some standard result of the theory of compact Lie
groups.

Since H contains a finitely generated dense subalgebra, it is separable. By
[2, 15.3.2], the set J£(H) is compact in the topology induced from the weak
topology of the dual of H. In particular, the maps ξ i— > ξ(uik) are continuous, hence
the image of J£(H ) in GLn(C) under the map φ is compact, φ: 3£(H) -> GLM((C) is
even a homeomorphism onto the image, because any continuous injection from
a compact set has this property. Since the definition of the composition of
characters only involves the C*-homomorphism Δ9 ^(H) is closed under composi-
tion, hence also its image in GLM(C).

Next we show that any compact subset K c GLΠ(C) closed under multiplica-
tion is a subgroup. If K does not contain an element other than the identity, then
K is trivially a subgroup. Therefore let k e K be a nontrivial element and consider
the set A = [kr \ r > 0} c K.

There is an element g e GLΠ((C), such that g~^kg has Jordan normal form, i.e. it
is decomposed into blocks of the form

/λ 1 \

λ *•
m =

• i
\ ' V

The powers of m have λr on the diagonal. For \λ\ > 1 this implies that the set
A c MΠ(C) c= C"x n is unbounded, hence cannot be contained in a compact set. If
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\λ\ < 1 then k~ 1 has a block like m with λ replaced by λ~ 1. The same argument as
before then shows that [k~r \ r > 0} cannot be contained in the compact set K~ 1.
Hence \λ\ = 1.

The matrix element (mr)12 is rλr~ 1, which is again unbounded: |rλ r~ * | = r. This
shows that only 1 x 1 Jordan blocks are possible, or that k is contained in
a conjugate of the torus T= {diag(λι, . . . , λn)\ \λt\ = 1 V z } . There are two situ-
ations: either A is a finite set, but then it is trivially a cyclic group, or A is infinite,
but then it is dense in some closed abelian subgroup of T. But K n T is closed, so
A c K n Γ is a subgroup of Γ, which means that the identity and the inverse of
k are both in K, hence K is a closed subgroup of GLΠ((C).

K is a compact topological group equipped with a faithful representation, the
injection φ of K into GLn(C). By the Unitarian trick, we can conjugate K into U(n);
we simply have to change the basis in such a way as to make the representation
unitary with respect to the standard inner product. But any closed subgroup of
a compact Lie group is a Lie subgroup [1]. D

In the rest of this paper, we only consider quantum groups with the property
alluded to in the proposition:

Definition 4. A quantum group H is called grouplike, ifJL(H) is nonempty.

2.4. Associated Representations of the Character Group. Let H be a group-like
quantum group. Recall that ρeB(K) ® H is called a representation of H in the
Hubert space K if

(i<W)® Δ)(ρ) = (mB(K)®idH®H)°S(23)0(ρ® ρ) ,

where S(2^ is the map that exchanges the second and third factor in the
tensor product, and mβ(K) is the multiplication in B(K). A representation ρ of H
induces in a natural way a representation of the character group. We
denote this new representation again by ρ. Its value on ζeJL(H) is the operator

ξ)(ρ)εB(K). We verify the homomorphism property ρ ( ζ ι ) ρ ( ζ 2 ) =

Note that this is essentially the proof for the homomorphism property of φ; this is
not surprising, the matrix elements uik form a representation weMw(C) ® //.

3. Deformations of Quantum Groups and Their Character Groups

Compact Lie groups are very rigid, one cannot deform them. Quantum groups
however allow much more flexibility; there are deformations of quantum groups
and associated deformations of their character groups. All quantum groups in this
and the following chapters are grouplike.
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3.1. Deformations of Quantum Groups. Since our quantum groups are C*-algebras,
a natural notion of deformation is that of a continuous field of C*-algebras with the
additional properties that the fibres are quantum groups, the relevant structure
maps are continuous and the matrix elements uik are continuous sections.

In this and the following sections, let X be a path connected and simply
connected topological space, the parameter space. We consider families
2F = (^x)xeX of objects in some subcategory of the category of sets, and a map
f:X-> LLex^x is called a section if /(x)e &x for all seX. We write Y for the
trivial family with constant fibre 7, for this family Y[xeX Yx = X x Y.

Recall [3] that a family of C*-algebras jtf = ((Ax)xeX9 Γ^) is called a continu-
ous field of C*-algebras, if the set of sections Γ^ satisfies

(1) Γj/ is closed under addition, the *-operation, pointwise multiplication and
multiplication by continuous functions on X.

(2) x h-> ||α(x)|| is continuous for all aeΓ^.
(3) {s(x)\seΓ^} is dense in Ax.

A map between two continuous fields j/i -> j/2 is a family of continuous maps
fx'- Aι,x^>A2,x such that x i— >/x°s(x) is a continuous section of s&2 for every
continuous section s e Γ^l .

A continuous field of quantum groups is a continuous field of C*-algebras ffl ,
together with sections uik e Γ^> that generate Γ^> as a C(X )-algebra. The uik generate
in every fibre a dense subalgebra Hx. Furthermore we have maps

such that (Hx, Ax, εx, iX9 uik(x\ 1 ̂  f, k ̂  n) is a quantum group for every xe X.
Although i is not defined on the whole of the fibres, it makes sense to speak of
continuity of the field /, i is only supposed to compose nicely with sections on
a subalgebra where it is well defined. Note that i ° 5 may not be continuous if s is not
in this subalgebra.

An example of a continuous field of quantum groups is given by the
twisted SUμ(n) groups of Woronowicz [9]. This example is studied in more detail in
Chap. 5.

Almost everything we did for quantum groups has a more or less direct
translation to fields of quantum groups. We only have to interpret the defining
commutative diagrams of Chap. 2 fibrewise, and all the structure maps have to be
continuous fields. For instance there are fields of Banach algebras which are at the
same time J f -comodules on the right. Such a field $ has as fibre Ex over the point
x an //x-comodule. Furthermore the coaction map δ# has to be a continuous field
of coaction maps. We use the notation Hom^ί^Ί, $2) f°

r the ^f-maps between
Jf-comodules ff± and £2 Also 3? itself is a 3? -comodule on the right, and we mean
this coaction when we write End^(34f).

As before, the elements of End^(J f ) are in bijective correspondence with the
characters, characters are now continuous fields of *-homomorphisms from J f to
the trivial field C.
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3.2. The "Family of Character Groups. Instead of just one character group we have
now a whole family J£(HX) of groups, indexed by the points xeX. There is
a natural injection

φ: U X(fl») <? X x Gί,(C): <p|XW,) = φ

There is a topology on ]JX6Λ: X(Hjc), generated by the following open sets. The
character groups are subsets of the duals Hx, which form a continuous field 3?' of
Banach spaces on X. Let 5 be a section of 3tf' such that s(x)eJί(Hx) for all x. For
any open subset W of X and any ε > 0, let

17(5, W,ε) = {fee LI Hi beH'x=>\\b - s(x)\\ < ε jn ]J X(JFfx) .
(. xeTF J xe*

The topology generated by these open sets is the same as the relative topology of
the image of φ in X x GLn(C), so φ is a homeomorphism onto the image.

Definition 5. X^) is the disjoint union of the ^(Hx) equipped with the above
topology. Let pr^ be the projection X(Jf ) -> X which maps J£(HX) to x.

Note that there is no relationship to the topology on the product Y[xeX Xpf x).
The product is the set of all the sections of X(jf), but we are only interested in
those sections which are continuous maps X ->• X(Jf ).

If/: tf -» tff is an tf -map, then χ(/) = ε °/is a continuous field of characters,
i.e. a continuous map X -> X(J-f ). We conjecture of course that an analogue to
Proposition 2 is true.

Proposition 5. Every ffl -map oftff is an isomorphism, the character of the inverse has
χ ( f ) ° i as its restriction to J f °.

Proof. Let/: Jf7 -> Jf be an f̂ -map, i.e. a homomorphism of continuous fields of
C*-algebras and of right- Jf-comodules. Then the character map χ associates to
/the map ε °/ which is a continuous map X -» U^^ XCH*). Since i is a continuous
family of antipodes, χ ( f ) ° i is also continuous, it is therefore the character of
a 2tf -map. It is the inverse to / D

3.3. Deformations of Representations. Let K be a Hubert space. A deformation of
a quantum group representation is a continuous section ρ of the field

B(K) ®^ = ((B(K) <g> Hx)xex, B(K) ® Γjr)

with the property that ρx is a representation of #* for every x e X. There is a family
of representations of 3£(HX) associated to ρ, denoted by the same symbol and
mapping ξe3£(Hx) to the operator (idβ(X)

4. Structure Groups and Principal Bundles

A principal fibre bundle is locally completely characterized by its structure group
G. Over some suitably small open set U in the base space, the bundle looks like the
trivial bundle U x G. Its sections are therefore the same as the elements of the group
map (U, G), which we will henceforth also call structure group. Hence a principal
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bundle is nothing else but chunks of the structure group glued together in some
unorthodox way destroying the group structure in the process and only keeping
the group action intact.

For this chapter we fix a continuous field of quantum groups 3f over some path
connected, simply connected and locally contractible parameter space X. A path
connected and simply connected manifold (with or without boundary) has these
properties.

4.1. Structure Groups. Let M be a compact topological space, and g:M^X
a continuous map. Then there exists a canonically defined continuous field g* J^ of
quantum groups on M. The fibre over m e M is ̂ (m), the set of sections Γg* ̂  is the
C(M)-subalgebra of ΠmeM Hg(m) generated by the pullbacks (g*s)(m):= s(g(m)) of
sections seΓ#>. The verification of the axioms is immediate. This field of quantum
groups is called the structure group associated to g. To ̂  = g* 3f we can apply all
the results of the previous chapter.

The construction is of course much more general, to every continuous field of
C*-algebras on X and to every continuous map M -> X we can associate a pull-
back. Pullbacks to embeddings of subspaces are called restrictions.

The classical case is recovered for X = {pt.}, then there is only one quantum
group to choose from, and the structure group is simply the trivial bundle M x G.
The term is justified because the continuous sections of the bundle form a group.

The virtue in fixing a parameter space X is that the class of possible fields of
quantum groups is somewhat limited. Also the way in which the quantum groups
are allowed to vary along a path in the base space M is restricted to the ways they
can vary along a path in X. Later we will have to restrict X further.

Any closed subspace of M gets a field of quantum groups from M by restriction;
it is the pullback of J^f under the restriction of/to the subspace. If/0* 2? and/i* Jf
are two structure groups, then a map F: M x / -* X (I is the interval [0, 1]) such
that F l M x j o ) =/o and F\MX{I} =/ι is called a homotopy of the structure groups. It
induces a structure group F*3? on M x / such that its restrictions to M x {0} and
M x {1} are/o*^ andffJf? respectively.

A representation ρ of ffl can also be pulled back to g* Jf , as well as the family
of character groups.

4.2. Principal Bundles. Let ̂  = g* ffl be a structure group on M, then a ^-bundle
& is a continuous field of C*-algebras, such that every fibre Pm is a Gm-comodule
isomorphic as a C*-algebra to Gm. It is locally trivial if there is a covering of M by
open sets L/α, α ranging over some indexing set, such that for every restriction
there is a |̂ ̂ -isomorphism

such a map is as usual called a bundle chart. Since φa is invertible, we get maps on
the intersection UΛ n U β\

Specifying these maps allows to reconstruct the bundle & completely because of the
following proposition which is useful in its own.

Proposition 6. Let f: ^>

1 -> ̂ 2 be a $-map of principal & -bundles. Then f is an
isomorphism of principal $ -bundles.
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Proof. The only thing we have to prove is that the inverse of/depends continu-
ously on m e M. This question is purely local, we can therefore work in an open set
U c: M over which both bundles are trivial,/then induces a ^l^-map of <&\υ. After
restriction to U we get the situation of Proposition 5, which completes the
proof. D

We would not only like to consider bundles with some fixed structure group,
but also bundles with different structure groups corresponding to different maps
/: M -» X.

Definition 6. 2P is called a J^f-bundle if it is a f*34f-bundle for some continuous
f:M-+X.

There are two special classes of Jf-bundles. A bundle globally isomorphic to
a structure group is called a trivial bundle; a trivial bundle with structure group
induced by a constant map is called a constant Jf-bundle.

The bundles in an isomorphism class of principal bundles have all the same
structure group; they do not take the flexibility of quantum groups into account.
The set of isomorphism classes of J f bundles on M is therefore very large in
general. There are roughly as many trivial bundles as there are continuous maps
M -> X. Isomorphism is much too strong a relation.

As we were able to construct homotopies of the structure group, we can also
consider homotopies of principal bundles.

Definition 7. ^0 and &\ are called homotopίc, if there is a bundle & on M x / with
structure group G*Jjf, such that ^O = ^!MX{O} and ^I=^\MX{\] which have
structure group (G|Mx {o})*^7 and (G\Mχ {\}Y ̂  respectively. £P is called a homotopy
between ^0 and 0>l9 also written 0>: ̂ 0 - î -

The following lemma is immediately verified.

Lemma 7. Homotopy of principal bundles is an equivalence relation. D

We want to study the set of homotopy classes of bundles over a given space M,
which we denote by Bund(M, Jf). In the classical case, this amounts to finding all
the free homotopy classes of maps from M into BG. To prove this, one first
introduces a basepoint and later studies the effect of changing the base point.

From now on we work in CW*, the homotopy category of path connected
pointed CW-complexes. We start by introducing basepoints in our situation. First
of all, the parameter space X has now a basepoint, which means that one of the
quantum groups is preferred. The base spaces are now in fact pairs (M, *). A bundle
over the pair (A, B) is of course a pair of bundles (0*A, ̂ B) over the individual
spaces together with an isomorphism of bundles g?B ^ &A\B For a pointed space
this means that a bundle is now naturally equipped with an isomorphism P^ = H%.
Also homotopies are now supposed to preserve the basepoint. Unless explicitly
stated, all maps are supposed to preserve the additional structure.

We can now define a contravariant functor on CW^ which assigns to a space
M the set of homotopy classes of Jf-bundles on M and to a map/: M^ -» M2 and
a bundle on M2 its pullback. If ̂  is a homotopy of the bundles ^0 and ̂  on M2,
then (/xid/)*^1 is a homotopy of the bundles/*^ and/*^. If F:/0 ^/i is
a homotopy, then F*^ is a homotopy of the bundles/0*^ and/!*^ on M1 for any
bundle 0> on M2.
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Because we assumed that X is path connected, and because trivial bundles with
constant fibres correspond to constant maps into X9 all the bundles with constant
fibres are homotopic, they define a base point in the set of homotopy classes of
bundles. Since X is assumed to be simply connected, trivial bundles over a circle S1

are homotopic to a constant bundle. We summarize this in the following lemma
about Bund*( , 3?\ analogous statements apply of course for Bund( , 3?}.

Lemma 8. Let Bund*(M; 3?) = Bund*(M) be the pointed set of homotopy classes
of (pointed) 3f -bundles, the basepoint being the class of a trivial bundle with constant
structure group. For f: M1 -> M2, Bund*(/; $?} = Bund*(/) is the map that as-
signs to a bundle on M2 its pullback to M±. Bund* is a contravariant functor from
CW* to the category of pointed sets, Bund*: CW* -> Sets*. D

The homotopy relation allows a lot of flexibility:

Lemma 9. Let ̂  be a bundle over M and m0 e M. Then there is a homotopic bundle
with constant structure group over a sufficiently small neighborhood ofm0.

Proof. First take a trivializing covering for 3P and let UQ be an open set of the
covering which contains m0. Let u be a continuous function on M with support in
l/o and w(m0) = 1. Then V\= (meM| u(m) > i} is an open neighborhood of
m0 such that its closure K is still contained in UQ. Replacing all other charts by
UΛ\K gives an atlas where only one chart meets V.

Let/* tff be the structure group of ̂ . By making F smaller if necessary, we can
achieve that V is mapped into a contractible neighborhood W of /(m0). Let
Φt: W ̂  Wbea homotopy relative to/(m0) from the identity to the constant map.
Let u be a function M -> / with support in V and u = 1 on some neighborhood of
mQ. Then we change the structure group in Fby the homotopy Φfΐ(m)^; because
V does not meet any other chart besides t/0, this does not affect the coordinate
changes and therefore defines a homotopy of the bundle & to one with the required
properties. D

4.3. Associated Vectorbundles. If ρ is a representation of Jtf in the Hubert space K,
then to every principal ^-bundle we can associate in a canonical way a vector-
bundle. We choose a covering of M which trivializes the bundle 0*. On every
intersection of two open sets UΛ and Uβ of the covering, we have a glueing map φβoc.
This is a ^\UΛ^Uβ-map of &\uαnuβ, which is completely characterized by its
character. The representation of 3? induces a family of representations of the
character groups. To φβΛ are therefore associated continuous maps u -» GL(K\
and they can be used to glue together trivial ^C-bundles over the UΛ to a ^C-bundle
over M .

This construction is completely analogous to the construction of associated
vectorbundles for G-bundles where G is a group.

4.4. Classifying Spaces. We have constructed in Sect. 4.2 a functor from the
category CW* to the category of pointed sets. The existence of a classifying space
for J f -bundles on pointed CW-complexes follows from a general theorem of
algebraic topology. This theorem says that the restriction of a functor H on the
homotopy category of pointed spaces to the subcategory of CW-complexes is
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I

representable by a CW-space if and only if it is a homotopy functor [7, 7.7].
A homotopy functor is a functor H on CW* such that

(a) If j: 7->Z is an equalizer of /0,/ι: A -> 7, and if we//(7) is such that
H(fQ)u = H(fί)u9 there is veH(Z) such that H(j)v = u.

(b) If (Yλ)λeλ is an indexed family of objects of CW* and iλ: Yλ-> \/' λeΛ Yλ9 there is
an equivalence

\λeΛ / λeΛ

Recall that an equalizer of/ 0,/ι: A-> 7 is a morphism j: 7-»Z such that
7 °/o =7 °/ι and that for every other morphism/: 7-> Z' with this property, there
is a morphism h:Z ->Z' such that /z°7 =/. In the category of CW-complexes,
there are equalizers of the form Z= Y \ j ( A x I ) with the identifications
(α, 0) ~fo(a) and (α, 1) ~/i(a) for all ae A. The next lemma shows that it suffices to
prove property (a) for these equalizers.

Lemma 10. Letj: 7-> Z andj': 7-> Z' be two equalizers o//0,/ι :A-+Y. If one of
them satisfies (a), then so does the other.

Proof. Suppose/ 7->Z satisfies (a). Then there is veH(Z) such that H(j)v = u.
Since7' and/ are both equalizers, there is a map h: Z' -»Z such that h °/ =/ Then
u = H(j)v = H(h°j') = h ( j ' ) ° H ( h ) v , and ι/ = H(h)vεH(Z') is the element we are
looking for: it satisfies H(j')vr = u, hence/ satisfies (a). D

We now return to the J f-bundle functor.

Proposition 11. The functor Bund* of 3?-bundles satisfies (a).

Proof. Let Z be the special equalizer exhibited above. Let & be a bundle on 7 such
that/o*^ ^/i*^, i.e. there is a bundle =2 on A x [J, f] such that ^U x{i} =/o*^
and J|^x|2| =/ι*^. The compositions/0 °pri: ^4 x [0,3] -> 7and/! °pr2: >4 x [|, 1]
-+ Y induce bundles by pullback which can be glued together to a bundle on the

subset (A x [|, 1] u 7u A x [0, ̂ ]) of Z. The bundle Ά fits exactly into the gap
^ x [a> I] to giye a bundle J> on Z. The restriction of ̂  to 7is of course ,̂ which
proves property (a). D

If Bund* is to be a homotopy functor, then it should also satisfy (b). (b) says that
it is possible to glue together bundles over the individual spaces Yλ to a global
bundle on the wedge. Since we are in a pointed situation, there is no problem in
glueing together bundles over a basepoint. The only way to glue the bundles
together without destroying the additional structure is to use the canonical isomor-
phisms ^|{*} ̂  Jf*.

In this way we have constructed an inverse of

V £ ) -> Π
λεΛ J λeAλεΛ J λeA

which proves property (b). We can now state our main results.

Theorem 12. For any deformation ofgrouplike quantum groups J^ over a connected,
simply connected and locally contractible parameter space, there is a pointed
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CW-complex BJtif and a universal 3? -bundle over B3? such that the natural trans-
formation of contravariant functors on

η: [ , BJf ]* -> Bund*(

ηM: [M, Btf\ -> BundJM;

is a natural equivalence. D

We would of course like to have an analogous statement for arbitrary bundles
over CW-complexes. Removing the basepoint simply means that we allow free
homotopies of bundles and that we forget the isomorphism of H # with one of the
fibres. The result is the following.

Theorem 13. For any deformation ofgrouplike quantum groups Jf over a connected,
simply connected and locally contractible parameter space, there is a CW-complex

and a universal ^-bundle E2C such that the natural transformation

ηM: [M, βjf] -* Bund(M;

is a natural equivalence. D

It might still be interesting to know to what extent something like property (b)
is true in the case of arbitrary bundles. More precisely, we want to know in how
many different ways one can glue bundles together over some basepoint.

In the classical theory, there is no problem to do this, because all the fibres are
the same anyway, but in our situation we first have to make the fibres over the
basepoints equal before we can glue. But then which map in Endc^G*) shall we use
to glue the fibres? The following lemma shows that at most the path component of

matters.

Lemma 14. Let ̂  be & '-bundles over Yh i = 1, 2, having the same fibre over the
basepoint. Then all the bundles over Yί v Y2 are homotopic by based homotopies,
provided the maps used to glue the fibres are in the same path component of

Proof. We use trivializing coverings of Y^ and Y2 such that the basqpoint meets
only one chart and has neighborhoods V± and V2 not intersecting any of the other
open sets. By Lemma 9 we can even assume that the fibre is constant over V{. Let
Mf : Yt -> I be continuous functions with support in Vt and M f (*) = 1. Furthermore let
7 be a path in X(^f ).

We construct a bundle & over (Y1 v Y2) x / as follows. Over Yl x I we take the
bundle ̂  with the exception that in (y, f ) e F i x / we take H p ΐ l θ y ( t U ί ( y ) ) as the
structure group. This does not affect the coordinate changes. Over Y2 x / we
introduce an additional chart, let l/0 be the unique chart of Y2 that meets
the basepoint. We replace it by U:= U0\{ * } and introduce Fas a new chart. For
the structure group over Fx / we use Hpΐlθy(tU2^ over the point (y, t)eVxI. For
the coordinate change over F\{*} we use the one associated to the section
(y, t) i— > y(tu2(y)}~1 of the family of character groups over (V\{ * }) x /. We now
glue the bundles together along { * } x / using the identity. Then & is a homotopy
from the bundle obtained by glueing by means of y(0) to the one obtained by
glueing by means of
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Unfortunately, this homotopy does not preserve the basepoint, because the
fibre over the basepoint varies during the homotopy. ^|{*} x/ is a bundle over
a circle. By using the same method as in Lemma 9 we can change the structure
group in a small neighborhood of { * } x / by contracting the image of { * } x / to
the basepoint, which is possible by the simple connectedness of X. D

4.5. Homotopy Groups of Classifying Spaces. In the classical case, the classifying
space operator (or functor rather) shifts the homotopy groups by 1: nn(BG) =
nn- i(G). We want to remark that this remains true in the quantum case if "πn(Jf )"
is suitably interpreted.

Consider π0 first. The group π^BJ^) classifies pointed f̂ -bundles on S1, but
they are easy to describe in terms of charts. The following result justifies calling this
group π0(JP ).

Proposition 15. The group π1 (B3?) is the quotient of the free group generated by the
set πo(Xpf )) by thefollowing relation: whenever the intersection of the projections of
two components c1,c2 <= Xpf) to the parameter space is nonempty, they can be
represented by elements of a character group for one of the common parameters, the
product c±c2 is then the component of the product of these representatives. D

It is now easy to guess what the higher homotopy groups of B3#* are:

Proposition 16. The higher homotopy groups of BJjf are given by πn(B3?} =
)°), where X(jf)° denotes the path component of the identity in

If we write πn(Jf) for πn(X(Jf )°), we recover the formula πn(B^f) ^ πn-
in complete analogy to the classical case.

5. Twisted SU(n)

In [9] Woronowicz has given an example of a deformation of the group SU(n). The
parameter space in this case is X = ]0, 1], and for every value μeX, he defines
a quantum group SUμ(n). These quantum groups form a continuous deformation,
to which we wish to apply the theory of the preceding sections.

5.1. Character Group ofSUμ(ri). The quantum group SUμ(n) of Woronowicz [9] is
a C*-algebra generated by elements uik, 1 g ί, k :g n, with the following relations.
Let σeSn be a permutation, then I(σ) is the number of inversions:

I(σ) = \ { ( i J ) \ i < J A σ ( i ) > σ ( j ) } \ .

There are relations which justify the "17" in "5l7μ(n)"

Σ umkU*k = δlml, £ u$ukm = δlml , (2)
k k

and relations generalizing the determinant condition (the "S" of "S£7μ(π)")

Σ (- μ)/(σ)wσ(1),τ(1) Mσ ( B ) f t ( B ) = (- μyu V τ e S Π , (3)
σeSn

Σ (-Aί)/ lσ)««r(D.*, •••««(»).*. = 0 V {*!,...,*,,}$: {!,.. .,«}, (4)
σeSn

where the parameter μ ranges over Jf.
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Suppose ξ eJ£(SUμ(n)), then it is mapped under φ to a matrix xik = ξ(uik). The
matrix x is unitary because of (2), and in addition the entries have to satisfy the
relations

Σ (- μ)J(σ)xσ(i),t(1) - xσ(n),τ(n) = (- μ)/(τ) V τ e S n . (5)
σeSn

If μ = 1, then all the relations are identical, and they only say that the matrix x has
determinant equal to 1. The relations (4) are trivially verified; because at least two
of the ki are equal, the formula (4) with u replaced by x just computes the
determinant of a matrix with at least two equal columns, which is zero. The
character group of SUι(n) is therefore nothing else but SU(ή).

Note that the diagonal matrices in Γ""1 = {diag(A1? . . . , λn)\ λ1 λn — 1}
are in the character group X(Sl/μ(n)) for any μ, because for these matrices the
relations (5) reduce to

Σ (-μ) / ( σ ) Xσ(l) ,τ( l ) Xσ(») ,τ(»)= Σ ( ~ J^σ.τ = (~ ^)/W V I E Sn .
σeSn σeSn

Again the relations (4) are trivially satisfied, because in every term of the sum there
appears at least one nondiagonal and hence vanishing factor. We want to show
that there are no other matrices in the character group, for most values of the
parameter. For this the relations (5) suffice.

Proposition 17. There is an interval in X containing 1 such that J£(SUμ(ri)) = Tn~1

except at μ = 1 where XίSl/^n)) = Sl/(n).

Proof. The relations (5) form a system of linear equations for the n\ products
χ i σ ( i ) ' ' ' χnσ(n)> where σ ranges over all permutations. The coefficient matrix of this
system is (— μ)/(στ~1}. The solutions are functions on Sn, e.g. the matrices in τn~l

are solutions, they correspond to the indicator function of the identity element. The
determinant of the coefficient matrix is a polynomial in μ with constant term ± 1

and degree nl I ). Because its zeros are isolated, there is a connected neighbor-

hood of 1 such that the indicator function of the identity is the only solution:

X l l ' - X n n = l , ( 6 )

*lσ(l) * ' * XnaM = ° V ff 6 SB\ {*} (?)

(7) says that x cannot be a matrix obtained from one in Tn~l by conjugation by
some permutation matrix, because then all the products Xι σ ( i ) xnσ(n) would be
zero unless σ is the permutation corresponding to the permutation matrix, for
which the product would be 1. These are exactly the matrices of the normalizer of

(6) and (7) also imply that the determinant of x is 1, because

det(x) = Σ sign(σ)x lσ(1) xnσ(n) = xn xnn = 1 .
σeSn

Next we show that the only matrices satisfying the relations (6) and (7) are the
matrices in Γ""1. We know that X(Sl/μ(n)) is a Lie group with maximal torus
77""1, the torus cannot be larger than that of SU(n) by the preceding paragraph.
Suppose its dimension is larger than n — 1. Then there is a vector a in su(π)
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complementary to t such that Qxp(ta)eJL(SUμ(n)) for all t. a is a traceless antiher-
mitian matrix, and we can even assume that all the diagonal entries vanish.
Therefore there exists a symmetric pair of nonzero entries off the diagonal, xtj and
Xβ say. Then the same entries of exp(ία) are nonzero, at least for sufficiently small
values of ί. Then the product corresponding to the transposition of i and j will be
nonzero, contradicting the relations (7). The connected component of the identity
ofJL(SUμ(n)) is therefore Tn~ *, so J£(SUμ(n)) must be a subgroup of the normalizer
of Γ""1 in SU(n)9 but as we saw above, no element of the normalizer outside Γ""1

is in J£(SUμ(n)). This completes the proof. D

5.2. Classifying Space ofSUμ(n). The very special structure of the family of charac-
ter groups of SUμ(n) even allows to compute the classifying space.

Theorem 18. The classifying space ofSUμ(n) over the neighborhood Vof Proposition
17 is BSU(n\ the "classical" classifying space ofSU(n).

Proof. Suppose & is a SUμ(n) bundle on M with structure group <§. Let <pα be
a family of bundle charts. The glueing maps φβΛ are functions from L7α n Uβ into
J£(SUμ(n)). This last space is homotopy equivalent to SU(n), we can deform the
structure group ^ together with all the glueing maps so that the structure group
becomes the constant Sl/(n)-structure group. Then we just have an SU(ή) bundle.
But such bundles are classified by homotopy classes of maps into BSU(n). D

If we consider only bundles with a fixed quantum group H = SUμ(n), μ fixed, as
fibre, then the bundles are of course classified by maps into BJ£(H). For μ φ 1 this
is BTn~1, the associated vector bundles of any representation of H split into
a direct sum of line bundles. Allowing the fibres to vary provides us with a much
richer theory. For M = S4 and n = 2 we get, e.g.

BundJS4; H) = [S4, 551] = H2(S4; Z) = 0 ,

BundJS4; SUμ(n)) = [S4, BSE/μ(n)] = π4(BSU(2)) = π3(SU(2)) = Z .

Note that pointed and unpointed bundles are the same in this case. One can also
conclude that a SUμ(n)-bundle having an associated vectorbundle which does not
split into linebundles cannot be a (SUμ(n))μeV-bundle if V does not contain the
parameter value 1.

It would be interesting to study similarly the deformations of the other classical
Lie groups, as Rosso has constructed them in [6].

6. Conclusion

We have seen that quite a bit of the theory of principal bundles can be carried over
to quantum groups, which allow the fibres to vary, not to drastically though. We
have also seen that the quantum group SUμ(n) of Woronowicz, although it behaves
like SU(n) as far as representation theory is concerned, has a completely different
homotopy theoretic behavior, at least for parameter values different from 1. This
raises the question whether there exist quantum groups whose representation
theory and bundle theory both coincide with that of the group they are supposed to
be a deformation of.
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For differential geometric applications it would be interesting to have a concept
analogous to connections on the bundles, for this it will be necessary to deform also
the differential structure on the quantum group [10, 6].
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