Commun. Math. Phys. 149, 425-431 (1992)

On the Classification of N = 2 Superconformal Coset Theories^{*}

Christoph Schweigert**

Institut für theoretische Physik der Universität Heidelberg, Philosophenweg 16, 6900 Heidelberg, Federal Republic of Germany

Received March 26, 1992

Abstract. We show that two dimensional N = 2 superconformal field theories cannot be constructed by applying the supersymmetric extension of the GKO construction to the so-called special subalgebras, i.e. subalgebras for which at least one generator associated to a root of the subalgebra does not correspond to a root of the algebra itself. We thus prove the completeness of the classification of N = 2 supersymmetric coset models obtained by Kazama and Suzuki. Furthermore we point out that compared to their papers an additional criterion has to be added in the N = 2 conditions.

1. Introduction

Coset constructions [4] in conformal field theory have recently undergone an intensive investigation for they allow the construction of many new models within the framework of Kac Moody algebras. In [6] Kazama and Suzuki proposed to use a supersymmetric extension of the GKO construction to obtain new N = 2 superconformal field theories.

They considered a reductive subalgebra H of a semi-simple Lie algebra G to perform a supersymmetric coset construction, yielding in all cases an N = 1 superconformal field theory. They also gave a necessary and sufficient condition under which this supersymmetry should be enlarged to an N = 2 supersymmetry. In a later paper [7] they gave a geometrical interpretation of this criterion which was used in turn to classify all N = 2 coset models.

Let us adopt in this note the short-hand convention that the generator in G corresponding to a root is called a root vector. As for reductive subalgebras of reductive Lie-algebras there are two different types (compare e.g. [2,3]): the subalgebra H is called *regular* iff the root vectors of H are also root vectors of G. (The embedding $H \hookrightarrow G$ is always chosen in a way that the Cartan-subalgebra

^{*} Work supported by the Studienstiftung des deutschen Volkes

^{**} Bitnet address: bd3@dhdurz1.bitnet

Cart(H) of H is mapped into the Cartan-subalgebra Cart(G) of G.) Otherwise it is called a *special* subalgebra. In particular subalgebras satisfying rank H = rank G are always regular for their Cartan-subalgebras are identical.

This note is organized as follows: in Sect. 2 we will shortly review this criterion, showing that an additional criterion has to be added and pointing out that in [7] only the regular subalgebras are dealt with. In Sect. 3 we show that it is not possible to use special subalgebras. In Sect. 4 we state our conclusions.

Throughout this note we shall adopt the following conventions (cf. [6]): let G be a semi-simple Lie-algebra, H a reductive subalgebra. Let

$$\{t^a, a = 1 \dots \dim H\}$$

be a basis of H that can be extended to a basis of G

$$\{t^A, A=1\ldots \dim G\},\$$

in which the Killing-form takes the form $\kappa(t^A, t^B) = \delta^{AB}$. In such a basis the structure constants are known to be totally antisymmetric. We shall denote group indices of generators belonging to G, H and G/H as $A, B, \ldots, a, b, \ldots$ and \bar{a}, \bar{b}, \ldots .

2. The N = 2 Conditions.

The N = 2 conditions spelled out by Kazama and Suzuki in [6] take the following form: enlarged supersymmetry is equivalent to the existence of two totally antisymmetric tensors $h_{\bar{a}\bar{b}}$ and $S_{\bar{a}\bar{b}\bar{c}}$, where the indices take their values in the coset.

They have to satisfy the conditions:

$$h_{\bar{a}\bar{b}} = -h_{\bar{b}\bar{a}} \quad h_{\bar{a}\bar{b}}h_{\bar{b}\bar{c}} = -\delta_{\bar{a}\bar{c}} , \qquad (1)$$

$$h_{\bar{a}\bar{b}}f_{\bar{b}\bar{c}e} = f_{\bar{a}\bar{b}e}h_{\bar{b}\bar{c}} \,, \tag{2}$$

$$f_{\bar{a}\bar{b}\bar{c}} = h_{\bar{a}\bar{b}}h_{\bar{b}\bar{a}}f_{\bar{p}\bar{q}\bar{c}} + \text{cyclic permutations in }\bar{a}, \ \bar{b} \text{ and } \bar{c}, \tag{3}$$

$$S_{\bar{a}\bar{b}\bar{c}} = h_{\bar{a}\bar{p}}h_{\bar{b}\bar{q}}h_{\bar{c}\bar{r}}f_{\bar{p}\bar{q}\bar{r}} \,. \tag{4}$$

(1) means that h is a complex structure on G/H, which is H-invariant by (2). (3) is a consistency condition, while (4) can be used to eliminate S in this problem.

We claim that these conditions are equivalent to the subsequent one:

Theorem. Let t be the orthogonal complement of H with respect to the Killing-form κ of G. (G is semi-simple, so κ is non-degenerate.) The model [G/H] is N = 2 supersymmetric if and only if there exists a direct sum decomposition of vector spaces:

$$t = t_+ \oplus t_- \tag{5}$$

(direct sum of vector spaces), where dim $t_+ = \dim t_-$, such that t_+ and t_- separately form closed Lie algebras and

$$\kappa|_{t+} \equiv 0, \tag{6}$$

when restricted to t_{\pm} respectively.

Classification of N = 2 Superconformal Coset Theories

Remark. Note that compared to [7] we have added the condition (6).

Proof. We shall use the ideas outlined in [7], but will dwell on (6).

Suppose first that [G/H] is N = 2 supersymmetric. Define t_{\pm} to be the eigenspaces corresponding to the eigenvalues $\pm i$ of the complex structure h. Then $t = t_{+} \oplus t_{-}$, dim $t_{+} = \dim t_{-}$ is immediate. Using (1)–(4) it is easy to show that

$$[t_{\pm}^{\bar{a}}, t_{\pm}^{b}] = i/2(f_{\bar{a}\bar{b}\bar{c}} \pm 1/iS_{\bar{a}\bar{b}\bar{c}})t_{\pm}^{\bar{c}},$$

where $t_{\pm}^{\bar{a}}$ denotes the component of $t^{\bar{a}}$ in t_{\pm} . t_{\pm} thus close under the Lie-bracket. Let $h_{\pm}^{(1)}$, $h_{\pm}^{(2)} \in t_{\pm}$ be arbitrary elements. Calculating by use of the antisymmetry (1) of h yields:

$$\begin{aligned} \kappa(h_{\pm}^{(1)}, h_{\pm}^{(2)}) &= (\pm 1/i)\kappa(hh_{\pm}^{(1)}, h_{\pm}^{(2)}) = -(\pm 1/i)\kappa(h_{\pm}^{(1)}, hh_{\pm}^{(2)}) \\ &= -\kappa(h_{\pm}^{(1)}, h_{\pm}^{(2)}) = 0. \end{aligned}$$

On the other hand, given a decomposition like (5), define h by requiring t_{\pm} to be the eigenspaces of h corresponding to the eigenvalues $\pm i$, assuring that the second equation of (1) is fulfilled. Then (2), (3) can be shown to follow from the fact that t_{\pm} are subalgebras, while (6) implies the first part of (1): let $r, s \in t$ be arbitrary elements, then $r = r_{+} + r_{-}$, $s = s_{+} + s_{-}$, where $s_{\pm}, r_{\pm} \in t_{\pm}$. Then

$$\begin{split} \kappa(hr,s) &= \kappa(ir_{+} - ir_{-}, s_{+} + s_{-}) = i\kappa(r_{+}, s_{-}) - i\kappa(r_{-}, s_{+}) \\ &= -\kappa(r_{+} + r_{-}, is_{+} - is_{-}) = -\kappa(r, hs). \end{split}$$

In [7] a sequential method is used to reduce the case rank $H < \operatorname{rank} G$ to the equal rank case. This method necessitates the existence of an intermediate subalgebra, satisfying:

$$H \subseteq H \oplus U(1)^{\operatorname{rank} G - \operatorname{rank} H} \subseteq G \tag{7}$$

(direct sum of Lie-algebras).

Proposition. Such an algebra exists if and only if H is a regular subalgebra.

Proof. First, let H be a regular subalgebra. Then the root space H^* of H can be canonically embedded into the root space G^* of G. Let

 $\{\beta^{(i)}, i = 1, \dots \operatorname{rank} G - \operatorname{rank} H\}$

be a basis for the orthogonal complement of H^* in G^* relative to the Killing-form. The generators of the U(1)-factors can then be shown in a Cartan-Weyl basis to be:

$$\left\{ (\beta^{(i)}, H) = \sum_{j=1}^{\operatorname{rank} G} \beta_j^{(i)} H^j, i = 1, \dots \operatorname{rank} G - \operatorname{rank} H \right\}.$$

Conversely, suppose there is a chain of subalgebras like (7). Let E be a root vector of H. An arbitrary element $h \in Cart(G)$ can be decomposed according to (7) like

$$h = h' + \sum_{i=1}^{\operatorname{rank} G - \operatorname{rank} H} u_i \,.$$

 $h' \in Cart(H)$, u_i multiples of the generators of the U(1) factors. Due to the direct sum structure in (7) one finds:

$$\mathrm{ad}_h(E) = \left[h' + \sum u_i, E\right] = [h', E] \propto E \,.$$

Thus every root vector of H is also a root vector of G. \Box

3. Special Subalgebras

One may now ask whether it is possible to use special subalgebras in order to construct new N = 2 supersymmetric coset models. We give a negative answer by the following

Theorem. Let $H \hookrightarrow G$ be a special subalgebra, H reductive, G semisimple. Then the model [G/H] cannot be N = 2 supersymmetric.

Proof. Indirect proof

Let $\Phi_{\pm}^{G/H}$ denote the set of root vectors corresponding to the positive respectively negative roots of G respectively H, $\langle \Phi_{\pm}^{G/H} \rangle$ the vector spaces generated by the corresponding set. Recall that we have chosen the embedding such that $\operatorname{Cart}(H) \hookrightarrow$ $\operatorname{Cart}(G)$.

Lemma 1. Without loss of generality we can assume that

$$t_{\pm} \subseteq \operatorname{Cart}(G) \oplus \langle \Phi_{\pm}^G \rangle$$
.

Proof. Equation (6) implies (see e.g. [3, p. 20]) that t_{\pm} is solvable and thus contained in a maximal solvable subalgebra, a *Borel-subalgebra*. As is shown in [5, p. 84] any two Borel subalgebras are conjugated under inner automorphisms, which are known to let the Cartan-subalgebra fix (compare e.g. [3, p. 106]). The result now follows from the fact that

$$b_+ := \operatorname{Cart}(G) \oplus \langle \Phi^G_+ \rangle$$

are Borel subalgebras.

Lemma 2. The positive roots of H can be chosen in a way to guarantee

$$\langle \Phi^H_\pm \rangle \subseteq \langle \Phi^G_\pm \rangle$$
.

Proof. We can argue like in the proof of Lemma 1, but have to use automorphisms and Borel subalgebras of H this time, to deduce

$$\langle \Phi^H_+ \rangle \subseteq \operatorname{Cart}(G) \oplus \langle \Phi^G_+ \rangle$$
.

Let $E_+ = \eta_+ + h_0$ be a root vector of H, $h_0 \in Cart(G)$, $\eta_+ \in \langle \Phi_+^G \rangle$. There is a $h_H \in Cart(H)$ with

$$[h_H, E_+] = \lambda(h_H)E_+, \qquad (8)$$

where $\lambda(h_H) \neq 0$. (The roots are non-zero regarded as functionals on Cart(H).)

Suppose $h_0 \neq 0$. G is semisimple, so κ is not degenerate, i.e. there is $h' \in Cart(G)$ with $\kappa(h', h_0) \neq 0$. Now

$$\kappa(h', [h_H, E_+]) = \kappa(h', \lambda(h_H)E_+) = \lambda(h_H)\kappa(h', h_0) \neq 0.$$

But using the invariance of κ we find a contradiction:

$$\kappa(h', [h_H, E_+]) = \kappa([h', h_H], E_+) = 0.$$

Classification of N = 2 Superconformal Coset Theories

Proof of the theorem. H being a special subalgebra there is a root vector E^+ of H (let E^- denote the root vector corresponding to the negative root) and $h_0 \in \text{Cart}(G)$ such that $[h_0, E^{\pm}]$ is not proportional to E^{\pm} . We may indeed assume that $h_0 \in t \cap \text{Cart}(G)$. Thus

$$Y_+ := [h_0, E^{\pm}] \neq 0, \quad Y_+ \in [H, t] \subseteq t,$$

where the last inclusion can be deduced from the antisymmetry of the structure constants of G in our basis and the fact that H closes under the Lie-bracket. Lemma 2 implies

$$E^+ = \sum_i \lambda_i E^{\alpha_i}$$
, where all coefficients are non-zero.

In the generic case the coefficients are complex numbers, but we will assume that they are real by absorbing the complex phase in the definition of E^{α_1} . Thus

$$E^- = \sum_i \lambda_i E^{-\alpha_i}$$

and

$$Y_{\pm} = [h_0, E^{\pm}] = \pm \sum_i \lambda_i \alpha_i (h_0) E^{\pm \alpha_i} \in \langle \varPhi^G_{\pm} \rangle$$

yielding

$$Y_\pm \in \langle \varPhi^G_\pm \rangle \cap t \subseteq t_\pm$$

by Lemma 1.

We now claim that restricted to $V_{\pm} := \langle E^{\pm \alpha_i} \rangle_R \cap t$ the functional

$$f_{\pm}(\cdot) := \kappa(\cdot, Y_{\mp})$$

does not vanish. The subscript R indicates that we consider real linear combinations of the $E^{\pm\alpha_i}$ only.

Using the well-known properties of the Killing-form in a Cartan-Weyl-basis it is clear that f_{\pm} vanishes on the orthogonal complement of the complexification of V_{\pm} . The Killing-form is not degenerate and $Y_{\pm} \neq 0$, so f_{\pm} cannot vanish on the complexification of V_{\pm} and hence on V_{\pm} .

We have thus proven the existence of

$$s_+ = \sum \mu_i E^{\alpha_i} \in t_+, \ \mu_i \text{ real}$$

satisfying

$$\kappa(s_+, Y_-) \neq 0. \tag{9}$$

The hermitian conjugate $s_{-} = \sum \mu_i E^{-\alpha_i} \in t_{-}$ obeys $\kappa(s_{-}, Y_{+}) \neq 0$.

Let P denote the projector on Cart(G). Using (9) and the invariance of κ we see

$$0 \neq \kappa(s_{\pm}, Y_{\mp}) = \kappa([s_{\pm}, E^{\mp}], h_0).$$
(10)

On the other hand

$$P[s_{\pm}, E^{\mp}] = \pm \sum \mu_i \lambda_i(\alpha_i H) \tag{11}$$

shows that the two vectors on the left-hand side corresponding to the upper respectively lower choice of the signs are equal up to sign.

Now suppose there is an N = 2 supersymmetric model. Equation (5) yields a direct sum decomposition

$$Cart(G) \cap t = (Cart(G) \cap t_{+}) \oplus (Cart(G) \cap t_{-}), \qquad (12)$$

in particular we can decompose

$$h_0 = h_0^+ + h_0^-, \ h_{\pm} \in t_{\pm} \cap \operatorname{Cart}(G).$$

 t_+ have to be subalgebras, so for all $h_+ \in t_+ \cap \operatorname{Cart}(G)$ we need

$$[h_{\pm}, s_{\pm}] \in t_{\pm}$$

We thus find due to the orthogonality of t and H,

$$\kappa([h_{\pm}, s_{\pm}], E^{\mp}) = 0$$

$$\Leftrightarrow \kappa(h_{\pm}, [s_{\pm}, E^{\mp}]) = 0,$$
(13)

and using (11),

$$\kappa(h_{\pm}, [s_{\pm}, E^{\pm}]) = 0.$$
 (14)

Calculating and inserting the results (13) and (14) we find

$$\kappa(h_0, [s_{\pm}, E^{\mp}]) = \kappa(h_0^+ + h_0^-, [s_{\pm}, E^{\mp}]) = 0$$

in contradiction to Eq. (10). \Box

4. Conclusion

The theorem proven in Sect. 3 assures indeed the completeness of the classification of N = 2 superconformal coset models obtained in [7]. All these models are thus given for simple G by regular subalgebras for which both rank G – rank H = 2n, n = 0, 1, ... and $G/H \times U(1)^{2n}$ is kählerian.

One may wonder why special subalgebras have not been dealt with in [7]. One reason may have been that, since special subalgebras necessarily have

$$\operatorname{rank} H < \operatorname{rank} G, \tag{15}$$

they are a priori not so tempting for superstring theories, which have inspired much of the work in this field. Indeed spacetime supersymmetry requires not only N = 2world-sheet supersymmetry, but also integral charges for the U(1) of the N = 2superconformal algebra [1]. Now subalgebras satisfying (15) are known not to fulfill this condition unless they are twisted [8]. This explains the focussing of interest on equal rank models and thus on regular subalgebras.

We finally point out that our additional condition (6) in the N = 2 criterion does not affect the results in [7]. This is because the criterion is applied there in the equal rank case only, where

$$t_{\pm} \subseteq \left\langle \Phi_{\pm}^G \right\rangle,$$

i.e. (6) is automatically fulfilled.

Acknowledgments: I am very grateful to M.G. Schmidt for introducing me to superconformal field theory and also for many encouraging discussions. I would also like to thank J. Fuchs for helpful discussions.

References

- 1. Banks, T., Dixon, L. J., Friedan, D., Martinec, E.: Phenomenology and conformal field theory or can string theory predict the weak mixing angle? Nucl. Phys. **B299**, 613–626 (1988)
- 2. Cahn, R.N.: Semi-simple Lie-algebras and their representations. Menlo Park, CA: Frontiers in Physics, Benjamin Cummings 1984
- Fuchs, J.: Affine Lie algebras and quantum groups. An introduction with applications in conformal field theory. Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press 1992
- Goddard, P., Kent, A., Olive, D.: Virasoro algebras and coset spaces models. Phys. Lett. 152B, 88–102 (1985)
 Goddard, P., Kent, A., Olive, D.: Unitary representations of the Virasoro and super-Virasoro

Goddard, P., Kent, A., Olive, D.: Unitary representations of the Virasoro and super-Virasoro algebras. Commun. Math. Phys. **103**, 105–119 (1986)

- 5. Humphreys, J. E.: Introduction to Lie algebras and representation theory, Third Printing, Revised. Berlin, Heidelberg, New York: Springer 1980
- 6. Kazama, Y., Suzuki, H.: New N = 2 superconformal field theories and superstring compactification. Nucl. Phys. **B321**, 232–268 (1989)
- 7. Kazama, Y., Suzuki, H.: Characterization of N = 2 superconformal models generated by the coset space method. Phys. Lett. **216B**, 112–116 (1989)
- 8. Lerche, W., Vafa, C., Warner, N.: Chiral rings in N = 2 superconformal theories. Nucl. Phys. **B324**, 427–474 (1989)

Communicated by K. Gawedzki