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Abstract. We show that the non-relativistic quantum mechanics of particles with
spin coupled to an electromagnetic field has a natural U(l) x SU(2) gauge invari-
ance. Ward identities reflecting this gauge invariance combined with an assumption of
incompressibility of a system of such particles in an appropriate external field and for
suitable values of the particle density permit us to determine the form of the effective
action of the system as a functional of small fluctuations in the electromagnetic field,
in the large-distance-, adiabatic limit. In this limit, the action is found to have a uni-
versal form. We present explicit results for two-dimensional, incompressible electron
fluids and apply them to derive the equations of linear response theory, describing a
variety of generalized Hall effects. Sum rules for the Hall conductivities, magnetic
susceptibilities and other quantities of physical interest are found.

1. Introduction and Summary of Main Results

In this paper we study the physics of two-dimensional (2d) electronic and magnetic
systems, e.g., of heterojunctures or 2d chiral spin liquids. Such systems are described
in theories of the quantized Hall effect or of layered superconductors.

A basic recent observation is that the large-scale, low-frequency physics of incom-
pressible electron fluids exhibits universal features. Incompressibility is understood
as the absence of dissipative processes. Experimentally, it corresponds to a vanish-
ing longitudinal resistance, i.e., RL = 0. For incompressible electron fluids one can
identify interesting physical quantities, such as the Hall conductivity or the quantum
numbers of excitations above the groundstate, which only depend on the large-scale,
low-frequency properties of the system and which can therefore be predicted pre-
cisely without detailed knowledge of the microscopic dynamics. A related notion of
universality is familiar from the theory of critical phenomena accompanying contin-
uous phase transitions. The idea that incompressible quantum fluids exhibit universal
large-scale, low-frequency behaviour plays an important role in the analysis of the
quantum Hall effect reported in [1-3].
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A heterojuncture is an essentially two-dimensional gas of electrons. If a strong,
transverse magnetic field is turned on then, for sufficiently small electron density,
the spins of the electrons in states of low energy are aligned in the direction of
the magnetic field and can therefore be ignored. In this approximation, the electron
can be described as a non-relativistic scalar fermion. Using the fact that in 2 + 1
dimensions the quantum mechanical electric current can be derived from a vector
potential [4, 2], one can show that the large-scale, low-frequency physics of such a
system is described by an abelian Chern-Simons gauge theory, the gauge fields being
the vector potentials of the electric current [2]. Insisting on the property that, among
the physical excitations of the Chern-Simons theory, there be excitations with the
quantum numbers of the electron or hole (charge =f e, Fermi statistics) one finds that
the set of possible values of σ# is discrete, that the odd-denominator rule holds, and
that the system exhibits, in general, fractionally charged excitations with fractional
statistics, (depending on the value of σ#). /

It has become clear that, for certain values of σ#, spin effects I possibly for
e2 2 \ V

σπ = T ~, > Z = 1,2,... 1 or effects of approximate internal symmetries -
h 41 + 1 J

( e2 5\
uisospin effects" - e.g., for σ# = — - may play an important role [5-7, 2,

V h 2J
8]. The present paper is motivated, in part, by a desire to understand the significance
of spin- and internal degrees of freedom in the physics of 2d electron fluids. We
propose to determine the effective theory describing the large-scale, low-frequency
properties of 2d electron fluids, taking into account spin- and internal degrees of free-
dom. From the effective theory we then derive the basic equations of linear response
theory and current sum rules which describe a variety of well known and less well
known effects, including generalized Hall effects.

Our derivation of the effective theory in the adiabatic and scaling limit relies on
two basic observations:
(a) The general observation that systems of non-relativistic electrons have a local
U(\) x SU(2) symmetry, i.e., a J7(l) x SU(2)-gauge invariance.
(b) The observation that if a system of non-relativistic electrons is incompressible
(i.e., exhibits a positive energy gap above the groundstate energy) then its effective
action, as a functional of external electromagnetic fields, is local, and its general form
is computable in the adiabatic and scaling limit. This is a manifestation of universality.

In computing the general form of the effective action, U(l)x SU{2) Ward identities
will turn out to play a crucial role, (but the specific form of the microscopic dynamics
is unimportant).

In the following, we intend to make observations (a) and (b) more precise and
to describe some physical consequences, in particular a Hall effect for spin currents
and quantization of magnetic susceptibility. A detailed discussion of observation (a)
can be found in Sect. 2. Our main idea is to treat the dynamics of systems of non-
relativistic matter in a geometrical way. The U(\) x SίC/(2)-gauge invariance of such
systems is related to a natural notion of parallel transport, or, equivalently, of covariant
differentiation of non-relativistic spinors; (it pays to view such spinors as "sections
of a fibre bundle" with U(l) x SU{2) as structure group). Consider, for example,
two-component Pauli spinors, ψ. The covariant derivatives acting on Pauli spinors
are given by

3

Dμ = dμ + iaμ+i ^ wμAσA , (1.1)
A=\
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for μ = 0 (time), 1, 2, (3) (space), where σ = (<7i,σ2,σ3) are the usual Pauli
matrices. A geometrically natural form of an action functional for a system of non-
relativistic electrons confined to a region Ω of two- (or three-) dimensional space, in
the formalism of second quantization, is given by the following "generally covariant"
expression:

/

Γ h2

dtd2x\ihcφ*D0φ + — (AVO* Φι

RxΩ

- J dtHrt), (1.2)
R

where φ* (the creation operator) is the adjoint of the Pauli spinor φ (the annihilation
operator), and the interaction term Hi(t) is a U{\) x SU(2)-gauge invariant functional
of φ* and φ. The 17(1) x 5/7(2)-gauge transformations of the gauge fields a and w
and of the Pauli spinor φ are as follows:

U(l):aμ ^aμ + dμX, φ^ e~^φ, (1.3)

where χ is an arbitrary, real-valued function on space-time R x Ω, and

3

SU(2):wμ = i Σ wμA°A »-• gwμg~l + ̂ μ ^ " 1 , φ^ gφ, (1.4)

where ^ is an arbitrary 5't/(2)-valued function on R x i7. It follows from Eqs. (1.1),
(1.3), and (1.4) that the action SΩ given in (1.2) is 17(1) x #C/(2)-gauge invariant.

We must ask whether the equations of motion obtained by varying the action
SΩ with respect to the dynamical fields φ and φ* are related to the Pauli equation
for systems of interacting, non-relativistic electrons in an external electromagnetic
field, found in standard text books of quantum mechanics [9-11]? This question is
answered in Sect. 2. For a certain natural choice of U(l) x SU(2)-gauge, one finds that
the components of the (7(1)- and 5C/(2)-gauge potentials can be expressed in terms
of the electromagnetic vector potentials, Aμ, and the electric and magnetic fields E
and B as follows:

aμ = —Aμ, (1.5)

WOA = --^-BA, and wiA = - ~j-€IABEB , (1.6)
2c 4c

A,B=1,2,3,B = (BUB2,B3)9 E = (EuE2iE3) [see Eqs. (2.23) and (2.24) of

Sect. 2)], and μe « is the magnetic moment of the electron. With identifica-
TΠQC

tions (1.5) and (1.6), the equations of motion derived from the action SQ given in
(1.2) reduce to the usual Pauli equations for φ and its adjoint φ*, including the Zee-
man term and conventional spin-orbit couplings, as well as some additional terms of
higher order in 1/ra that also appear in an expansion of the Dirac equation according
to the Foldy-Wouthuysen scheme.

This-explains where observation (a) comes from. For more details see Sect. 2.
Observation (b), concerning consequences of incompressibility of a system, is

substantiated in Sect. 3. To show that a given system is incompressible, e.g. in the
sense that connected Green functions of quantum mechanical currents have "good"
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cluster properties - the form of the incompressibility assumption required in Sect. 3
- is a difficult analytical problem of many-body theory. We shall not solve this
problem in the present paper. Rather, we shall elucidate the physical properties of
incompressible systems, assuming incompressibility and using U(l) x 5t/(2)-gauge
invariance. We shall derive the behaviour of such systems on large distance scales and
in the adiabatic limit, for short, in the scaling limit, and find that it is universal. For
that purpose, we develop a linear response theory: Assuming that the system under the
influence of a certain background magnetic field Bc = (0,0, Bc) is incompressible, we

study its response to small fluctuations in the external electromagnetic field, (E,B).
In order to find the basic equations of linear response theory, we attempt to determine
the general form of the effective action, S^{ac,wc',a,w), in the scaling limit. Here
the potentials ac, wc describe the background field Bc, while a and w describe the

fluctuation field (E, B) and are calculated from formulas (1.5) and (1.6), (in a specific
choice of gauge). The total gauge potentials are given by a = ac + α, w = wc + w.
With the help of observation (a) ((7(1) x S'C/(2)-gauge invariance) and assuming
incompressibility, the most general form of S%(ac,wc',ά,w) for a two-dimensional
electron fluid confined to some domain Ω in the x — y plane is found to be given by
the following expression, independently of what the specific microscopic dynamics
of the system is, (universality!):

— — ί?o(αc,κ;c; α, iD) = / (*?c) Λ a + / (*m3) Λ w^
h J J

M3 M3

σ ί X ί i σS f
+ — aΛda+ — a A dw3 + — /

4π J 2π J 4π J

k f ( 2
— / tr\w/\dw-\--wΛwΛw

M3

2

Λ

/

+ Σ / T2U

A>B=lM3

VA/BCϋ>μAWvBWecd3ξ + b.t. (1.7)

This form holds in an S'C/(2)-gauge where wc^μA = — δμoδA3 ̂  Bc,3- Each term in

(1.7) is explained in great detail in Sect. 3. Here we just note that the coefficients
σ, χ, σs and k are constants, and the functions jg, mζ, τg"and η^gC are the "scaling
limits" of certain current green functions. Depending on the physical situation studied,
further restrictions on these functions follow; see our analysis in Sect. 4. Once we have
found S%, it is a matter of functionally differentiating S% with respect to the gauge
fields ά and w, using that

δS*
(jμ(ξ))α)W = τ ~ (αc, wc; α, w), . . . , (1.8)

oαμ(ξ)
where j μ is the electric current operator, and ξ a rescaled space-time poiηt, in order
to find the linear response equations of an incompressible system in the scaling limit.
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Denoting the electric charge density in physical units by ρ and the electric current in
physical units by β^\ i = 1,2, we derive from (1.7) and (1.8),

(Q(O)E,B = Qc(O + — B3(O ~ 4Y E(O + . . . , (1.9)

c
and

--- , t = l , 2 . (1.10)

p

Here ρc = - j® describes the background charge density of the system and β% = ejι

c

a possible persistent current circulating in the system. Moreover, E = E is the electric

field (we have set Ec = 0) and B = Bc+B the magnetic field. [For precise definitions
see Eqs. (4.8) and (2.13)]. The second terms on the right-hand side of (1.9) and (1.10)
describe the Hall effect for the electric charge density and current. One finds that

σH = σe-, (1.11)
ίl

where σ is the coefficient of the third term in S^. The remaining terms on the right-
hand side describe effects of the spin degrees of freedom of electrons and are here
discussed systematically for the first time; see Sect. 4, in particular Eqs. (4.14) and
(4.16).

Besides the electric current density βμ one can define spin current densities J^μ,
A — 1,2,3, in a natural way; see Eq. (2.14). By differentiating S^ with respect to
the components, wμA, of the SΊ7(2)-gauge potential, using an analogue of (1.8), we
discover a Hall effect for the spin current.

For example, for the expectation value of the 3-component, 5fμ, of the spin current
density we find the equations

S = M°(O + (°t ~ σta

2) Y V E(ξ) + X l - 53(O + , (1.12)
' ^c μe

and, for i = 1,2,

+ (σf - σf^djBsiO +

+ x x - ε»£j(ξ) + •••. ( 1 . 1 3 )

Here M° is proportional to the magnetization of the system when E = B = 0, and
Mι is a possible persistent spin current. Furthermore, in terms of the coefficients of
the effective action SQ, one finds that

spin k Tl S p i n CFS "> (λ ΛA\
Hλ 2π 2 e ' H1 4π 2

and
χ± = ^- — . (1.15)

4π c
We note that β^μ and ,5^μ are conserved currents, while the other components y^',
A = 1,2, are «6>ί conserved, for our choice of the background gauge potential i?o =
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— - ^ Bc, wι = 0, Bc = (0,0, Bc). These components are, however, covariantly
2c

conserved. Their expectation values obey equations analogous to (1.12) and (1.13)
describing a Hall effect for spin currents (see Sect. 4).

So far, we have not said anything about the possible values of the constants
OΉ, ^m* σSm a n ( * X-L appearing in the equations above. This is the subject of a
forthcoming paper by the authors, where we shall show that all of them belong to
certain discrete sets. This "quantization" is a consequence of the following observa-
tion: If we consider the transformation properties of S% under U{\) x 5£/(2)-gauge
transformations not vanishing on the boundary of Ω we realize that, actually, S^ is
gauge-invariant only up to boundary terms! Since non-relativistic quantum mechanics
is fully C/(l) x S£/(2)-gauge invariant, violations of E/(l) x SU(2)-gauge invariance
due to bulk terms of S^ must be compensated by corresponding violations of gauge
invariance due to anomalous boundary terms in S^. These anomalous boundary terms
are uniquely determined by the Chern-Simons bulk terms in S^. They correspond to
chiral electric and spin currents, coupled to the gauge potentials α and w, respectively,
which circulate around the system and are localized near its boundary. Chiral elec-
tric currents circulating around the boundary of quantum Hall systems were orignally
found by Halperin [12] in a simple quantum mechanical analysis. His observation trig-
gered much of the recent work on bounday excitations in quantum Hall fluids. The
derivation of boundary terms in S^ and of the associated chiral boundary currents is
deferred to a separate paper; but see [13, 2, 3, 14]. The study of the algebras of chiral
boundary currents and of their representation theory (along with some input from the
physics of quantum Hall fluids) will provide us with fairly precise information on
the possible, discrete values of the basic constants σ#, σ ^ , etc.; see also [13, 2, 3].

Put differently, the results in the papers quoted above imply that if σ#, σ^\n, σ^1"
and χ_i_ do not belong to certain discrete sets, the corresponding quantum Hall fluid
cannot be incompressible. Some basic ideas concerning these matters are sketched at
the end of Sect. 3 and in Sect. 4.

From the form (1.7) of the effective action S^ one can derive a variety of sum
rules for current Green functions. These sum rules enable us to express the coefficients
σ, x, σ3,... of the different terms in S^ in terms of integrals over connected current
Green functions of the system.

While the classical Hall effect for the electric current is standard knowledge,
generalized classical Hall effects, e.g. Eq. (1.9), or the Hall effects for spin currents,
do not appear to have been discussed in the literature; but see [15]. Surprisingly, one
could have predicted them starting from classical physics. In order to illustrate this
point, let us consider a system of classical point particles with charge q and a magnetic
moment m which move in the x — y plane under the influence of a time-independent,
but inhomogeneous magnetic field B(x), x = (x,y) G M2; but E(x) = 0. The energy,
£T, of such a particle, located at the point x, in the field B is given by

(1.16)

It therefore experiences a force, F, given by

F(x) = grad(m B) (x). (1.17)
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In a stationary state, this force must be balanced by the Lorentz force, FL, exerted on

the particle, moving in the field B(x) with velocity v(x), which is given by

FL(x) = 1 v(x) A B(x). (1.18)
c

For definiteness, let us choose B(x) = (0,0, B(x)), with a nowhere vanishing B(x).
We assume the standard gyromagnetic relation rh = μS, where S is the spin of the
particles. Equating (1.17) to (1.18) we find that

μS3diB(x) =-εijυ
j(x)B(x), i,j = 1 , 2 . (1.19)

c

If we consider spin-1/2 particles then 53 = ±-. We denote by ρ^ι(x) the density of

particles with S3 = ± - . We also define the current densities in the x — y plane

\,l fe)* / = 1,2.

From (1.19) we then conclude that

(1.20)

This implies a Hall effect for the total electric current density,

_ μkc

2B(x)'
(1.21)

Note that the right-hand side of (1.21) corresponds to the last term in (1.10).
Furthermore, we also find a Hall effect for the 3-component of the total spin current

density, namely

^ ί~ i ΛΛ/^.\ J.?Λ D/~,\ /I OO\

4gB(z) v e ί |

Thus, besides the standard Hall effect for the electric current, as described in Eq.
(1.10), quantum mechanics and classical physics predict several generalizations of
the Hall effect, see Eqs. (1.9), (1.12), (1.13), (1.21), and (1.22), which do not appear
to have been described in the literature. Of course, only quantum mechanics enables
us to understand the quantization of the coefficients σ, χ, σs and k. This topic and
extensions of our analysis to other systems, including (3 -f l)-dimensional ones, will
be discussed in separate papers.

It would be interesting to test Eqs. (1.9), (1.12), (1.13),... and the quantization
of x, (73 and k (k is predicted to be an integer) experimentally. We hope that, before
long, such experiments might be possible.
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2. Symmetries and Currents in Two-Dimensional Electronic
and Magnetic Systems

In this section, we consider 2d electronic and magnetic systems, for example inversion
layers or films of 3He, confined to some surface Ω. We propose to analyze the
symmetries and currents of such systems in geometrical terms. For simplicity, we
choose Ω to be a connected domain contained in the x — y plane of physical space
R3. A typical example of such a system is a 2d gas of electrons moving in some
background. The negative electric charge of the electrons is compensated by the
positive charge of ions located on some array of sites in Ω or by a positive background
charge density distributed uniformly on Ω, (as in the jellium model). Another example
of a physical system we would like to understand is a rotating liquid of neutral atoms
or molecules with an electric or magnetic dipole moment pinned to a two-dimensional
background and subject to an inhomogeneous electric or magnetic field.

We shall be interested in the properties of such systems at very low temperatures
and on large distance and time scales. We shall therefore neglect the dynamics of the
background (e.g. of the positive ions, or of the fluctuations of the background charge
density).

The basic idea underlying our paper is to analyze such systems by analyzing their
symmetry properties and the currents associated to their symmetries. We propose to
construct an effective theory of currents, such as the electromagnetic current j , the spin
current s, and possibly further neutral currents, i, sometimes associated with internal
symmetries of the system. We attempt to describe the main features of the system
by studying the response of the system to coupling those currents to "conjugate"
external gauge fields. Clearly, the gauge field to which the electromagnetic current j
couples (i.e., the gauge field conjugate to j) is the electromagnetic vector potential A.
We must ask what the physical meaning of the gauge potential is to which the spin
current s couples, more generally of gauge potentials conjugate to further currents i
of the system? We start by giving a "geometrial" answer to this question and then
provide the physical interpretation.

We describe the electronic degrees of freedom by second-quantized, two-com-
ponent Pauli spinor fields, ip and ψ*. Mathematically, Pauli spinor fields should be
viewed as operator-valued sections of a complex vector bundle, Σ, with base space
M3 = R x Ω, the (2+ l)-dimensional space-time of the system, fibre C 2 and structure
group G = £7(1) x SU(2). The group SU(2) acts on Pauli spinors in the fundamental
representation, the action of £7(1) on Pauli spinors is diagonal (phase transformations).
The bundle Σ is associated to a principal U(l) x ££7(2)-bundle, P, with base space
M 3. We shall not dwell on these mathematical notions, since the bundles Σ and P
are trivial, i.e.,

Σ = M3 x C2 , P = M3x (£7(1) x SU(2)),

if we choose Ω to be a connected domain in the x — y plane. (However if Ω were
chosen to be the two-dimensional sphere or torus1, or a more general compact surface,
then the bundles Σ and P are non-trivial in general, and the use of a somewhat
mathematical jargon would not be a luxury. See e.g. [16, 17] for some background
on fibre bundles.)

This choice is frequent in numerical studies of such systems
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As announced, we use the language of second quantization. An electron creation
operator, ψ*(x), x G Ω, is given by the Pauli spinor

4*(x) = W*(x),il>*(x)), (2.1)

where ψ*(x) creates an electron at the point x = (xι, x2) G Ω, whose spin is polarized
in the direction of the positive z-axis ("spin up"), and ψ*(x) creates an electron at x
with spin polarized in the negative z-direction ("spin down"). The electron annihilation
operator,

is defined to be the adjoint of ψ*(x) on the usual Fock space of spin-1/2 fermions.
(If the bundle Σ were non-trivial, i.e., for domains Ω with non-trivial topological
properties, the definition of creation- and annihilation operators would be more com-
plicated because the introduction of a spin structure on Ω is not as immediate as
above; see e.g. [18] for a short summary of notions.) The Fermi statistics of electrons
corresponds to canonical anti-commutation relations

{φ#

a(x\ ψ*β(y)} = 0, {ψa(x), ψ%(y)} = -β= δaβδ(x - y), (2.3)

where ψ# = ψ or ψ*9 a, β = | or j , {A, B} = AB + BA, and where g(x)~ι/2δ(x-y)
is the Dirac ^-function on Ω in an arbitrary metric, gki(x), on Ω, with g(x) the
determinant of gki(x).

In order to formulate dynamical laws for 2d system of electrons, we need to intro-
duce a notion of parallel displacement and covariant differentiation of Pauli spinors.
Thus, we must specify some gauge potentials. (In more mathematical jargon, we
must equip the principal bundle P with a U{\) x S't/(2)-connection.) These gauge
potentials, or connections, are given by

ω = (a,w), (2.4)

where the electromagnetic vector potential

2

α(:r) = ] Γ aμ(x)dxμ (2.5)

is a ϊ/(l)-gauge potential (i.e., an R-valued 1-form) on space-time M 3. Here x =
(x°, x) is a space-time point, with x° = ct, where t is time, c is the velocity of light,
and x G Ω. The components aμ are real functions on M3. Furthermore,

2

w(x) = Σwμ{x)dx», (2.6)

with
3

wμ(x) = ίwμ(x) σ = i ] P wμA(x)σA , (2.7)
A=\

is an ιS(7(2)-gauge potential (i.e., an sn(2)-valued 1-form) on M3. Here wμA(x) is a
real function on M3, and σ = (σi,σ2,σ3) are the three Pauli matrices. In physical
units,

aμ(x) = j ^ Aμ(x), (2.8)
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and

wμ(x) = — Wμ(x), (2.9)

where —e is the electric charge of the electron, h is Planck's constant, μe «

is (up to a factor fι/2) the magnetic moment of the electron, with mo the mass of

the electron in empty space, Aμ is the usual electromagnetic vector potential, and

Wμ = (Wμ\,Wμ2, Wμϊ) is an 5ί7(2)-gauge potential, whose physical meaning is yet

to be elucidated. Defining the spin operator, 5, by

S=\σ (2.10)

we have that
wμ(x) — iWμiz) ' & — -T~ Wμ(x) ' S . (2.7')

Covariant differentiation of Pauli spinors is defined by

Dμ = Όω

μ = V μ + iaμ(x) 4- wμ(x)

ie in* -> -*
= V μ + — Aμ(x) + - p Wμ(x) -S, (2.11)

where V μ is the (Riemannian) covariant derivative, acting on Pauli spinors as follows:

x°
Let gki(x) = gki(xo,%) be the metric on Ω at time t = — . We assume that

c
9ki(zθ,x) is positive-definite for all (x°,x) G M 3 . By gkι(x°,x) we denote the in-
verse matrix of gki(x°i%), and g(x°,x) is the determinant of gki(x°,x). Typically,
gki(z°,%) = δkh the standard Euclidian metric, but more general metrics arise in
the description of systems with defects (disclinations) and/or off-diagonal disorder.
Next, we introduce two vector fields eι

A(x), A = 1,2, with the property that, with
eAk(x) = gki(x)eι

A(x),
2

9ki(x) = X } e Ak(x)eAι(x).
A=\

(Actually there is a third vector field implicit in our discussion, namely the unit vector
field along the positive z-axis, allowing for the definition of "spin up/down.") The
action of V μ on Pauli spinors is then defined by

V and vk = — + Ίk(χ), ft = 1,2,

with
2

Ίk(x)= Σ eAi(x)(Vkel

B)(x)-[σA,σB]. (2.12)
A,B,l=\

Here the action of V& on the vector field eι

A(x) is the usual covariant differentiation
with respect to the metric gki(x),

^)(x) = -^ eι

A{x) + Γ
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Γι

k being the Christoffel symbols of guix)- If gki(x) = δku we have that Vμ = - — .

In general, the derivative Vμ allows to incorporate the effect of defects or disorder on
the spin degrees of freedom of the electrons in the 2d system. A similar construction
(of a non-relativistic spin structure) may be necessary if topologically non-trivial
domains Ω are considered.

We may now define the electromagnetic current density operator, j(x), by

jk(x) = - ^ - KDkΨf (x)Φ(x) - Ψ*(x) (Dkφ) (x)],
2mc

and the spin current density operator, six), by

soix) = ψ*ix)σψix),

ih * * (2.14)
skix) = - -— [iDkψ) ix)σψix) - Ψ ix)σiDkψ) ix)],

2mc

with x = ix°,x) — ict,x) e M3, k = 1,2. (Here we have chosen the currents to

be pure densities, omitting factors e, - and c from the standard definitions of the

physical currents, which will be given and discussed in Sect. 4) In Eqs. (2.13) and
(2.14), ψ*ix), and ψix) are the time-dependent electron creation- and annihilation
operators in the Heisenberg picture.

In order to define the operators ψ*ix) and ψix) in the Heisenberg picture and
to understand the physical meaning of the S'C/(2)-gauge potential Wμix), we now
must specify the general form of the dynamics of the system. In this section, we use
the Hamiltonian formalism. Thus we have to define the Hamiltonian of the system.
(In the next section, we shall work in the Lagrangian formalism and introduce path
integrals.)

From a geometrical point of view ("general covariance"), one is led to consider
the following time-dependent Hamiltonians, Hit), (in second quantized form):

Hit) = HoiAμix°,.), Wμ(x°, ),gkι(x°, •)) + H^t), (2.15)

where

Hoit) = HoiAJx°, •), WΛx\ '),gkl(x°, •))

•i
Ω

iejoix)Aoix°, x) + μe - soix) W0(x°, x))Vgix°,x)d2x , (2.16)

and where m is the effective mass of the electron, and Hj describes electron-electron
interactions and the interactions of electrons with the background; Hj does not depend
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on Aμ and Wμ and is gauge-invariant. For example,

Hi(t) = / y/g(x°, x)Sxφ^{x)v{xQ, x)ψ(x)

Ω

+ 2 / ^9(x°,x)d2x / \/9{x0i x)d2yψ*(x)'ψ*(y)V(x - y)ψ(y)ψ(x),

Ω Ω

where v is a one-body potential, and V is a (possibly screened) Coulomb potential.
The dynamics of the creation- and annihilation operators, Ψ* and ψ, in the Heisen-

berg picture is given by

ih ζ- ψ*(t, x) = - [H(t), ψ\t, x)]. (2.17)
ot

Setting H(t) = Ho(t)+Hj(t) and using (2.16), we find that (2.17) implies the equation

+ μeW0 • Sψ + eAoφ - [H^t), φ], (2.18)

and similarly for φ*. Here Vfe is the covariant derivative in the A -direction with

respect to the metric gki, as discussed above; in particular, V& = ^ - £ , for gki = δki
All the fields in (2.18) are evaluated at x = (cί, x). We set ό x

7rk = -Vk + -Ak (2.19)
I C

and expand the product in the first term on the right-hand side of (2.18). Then Eq.
(2.18) becomes

ίhΊΓ+Ψ=^ 9klwrt +£*-(§- Wk)πkψot 2m 2mc

+ μe(S -W0)ψ + eAoφ - [HT(t\ φ], (2.20)

where Wk = gklWt.

In order to find the physical meaning of the S'C/(2)-gauge potential Wμ, we com-
pare Eq. (2.20) with the usual Pauli equation (see e.g. [9-11]), which can be derived

from the Dirac equation by expanding in powers of —, according to the Foldy-
Wouthuysen (FW) scheme: m

ϊhτr.Φ = τr- 9klπkπιΦ - μeS • Bφ - eφφ + hs-oφ - [H^t), φ], (2.21)
ot 2m
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where the spin-orbit term hs-o is given by

Ί)k + (SΛE)kπk]ψ

ihμe Γ 1
\-γz dk(^gklειABSAEBφ) •

Amc

"P-ghίAkεlABSAEBψ. (2.22)

In (2.21) and (2.22), £ = (EuE2i E3) is the external electric field and B = (BUB2,
B3) the external magnetic field, E\AB is the sign of the permutation (IAB) of (1 2 3),
with Z = 1,2 and A,B = 1,2,3. Furthermore, B = VΛA, where A = (Ai, A2, A3) is
the three-dimensional electromagnetic vector potential, and by the choice of our units
in (2.8), A = (AUA2) is the spatial part of the ί/(l)-gauge potential.

-» -» 1 dA
Finally, φ is the external electrostatic potential, and E = —Vφ — , where

f d d d \ c dt
f d d d \

V = Γ T > T 2 > Q I ) i s t h e gradient, (while, in (2.18), (2.19), Vk denotes co-

variant differentiation in the A -direction with respect to gkι). We now compare Eq.
(2.20) with Eq. (2.21), with hs-o as in (2.22). This suggests to make the following
identifications:

A0(x) = -φ(x), (2.23)

and

W0(x) = - B(x), WlA{x) = -1- εlABEB(x). (2.24)

a2 - - - -
The term - ^ (S Wk) (S-Wk)ψ on the right-hand side of Eq. (2.20) is a relativistic

2mcι

correction of order m~3 which is missing in Eq. (2.22). Its presence in (2.20) is a
direct consequence of S't/(2)-gauge invariance of the theory. Using the relation

SASB = — δAB +i S

and (2.24), this term can be rewritten as

J 9klWkAWlAψ*φ^d2x

^ 2 / 9klekABeιAcEBEcΨ*ψ Jgd2x . (2.25)

Ω

We note that the "geometric" Eq. (2.20), with the ientifications (2.23) and (2.24),
contains all terms one finds in a systematic FW-expansion of the Dirac equation up
to order ra~2, with the exception of the rest energy term of <^(ra), and the so-called
Darwin term of &(m~2)\ The term (2.25) can be found among the &(m~3) terms,
but only up to a factor 1/2.

It should be emphasized that identifications (2.24) refer to a special choice of
S'C/(2)-gauge and are invalidated by changing the gauge; [the gauge potentials Wμ(x)
are, of course, not 5t/(2)-gauge-invariant]. For example, the effect of an external
electromagnetic field, with B(x) = B(t) independent of (xι,x2), and E(x) = 0, on
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the spin degrees of freedom can be gauged away by an S[/(2)-gauge transformation

9W = gWg-i + gdg~\ with g(x) = T e x p ^ / B(τ) Sdτ\. For B(f) = 6(ί)B0,/ \

this is related to Larmor's theorem. Similarly, the effects of certain electric fields on

the spin degrees of freedom can be gauged away; (e.g., for E(x) = (efeXO, 0)).

Note that, in the gauge in which (2.24) holds, the 5ί7(2)-gauge potentials Wμ are

physically observable quantities.
Finally, we observe that, as Eq. (2.21) shows, the metric gki describes disclinations

or more general off-diagonal disorder in the system.
In our derivation of Eqs. (2.18), (2.20) from expression (2.15) and (2.16) for the

Hamiltonian H(t) we have been careless about boundary terms arising from integra-
tions by part on Ω when the boundary dΩ of Ω is non-empty. (For Ω = E 2 , or if
dΩ is empty, there are, of course, no boundary terms.) The dynamics of 2d elec-
tronic systems near dΩ is very interesting and revealing, and boundary terms play an
important role. This will be discussed in [19]; see also [13, 2, 14]. In this paper we
focus our attention on bulk effects and therefore neglect boundary terms.

In the remainder of this section, we study properties of the electromagnetic- and
spin current, j and s. Multiplying (2.20) by φ*y/g from the left and the adjoint
equation by y/gψ from the right, subtracting one equation from the other one, and
rearranging terms, we find that

— p W*V9(dtψ) + Φtψ*)y/9ψ\ = 4=

which yields the continuity equation for the electromgnetic current, provided gki(x)
is time-independent. Defining

1

0

0 0

(2.27)

\o
with gkiix) independent of x° — ct, we can write the continuity equation as

Vμjf'
μ = —=== dμ(\/\η\ημujμ) = 0 . (2.28)

vM
It will turn out to be useful to rewrite this equation in terms of differential forms: We
define a 1-form j by setting

μ (2.29)
μ=0

and the dual 2-form β' by

with

βμΛx) = \η{x)\l/2εμvρη
Qσ(x)jσ{x) (2.30)
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A short-hand rewriting of (2.30) is

^ = * J , (2.31)

where * is the so-called Hodge *-operation. Then Eq. (2.28) can be rewritten as

' = 0 , (2.32)

where d denotes exterior differentiation. Equation (2.32) holds, provided gki(x), and
hence r)μv(x), is time-independent. (See e.g. [16] for some basic facts in the theory
of differential forms.)

Let us suppose that the external magnetic field B has a constant direction, i.e.,

B(x) = b(x)υ0 , and E"(x) = (E(x) Bo) \B0\~ι = 0. (2.33)

Let s" = (s Bo) \Bo\~l denote the component of the spin current parallel to the
magnetic field. An argument similar to the one just sketched for the electromagnnetic
current then shows that s"μ is a conserved current, i.e.,

Vμs"μ = 0. (2.34)

If there is no electromagnetic field, at all, then all components of the spin current in
an appropriate gauge are conserved, i.e.,

V μ ^ = 0, (2.35)

or
d^ = 0, (2.36)

where S^ — *s is the Hodge dual of s.
It should be emphasized that the spin current s is not 5/7(2)-gauge invariant, and

the answer to the question whether it has conserved components, SA, depends on
our choice of gauge. This should not come as a surprize: Matter currents coupling
to non-abelian gauge fields are not gauge-invariant and, since the gauge field itself
carries non-abelian "charge", do not generate conserved charges. The answer to the
question whether some components of such currents satisfy a continuity equation, for
a specific choice of an external gauge field configuration, depends on the choice of
gauge. Generically, such currents do not have any conserved components. However,
if, in the example of the spin current, we consider an external electromagnetic field
configuration whose effect on the spin degrees of freedom can be gauged away by an
S'C/(2)-gauge transformation then, in the gauge where Wμ vanishes, all components of
the spin current are conserved, of course. In this case, the components of s generate
a "non-relativistic" 5£/(2)-current algebra; see e.g. [20].

Let i be some conserved current of the system, and let & be the 2-form dual to
i. (Our main examples are i = j , or ί = s" if the direction of B(x) is constant and
E"{x) = 0.) Then

d? = 0. (2.37)

In 2 -I- 1 space-time dimension, Eq. (2.37) can be solved, locally, by introducing a
vector potential .A for i, with

& = <LA, or i = * d ^ . (2.38)

If Ω is a connected domain in the x — y plane with a non-empty boundary then (2.38)
holds globally. Clearly, A is determined by i only up to scalar functions, i.e., A



568 J. Frόhlich and U. M. Studer

and *A + dχ correspond to the same current i. Thus, ^S is an abelian gauge field. An
effective theory of conserved currents in 2 + 1 dimensions is, therefore, an abelian
gauge theory. This remark provides an explanation of why there is such an intimate
connection between two-dimensional many-body theory and gauge theory. It is very
useful in the theory of the quantized Hall effect; see [2].

The generalization of the main findings of this section to include couplings of
some additional "neutral currents" of the 2d system to conjugate external gauge fields,
abelian or non-abelian, is straightforward. Such generalizations may be relevant for
the analysis of systems with several current-conducting bands. For such systems, one
typically introduces several species of creation- and annihilation operators, ψ*, ψa,
a — 1, .. . , n, connected to each other by an approximate internal symmetry which
may be gauged.

More importantly, as the reader will have noticed, the formalism developed in this
section can be applied equally well to systems in three-dimensional physical space as
it does to the two-dimensional systems considered above, [21].

3. The Effective Gauge Field Action in the Scaling Limit

The purpose of this section is to study the partition (or generating) function, £&{A, W),
of a two-dimensional system of electrons or of other kinds of particles with spin 1/2
which carry a magnetic moment, (e.g. 3iJe-atoms in a thin film), coupled to an
arbitrary electromagnetic vector potential Aμ and an arbitrary Sf/7(2)-gauge potential
Wμ. We are interested in deriving the form of the effective action, ln^(A, W), at
large distance and time scales, (more precisely, in the "scaling limit").

In order to write down an explicit expression for the partition function £&(A, W)
and exhibit its gauge invariance, it is convenient to work in the Lagrangian formalism
and use Feynman path integrals. (Alternatively, one can use the quantum mechanical
propagator of the system coupled to A, W and define J&(A, W) as the expectation
value of the propagator in the groundstate of the system computed for the fields Ac

and Wc, where Ac = lim A(ct, x)9 Wc = lim W(cb,x) are fixed; see [2].)
t->±oo ί->±oo

The starting point of the Lagrangian formalism is to note that the Pauli equation
(2.18) and its adjoint are the Euler-Lagrange equations corresponding to the action
function SΩ(Ψ*,ψ; A, W) given by

SΩ(ψ*,φ; A, W) = ihjψ*^ VW\d3x - J dtH(t), (3.1)
M 3 R

where H(t) is the Hamiltonian introduced in (2.15), (2.16), and where space-time M3
is given by R x Ω, with a metric ημu as given in (2.27).

More explicitly, SQ is given by

J L 2 m c J
M 3

- f dtHrtf), (3.2)
R
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where Dμ denotes the covariant derivative defined in (2.11), for μ = 0,1,2; (x° =
ct). We observe that, since Hi(t) is assumed to be manifestly gauge-invariant (and
independent of A and W), the action Sβ is invariant under arbitrary U(l)- and
5ί/(2)-gauge transformations, including time-dependent ones!

Quantization of the system with Feynman path integrals leads to the following
formula for the partition function £&Q\

&Ω{A, W) =

where φ and φ* are inteφreted as anti-commuting c-numbers, corresponding to Fermi
statistics. (It is necessary to specify suitable "boundary conditions" on φ#(x°,x), for
x° —> ±oo and x —> dΩ. This is discussed in [22], and we shall permit ourselves to
be careless about this point, in the present paper - in spite of its importance.)

Passing to the Euclidean region (corresponding to analytic continuation in the time

variable from the real to the imaginary axis) and replacing Ao by iA0 and Wo by

iWo, one obtains the Euclidean version of Eq. (3.3):

where the Euclidean action Sβ is defined by a formula similat to (3.2) (obtained
by replacing x° by ix°, Ao by iA0, etc.). The variables φ and φ are independent
Grassmann variables. In order to describe a system at positive temperature T, one
compactifies the imginary-time axis to a circle of circumference β = 1/kβT and
imposes anti-periodic boundary conditions, (corresponding to the KMS condition). In
this paper, though, we study the large-scale physics of systems at zero temperature,
T = 0.

The significance of In £OQ(A, W) (or In £^f}(A, W)) is that it is the generating func-
tional of the connected time-ordered Green functions (or Euclidean Green functions) of
the electromagnetic- and the spin currents. Let us first work in "mathematical" (rather

than physical) units: As in (2.8), (2.9) we set aμ — ~- Aμ, wμ = ίwμ-σ = —-̂  Wμ S,
nc nc

and similarly for the currents. Then, at non-coinciding arguments,

T

a,w

(a,w), (3.4)

ii=l 1=1

where (( ))aiW denotes the connected "vacuum expectation functional" in an external
gauge field configuration, (α, w).

In order for Eq. (3.4) to be meaningful for arbirary n and m, we need to assume
that l n ^ β ( α , w) is smooth in a and w, at least in the neighbourhood of suitably
chosen background gauge fields ac and wc. (In this section we shall require four
derivatives in a neighbourhood of αc, wc and defer a more subtle discussion of the
differentiability properties of \n£ί>Ω(a,w) to the end of Sect. 4.)

We define the effective gauge field action, Sγf, by

α, w) = - In <£β(α, w). (3.5)
i
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It is our aim, in this section, to determine the form of 5pf on large distance and time
scales, i.e., to calculate the scaling limit of S*Q. For this purpose we define scale
transformations of the field variables. We set

x = (z°,z) = λ(ξ°,0 = λξ, 1 < λ < oo, (3.6)

with x e XΩ, i.e., ξ e Ω. The parameter λ is the scale parameter; the domain Ω CM2

is kept fixed. We assume, for simplicity, that the rescaled metric, gffix) = <7fc/(λ£)»
averaged with arbitrary test functions, converges to the Euclidean metric, δki By
(3.6),

λ ( }

In order for the covariant derivatives Dμ to have the right behaviour under scale
transformations, we have to define the scaled gauge potentials as follows:

a£\x) = aCtμ(x) + ά^Xx)

= λ" 1[α c,μ(ξ;λ) + αμ(O] (3.8a)

and

= X~l[wc,μ(ξ;X) + wμ(ξ)] (3.8b)

where ac and wc are external background potentials ά and w denote "fluctuation
potentials", and x = Xξ. More precisely, άμ(ξ) and wμ(ξ) are taken to be fixed
functions on M3 = R x Ω. This means that, considering larger and larger systems,
the strength of the fluctuation potentials a^\x) and wft\x) decreases as λ"1, or if
we focus on the corresponding rescaled systems on Ω the fluctuation potentials άμ(ξ)
and wμ(ξ) remain fixed. The background potentials, however, are assumed to be fixed
in the physical systems on XΩ, i.e., αc ? μ(x) and wc^μ(x) are kept fixed, for all λ, with
x G λM 3. From the point of view of the corresponding rescaled systems on Ω this
means that the strength of the background potentials aCjμ(ξ; X) and wc,μ(ξ; λ) increases
linearly in λ. Finally, for example by inspection of the rescaled Pauli equation, we
note that, for consistency of the scaling limit, the mass and magnetic moment of the
electron must have the following behavior: If we keep the mass, m, and the magnetic
moment, μe, fixed in physical units then in the rescaled systems on Ω, we must have

m(λ) = Xm and μe(X) — -ς-.
A

The scaling limit of the effective gauge-field action is defined by

, w) = " lim " SfΩ(a{λ\ w{X)). (3.9)
λ o o

Here, and in all subsequent formulas, " lim " is not to be understood as an actual limit;
λ—>oo

rather this symbol indicates that we explore asymptotic behaviour, as λ becomes large,
in the form of Laurent series in λ.

Next, we attempt to calculate S^(a,w). For pedagogical reasons it is useful to
first consider a situation where μe = 0, so that w = 0. We examine the Taylor expan-
sion of Sχaίa) around a fixed external background potential αc, setting a = αc + α,
where α denotes a small fluctuation vector potential. In general, Sχf

Ω(a) (is a very
complicated functional of α, and it is quite impossible to compute SΩ explicitly. The
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point is that, for "incompressible" systems, our task simplifies drastically. Let us sup-
pose that the electromagnetic background potential ac is such that the corresponding
electromagnetic field, dac, is time-independent. We can then choose a gauge such
that the Hamiltonian of the system is time-independent (provided that Hj is time-
independent). In this situation, an "incompressible" system is one whose Hamiltonian
H has a spectrum with a positive energy gap above the ground state energy (or pure
point spectrum in a small interval above the groundstate energy). More precisely, we
shall assume that in the given background potential αc, connected Green functions of
the electromagnetic current j have strong cluster properties (converging to 0 more
rapidly that d~4 when the distance d between two arguments tends to oo).

Besides the basic assumption just described and referred to as "incompressibility
of the system", in what follows we shall assume that SψΩ(a) is four times contin-
uously (Frechet) differentiable in α on some Schwartz-space neighbourhood of ac.
Furthermore, we shall make important use of the U{\)-gauge invariance, related to
the conservation of the electromagnetic current.

We begin our analysis of *S^(α) by expanding Sχf

Ω(a) to third order in α = a — αc,
with a forth-order remainder term.

1 /
n\ J(XM3)

n

x aμι (x\)... άμn(xn)dv(xι)... dv(xn)

+ 7Γ / Ί / Λ
 Λ ? T^ (ac + α )

4! J 5αμi(xi)...«αμ4(x4)
(λM3)

4

x άμι

n - 1 (λM3)»

x αμ i(xi)... άμn(xn)dv(xι)... dv(xn)
if) Γ

~4J J
(λM3)

4

x άμι(x\)... αμ4(x4)d?;(xi)... dv{x4), (3.10)

where dυ(x) = Y |̂7y(x)|oi3x. The remainder term is evaluated in a background field
ac + α, with α = θa, for some 0 < θ < 1.

Next, we study the behaviour of the different terms on the right-hand side of
(3.10) in the scaling limit [see (3.6)-(3.-9)]. We begin by stating, in (1) to (4) below,
in a more explicit form the basic assumption of incompressibility, and of the other
principles mentioned above.

(1) Since we have assumed incompressibility of the system in the form of strong
cluster properties of connected current Green functions, we conclude that

(3.11)j
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as λ —> oo, where φ^-^n is a local distribution, i.e.,

supp^i-μn = { ξ b . . . ? ξn.ξχ = . . . = ξ n } . (3.12)

(Note that the current j has scaling dimension 2 which matches with the factor λ2 per
current insertion in (3.11). That the current j must have dimension 2 is a consequence
of the fact that / j°(t, x)d2x is a dimensίonless conserved charge!)

(2) Only relevant and marginal terms contribute to the action SΩ in the scaling limit,
i.e., if the leading term of

λ2n J (Tij^iXξ,) . . .jμn(Xξn)])C

acaμλ(ξl) &μn(ξn)d3ξl . . . d3ξn (3.13)

is of order X~D for λ —> oo with D > 0, then this term will not be displayed in SΩ.
By (1),

D>n-3. (3.14)

(This can be seen by first replacing λ by λλ' in (3.11), and letting λ' / oo. Next,
we recall that in 2 + 1 dimensions any local distribution can be written as a sum
of derivatives of a product of 3-dimensional ^-functions, which then tells us that
χ2nφμι...μn(χξu ^ Λ £ j s c a l e s a s χ-D w i t h D = - 2π + 3(n - I) + a > π - 3, a

being the number of derivatives present.) By (3.14) there are no terms of order n > 4
in α contributing to S^. This explains why, in (3.10), we have expanded Sχf

Ω only
to fourth order in α.

(3) C/(l)-gauge invariance and current conservation: In C/(l)-gauge theory - much in
contrast to non-abelian gauge theories - the space of vector potentials (on a trivial
£7(l)-bundle) is a real vector space: If oi, . . . , α m are arbitrary vector potentials then
an arbitrary linear combination

ι=\

is again a vector potential (provided M3 does not contain any non-contractible, two-
dimensional compact surfaces - an assumption which is true for our choice of Ω).
Moreover, the vector potential α;, defined by

1=1

is gauge-equivalent to α, for arbitrary functions χ i , . . . , χm. Therefore, for an arbi-
trary background vector potential αc, the effective action Sχf

Ω(α), where a — a — ac

is the "fluctuation potential", must be a gauge-invariant functional of α, i.e.,

SfΩ(a + dχ; ac + dχ) = SfΩ(a; ac). (3.15)

This identity implies that

V μ ι φ μ ι ~ μ > - μ n ( ξ u ••• , ξ i , ••• , ξn) = 0, (3.15')

for every I = 1, ... ,n, and here Vμ = dμi\/W[ ')•



Gauge Invariance of Non-Relativistic Quantum Mechanics 573

Note that Eq. (3.15) implies conservation of the electromagnetic current in the
strong form that

Vμι(T[j^{xλ). ..fKxύ .jμn(xn)])c

ac = 0, (3.15")

for all/ = 1, . . . , n, as a distribution on M 3

x n . Equation (3.15") is stronger than the
statement that j μ is a conserved current, since, in general, the latter statement only
implies that (3.15") holds as long as x\ φ Xj, for j = 1, . . . , n,j φ I.

Thanks to (3.15), (3.15;/), the equation

for some operator-valued vector potential Λ?, [see Eq. (2.38)] holds, in fact, as an
operator equation, without any restrictions - as used in [2].

(4) We are studying systems without relativistic invariance. hence φ^-^n has no
reason to be a Lorentz-invariant distribution. However, if the background potential
ac is such that the field dac is invariant under rotations in the x — y plane (e.g., ac is
the vector potential of a constant magnetic field b = (0,0, b3) in the ^-direction) then
φβi-βn might be expected to be a rotation - (SΌ(2)-)invariant distribution, provided
Ω is a rotation ivnariant domain in the x — y plane. However, we should warn that, in
general, rotation invariance may be broken spontaneously. In the limit where Ω f1 R2,
φμi-μn might be expected to be translation-invariant, provided dac is translation-
invariant. This would be the case at positive temperature, T > 0, by Mermin-Wagner
theorem [23, 24], but may fail when T = 0.

We are now ready to display all terms possibly contributing to S^ explicitly.

(i) The term in S^ of first order in α is relevant (D — — 2), and takes the form

(3.16)

M 3

where by current conservation [see (3), above],

μJc vS/ — u W A I)

Since time-translation invariance is not broken, for a time-independent background
field dac, j μ will be independent of ξ°. Hence (3.17) implies that

Y jc(O = 0, (3.18)

i e., j c ( θ — " liπi "λ2(j(λ£))α c describes a persistent, divergence-free (super-) cur-
λ—MX)

rent circulating in the system, furthermore, j®(ξ) = ρ(ξ) describes a time-independent
background charge density. Thus, if there are no persistent, electric (super-) currents
circulating in the system then

JΪ(O = δμ0ρ(ξ). (3.19)

(ii) The term of second order in α contributing to S^ is determined as follows. By
(1) and (3), (C/(l)-gauge invariance, or strong current conservation),

φVfa η) = aεμ"ρdρδ(ξ - η) + φ^u(ξ, η), (3.20)

where a is a constant, and the distribution ψι consists of second or higher derivatives
of the ^-function, (up to distributions localized on the boundary, dM3, of space-time).
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The dimensions D [see (3.13)] of the terms corresponding to φψ, e.g., the Maxwell
term, are strictly positive. Hence they do not occur in S^. In conclusion, the term of
order 2 in a contributing to S^ is given by

ρau)(ξ)d3ξ, (3.21)

M 3

i.e., the Chern-Simons term which is marginal. In the language of differential forms,
(3.21) reads

OL I a A da. (3.22)

M 3

This term is [/(l)-gauge invariant only up to boundary terms!
The unique terms of second order in α and of dimension D = 1 are the Maxwell

terms
1 2

μ,i/=0

fl
J

where fμι/ = dμav — dvaμ. Rotation invariance would imply that g^ — goj =

for j = 1,2, and gn = gi\ = # ( 1 ), but # ( 0 ) and # ( 1 ) may have different values.

(iii) By principles (1) and (3), φ^^^ must be a distribution which is a sum of
derivatives of products of two ^-functions. (There are no local distributions φ^^^
which are compatible with [/(l)-gauge invariance and which are measures.) Thus the
dimension D of terms of third order in a contributing to SψΩ i s strictly positive.
Hence S^ does not contain any third-order terms in α. Moreover, as remarked above,
all terms of order > 4 in a have dimension D > 1 and therefore do not appear in
bΩ' f \

In conclusion ( we include a factor — — for later convenience; see Sect. 4
V h

- 1 S*(α) = J j^(ξ)άμ(ξ)d3ξ + a JJ J
M3 M3

+ boundary terms (b.t.). (3.24)

In differential-form notation,

b.t.

= / (*ic) Λα + α / a A da-2a / αΛ<iαc + const. + b.t., (3.24r)

M 3 M 3 M 3

where α = ac + α is the total vector potential. This formula shows that S^(a) is
[/(l)-gauge-invariant, up to boundary terms which will be studied in detail in [19].

Next, we extend our analysis to systems with μe φ 0, w ^ 0, and determine
the general form of S^(α, w). This is a variation on the theme just discussed. The

1 „*
a) = - - S%{

= /<.«

M 3

[ά;ac

Λα

z)

M 3

ά Ada
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only complication encountered is that we cannot use current conservation for sμ —
(Sμi,sμ2, sμ3) in the strong from of (3.15") and (3.15'), even if the background SU(2)-
gauge potential wc vanishes. If wc does not vanish, some or all components of sμ are
not conserved currents, at all. We set

a = ac + α, w = wc-\- w , (3.25)

and we choose wc = iwc σ to correspond to an external magnetic field Bc(x) in the
^-direction, i.e.,

^ (3.26)

with all other components of wc vanishing. This corresponds to a standard experi-
mental situation in two-dimensional condensed matter physics. In (3.25) and in the
following we suppress the parameter λ for the gauge fields, leaving it to the context
to specify whether we are working with respect to the physical systems on XΩ or
the corresponding rescaled systems on Ω; see (3.8). [Here a remark on the use of the
term "external gauge field" seems to be appropriate: For the system consisting only
of the electrons confined to the two-dimensional region Ω, every gauge field is an
external one, and in this way the term is used throughout this paper. However, from
the point of view of an experimentalist, the total fields a and w are composed out of
ac and wc which he can impose on the experimental sample from outside, and out of
the small fluctuations a and w, respectively, which he can impose only partially from
outside, the other part possibly being a property of the background of the experimental
sample containing the electrons.] We observe that if in (3.26) J5C)3 is independent of
x then wc is a pure gauge, but the 5C/(2)-gauge transformation gauging away wc is
not localized and, therefore, would change the boundary conditions at dM3 and, in
general, at t — ±oo.

Again, we assume that S^(a, w) is four times continuously (Frechet) differen-
tiable in a and w on some suitable neighbourhood of αc, wc. The Taylor expansion of
Sχf

Ω(a, w) around (αc, wc) to fourth order in α, w contains all terms present in (3.10)
- whose scaling limits we have already determined - terms analogous to those in
(3.10), but with j μ replaced by a component, sμ

A, of the spin current and άμ replaced
by wμA and, finally, it contains mixed terms corresponding to the Green functions
(T[js])c, (T[jjs])c and (T[jss])c which we need to discuss.

Let us start by analyzing the pure SU(2)-tεrms corresponding to the Green func-
tions (5), (T[ss])c and (T[sss])c in a background field (ac,wc). Again, we use
principles (1) through (4) above, viz. incompressibility in the form of strong cluster
properties, power counting, f/(l)spin-gauge invariance (corresponding to local rota-
tions around the 3-axis in spin space) for the gauge potential wμ3, assuming that
wc satisfies (3.26). This entails conditions analogous to (3.15'), (3.15") for Green
functions only depending on 5^ (and j μ ) . When applicable we shall also use rotation
invariance. In addition, we make use of

(5) full S'[/(2)-gauge invariance of the theory; see (3.2).
We should emphasize that for our choice of wc, s^(x) will not be conserved, for

A = 1,2, see Sect. 2, so that (3) cannot be used, except for Green functionly only
involving 5^ and j μ .

(i) The term of first order in w occurring in S^(a,w) comes from the one-point
function

,Wc • 021)
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If in the scaling limit there are no persistent spin (super-) currents circulating in the
system then

" lim "λ 2(<P(λ0)α c,W c = mμ(ξ) = ^ ° m ° ( O . (3.28)
λ—>OO

If wc corresponds to a magnetic field in the ̂ -direction, as assumed, then

m / i = (0,0,m^), (3.29)

where m® is proportional to the magnetization of the system.
If wc —• 0, then, in two dimensions,

ra° -> 0, for Γ > 0,

by the Mermin-Wagner theorem [23], but at zero temperature, T = 0, there could be
spontaneous magnetization. (In three space dimensions, ml could be non-vanishing,
for wc —> 0, even when T > 0.)

It is important to note that rhμ(ξ) is not SU(2)-gmxgc invariant: rhμ(ξ) = mμ(ξ; wc)
depends on the choice of gauge in which we describe wc. If 9wc = gwcg~ι +
gdg~ι, where g is an <5LΓ(2)-gauge transformation, then, at least formally, a change
of variables in the path integrals (3.3) or (3.3') shows that

mμ(x;9wc) = ( , c , c

= R(g(x))rhμ(x;wc), (3.30)

where R{g) is the 50(3)-rotation corresponding to an element g of SU(2) in the
adjoint representation. More generally,

B\...Bn

x {T[s%{xύ...sB

n

n(Xn)])c

ac,Wc • (3.31)

Furthermore, we note that the "fluctuation field," w = w — wc, transforms under
5l7(2)-gauge transformations also according to the adjoint representation, R(g), i.e.

9w = gwg~ι , or 9w = R(g)ϊΰ , (3.32)

since
9w = gwg~ι + gdg~ι, and 9wc = gwcg~ι + gdg~ι ,

so that the inhomogeneous term cancels in (3.32).
By (3.30) and (3.32), the contribution

ί m%(Owμ3(ξ)d3ξ = ί (*m3) Λ w3 (3.33)

M 3 M 3

to ^ ( α , w) is compatible with 5t/(2)-gauge invariance. It is a relevant term of
scaling dimension D = — 2, and we finally note tht by C/(l)spin-gauge invariance
(fully explained in the next paragraph) we just have that

dμmξ(ξ) = 0. (3.34)

(ii) Next, we discuss the terms of second and third order in w contributing to
Sfi(a,w). Since we have chosen WCIA = ^A3^c,3 = ^Az^c,μhdxμ to have only a
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non-zero 3-component, we know from Sect. 2 that the 3-component of the spin cur-
rent 5^ is conserved. Note that in the gauge where (3.26) holds, s% is conserved also

if there is, in addition to Bc, a non-vanishing electric fluctuation field E in the x — y
plane, i.e., besides wC)o3 and wo3, also Wk3, for k = 1,2, can be non-vanishing and
s% is still conserved. Thus if we temporarily restrict the fluctuation field w to be of
the form

(3.260

then the theory is a £/(l)spin-gauge theory, where the £/(l)spin-gauge transformations
correspond to local rotations in spin space around the 3-axis and act on w3 by w3 —»
w3-\-dχ, where 2χ(x) is the angle of rotation. In this case, our problem of determining
the second and third order terms in w3 contributing to S^ is identical to the one already
solved for the electromagnetic vector potential α. The solution is that if we require
Eqs. (3.26) and (3.26') to hold the second-order term in S^ffi = 0, w) has the form

w3 A dw3 , (3.35)

M 3

and there is no third-order term.
Now, we should remember that as a functional of the total gauge potential w =

wc + w, Sf}(a, w) must be S'/7(2)-gauge invariant; [principle (5)]. In the scaling limit
we write the total SU(2)-gauge potential w as

with the definition of

wc,μA(0 = " lim "λwCiμA(λξ) = " lim "wc,μA(ξ;λ); (3.36)
λ—»oo λ—>oo

see (3.8). Moreover, if w is restricted to gauge potentials of the form w — wc+iw3-σ3,
with wc as in (3.26) then the second order term in w3 must reduce to one proportional
to (3.35). Finally, terms of order n > 4 in w are irrelevant by power counting, i.e.,
have D > 0, and are therefore absent from S^; [principle (2)]. The terms of dimension
D = 0 and — 1 containing second- and third order contributions in w and having all
the properties required above are the Chern-Simons term

k f ( 2 \
— / tr ( w A dw + - w Aw Aw) . (3.37)
4π J V ^ )

M3

for some constant k, and a term of the form

J (β3w3) A d(β3w3) +b.L (3.38)

M 3

In the gauge where wc is given by (3.26), β3 = β3(wc) is a constant depending on wc,
because (3.38) has to be C/(l)spin-gauge invariant (up to boundary terms). Furthermore
under S'C/(2)-gauge transformations β3(wc) transforms like the 3-component of s^,
that is according to

for A = 1,2,3. This ensures 5C/(2)-gauge invariance of (3.38), taking into account
(3.32).



578 J. Frohlich and U. M. Studer

(iii) We shall realize, however, that there can also be relevant (D < 0) terms of order
2 and further marginal (D = 0) terms of order 3 in w contributing to S^iά, w). The
reason is that the "fluctuation potential" w and the spin current 5^ both transform
under the adjoint representation of 5C/(2)-gauge transformations, and equations like
(3.15') and (3.15") are not true for Green functions of spin currents other than Green
functions only involving j and S3.

[ k 1

— δAB + β^A-iβ^β?, dpδ(ξ - η) [see (3.37) and
4π J

(3.38)], the scaling limit of the Green function {T[s^(x)su

B(y)])c

ac Wc can yield a term
r^B(ξ)6(ξ - η), where τ^B(ξ) = τ^B(ξ;wc) depends on wc. By (3.31) and (3.32),
the term 3 r

Σ /AB=l A B μ (3.40)

M 3

is consistent with S£/(2)-gauge invariance, since τ^B transforms under SU(2)-gauge
transformations according to the representation R(g) (g> R(g), just like WμA^vB- The
coefficient τ^ζ must vanish, for wc,μA = ^A3^c,μ3 as in (3.26), since, for this choice
of wc, the current s%(ξ) is conserved. Moreover, global U(l)φn-invariance under
rotations around the 3-axis in spin space implies that

rM£ = r M £ = 0 ) f o r A = 1 , 2 , (3.41)

and
τ%/

B = τ?"δAB+τϊ''εAB, for A,B = 1,2. (3.42)

The obvious symmetry of τ^B under exchanging (μA) with (vB) implies that r^v is
symmetric and τ%v is antisymmetric in μ and v. Could the global C/(l)spin-invariance
[for wc as in (3.26)] be spontaneously broken? For T > 0, this is ruled out by the
Mermin-Wanger theorem. For T = 0, spontaneous C/(l)spin-breaking might appear
in some of the τ^B. But then the system would have a Goldstone boson. As a
consequence, connected spin-current Green functions would have slow (power-law)
fall off, and hence our basic hypothesis of incompresibility would not hold.

If the system displays invariance under rotations of the x — y plane in the scaling
limit then the coefficients τ£v in (3.42) satisfy

r o = r o ; = O j f o r ; , j = i , 2 , (3.43)

and r^ must be invariant under rotations in the x — y plane, so that

H ^ ^ for α = l , 2 . (3.44)

Finally the symmetry of τ\J and the antisymmetry of r^3 imply that ryχ and T21 vanish.
Hence there are only three independent coefficients

T(o) = r oo ) r α ) = r i l j and T ( 2 ) Ξ T 2 2 . (3.45)

In conclusion, under our hypotheses, in particular the assumption that wc^μA =
δA3Wc,μ3 there might be a term of scaling dimension D = — 1 in the effective action
/S^(α, w) which generally takes the form

2 2

Σ / τΓ(0™μA(0ύvΛ(0+ Σ / τΓA=l ΛB=l ί
(3.46)

A=l M3

 Λ>B=l ί
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More specially, in the case where rotation invariance is displayed by the system in
the scaling limit, the term is given by

2

U>iA(QWiA(O
i,A=l

2r ( 2 )(O (wn(ξ)w22(O ~ wι2(ξ)w2l(ξ)) \ d3ξ . (3.46')

Further interesting constraints on the coefficients τ^v and T^V', τ®\ τ^ι\ and r^
respectively, will be found in Sect. 4.

(iv) There can also be a third order term of the form

3 r
% ^ I lilt n O

Σ

a term which is marginal, in SΩ(ά,w). The tensor rjj^ciO = VABC(&WC)
d f h li l i i f { T ^ ) bi

Ω jj^c ABC

computed from the scaling limit of {T[s^(x\)sv

B(x2)Sc(%3)])aCiwc ^ *s °bviously
symmetric under arbitrary permutations of (μA), (vB) and (ρC). The term with
A = B = C = 3is irrelevant by principle (3), i.e., by invariance under U(l)sp[n-
gauge transformations corresponding to local rotations around the 3-axis in spin space.
Under general S'ί/(2)-gauge transformations, TJABC transforms according to the rep-
resentation R<g) R® R; more precisely

D,E,F

see (3.31). This implies consistency with gauge invariance of (3.47).
If ^c,μA = δA3Wc,μ3, as assumed, rotations around the 3-axis in spin space form

a global, unbroken C/(l)spin-symmetry. Then the only terms that are possible, apart
from ones arising by permutations of (μ3) (zM) (ρB), are of the form

rβ%ί

c = rKveδBc + r£'QεBc, with S , C = 1 , 2 , (3.48)

where r/fuρ is symmetric in uρ, and η%uβ is anti-symmetric in vρ. Let us also assume
that, in the scaling limit, ΉABC^-0 = VABC(\£\^ ^S m v a r i a n t under rotations in the x—y
plane. Rotation invariance then yields further restrictions on v^VQ and vfcVQ which,
for example, permit us to decompose v^VQ into a sum of six terms with independent
relative coefficients, and similarly for ηψQ. These decompositions are of little use
and are therefore omitted.

(v) Finally, we discuss mixed terms depending on both kinds of gauge potentials,
a and w. The terms proportional to (T[jjs])c and to (T[jss])c in Sχf

Ω(ά,w) have
dimension D > 1, as follows from [/(l)-gauge invariance in α and principle (3).
Therefore, they disappear in the scaling limit. We are thus left with the possibility of
a mixed second order term in Sχf

Ω(ά,w) proportional to

(T[f(x)s\{yWac,Wc. (3.49)

If wc,μA = δA3WC:μ3, as assumed [see (3.26)], then invariance under global rotations
around the 3-axis in spin space implies that (3.49) vanishes unless A = 3. Furthermore,
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for A = 3, we can apply principle (3), i.e., £/(l)-gauge invariance under local phase
transformations and t/(l)spin-gauge invariance under local rotations around the 3-axis
in spin space, to conclude that

dμ{T\jμ(x)83W)Cae,We = dΛT[jμ(x)s'ί(yWaciWc = 0, (3.50)

as distributions. Thus, in the scaling limit, (T[jμ(x)s2(y)])^cWc approaches the dis-
tribution

2Ί3ε^dρδ(ξ-η)7 (3.51)

where, for wc as in (3.26), 73 = 73(iϋc) is
 a constant depending on wc. Under SU{2)-

gauge transformations Ί3(wc) transforms like β3(wc), given in (3.39). In conclusion
then, for wc^μA = ̂ A3^c,μ3? as assumed, there can be a marginal mixed term

2 / εμuράμdu(Ί3Wρ3)d3ξ + bl. = j da A (737D3) + / a A d{Ί3w3) + b.t. (3.52)

M 3 M 3 M 3

contributing to S^(a,w). For 73 φ 0, this term is SίC/(2)-gauge invariant but U{\)-
gauge invariant only up to boundary terms, (terms localized on <9M3).

Even in the classical theory of the Hall effect, a term proportional to (3.52) is
present, in general; see the discussion at the end of Sect. 1.

We have now completed our task of determining, in the scaling limit, the most
general form of the effective action of a two-dimensional incompressible electronic
system in an external electromagnetic field. In an 5£/(2)-gauge where wc satisfies
(3.26) the result reads as follows:

- - S£(α, w) = - - SΩ(CL, W; αc, wc)a ft

— \ (*Jc) Λ α + a I a Ada

M 3 M 3

/

k f ( 2 λ

(*ra3) Λ w3 H / tr ( w A dw H— w Aw Aw )
4π J V 3 /

M3 M3

- / (β3w3) A d(β3w)

M 3

2

1 M3 ^ β = 1 M3

3

A,B,C=l

/ VAB

M 3

+ / dά Λ (73^)3) + / a A d(^3w3) + b.t., (3.53)

M 3 M 3

where w = wc + w [see (3.36)], and b.t. denotes a collection of boundary terms
localized on dM3. In the 77-term the primed sum means that there is no contribution
if two or more of the indices A, B, and C simultaneously equal 3. The first two terms
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on the right-hand side of (3.53) have been identified in (3.24) [see also (3.17)-(3.22)],
the third term in (3.33), the fourth and fifth term in (3.37) and (3.38), respectively,
the sixth and seventh term in (3.40)-(3.42), the eight terms in (3.47), and the last two
terms in (3.52).

Note that (3.53) is valid without assuming rotation invariance of the system in the
scaling limit. If the latter is true, however, further restrictions on the form of the r-
and 77-terms can be taken into account, see e.g. (3.46'). Depending on the application,
it is appropriate to collect the second, fifth and the last two terms and rewrite them
either in the form

^- άΛdά+^ / w3 A dw3 + ^- άΛdw3 + b.t., (3.53')
4τr J 4π J 2π J

M3 M3 M3

or equivalently as

σ ( 1 ) f σ ( 2 ) ί

— / άΛdά+ -— / (α + δw3) Λ d(ά + δw3) . (3.53")
4π J 4π J

M 3 M 3

In a gauge where wc satisfies (3.26) the new constants (depending on wc) are defined
by

σ = 4πa, σs — 4π/?2 and χ — 4πj3, (3.54)

or
Ίσm=Aπ\a-Ίfλ, a™ = AΛ and δ=&, (3.55)

if β3 φ§φη3. The limiting cases of vanishing β3 and/or 73 can be treted by imposing
suitable conditions on σ ( 1 ) + σ(2), σ(2)<S and σ(2)<52 at the end of a particular discussion.

The form (3.53) of the effective action ^ ( α , w) has been gained by successively
constructing terms which are invariant (up to boundary terms) under a —> a + dχ,
w -^ gwg~ι + gdg~ι, w —> gwg~ι, and w3 —> w3 + dχs corresponding to U(l)-,
SU(2)- and C/(l)spin-gauge invariance, respectively. The ί/(l)spin-gauge invariance is
a result of the particular choice of wc as in (3.26). While at first sight one might think
to have made exhaustive use of gauge invariance in the construction of *Sβ(α, w),
there is an important observation yet to be made: Recalling the definition of the
scaling limit in (3.6)-(3.9) we emphasize that (with respect to the scaled systems
on XΩ) wfi\x) scales with λ"1 while wc^μ(x) remains fixed. Therefore we expect
SΊ7(2)-gauge transformations, wc,μ(x) + wμ

X)(x) = w^\x) —> g(x)w(

μ

X)(x)g~ι(x) +
(gdμg~ι) (x), to mix terms of different scaling dimensions in S^(a^\ w^). Clearly
(gdμg~ι)(x) scales with λ"1.

This then leads to further restrictions on the coefficients of the terms in (3.53).
In order to be more explicit we recall a standard argument from non-abelian gauge
theory. Writing g(x) = e~Λ^ with Λ(x) — %A{x) σ G su(2), we denote by SA an
infinitesimal 5C/(2)-gauge transformation,

δΛW(

μ\(x) = i[dμΛA(x) - 2εABcwμB(x)Λc(x)] = i(DμΛ)A(x). (3.56)
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5C/(2)-gauge invariance of 5^(α ( λ ) , t ί ; ( λ ) ) can then be expressed by

0 = δΛSfΩ(a^Wλ)= ί d'x-^Sl_(a^,w^)δΛw^(x)

= -ih ί d3x(sμ

A(x))a,w(DμΛ)A(x), (3.57)

λM 3

where (3.4) has been used for the last equality. In (3.57), integrating by parts leads
to the "covariant conservation" of the spin current

= dμ(sμ

A(x))a,w - 2eABcw%(x) (sμ

c(x))a,w . (3.58)

In a slightly different form this reads

μ , w = 2wc,μ(x) A (s»(x))aiW + 2^\x) Λ (3»{x))a,w , (3.59)

which makes evident the mixing of terms with different scaling dimensions if we
notice that (s^0r))a,™ is expanded in powers of λ (given by varying SψΩ with respect
to W^A). In Sect. 4 we will discuss the implications of (3.59) for the coefficients in
(3.53) depending on different physical settings that might be considered. Finally we
mention that (3.57) is valid of course only if there are no anomalies. That the theory is
anomaly-free seems to be ensured by the fact that Eq. (3.58) or (3.59) can be derived
purely from microscopic quantum mechanics [i.e., by a straightforward but somewhat
lengthy calculation, only using the definition of the spin current (2.14) and the Pauli
equation (2.20) or (2.21)]. A similar discussion with respect to ί/(l)-gauge invariance
just leads to the continuity equation of the electromagnetic current (jμ(x))a,w which
has already been taken into account in (3.53).

It follows from the definition of the effective gauge field action given in (3.5) that

&XΩ(a(λ\ w(λ)) ~ exp I S*Ω{a, w; ac, wc) (3.60)
λ-»oo ϊl

see (3.5)-(3.9). From the absence of gauge anomalies we know that £&Q(CL,W) is
U(\) x SU(2)-gauge invariant. This has some very important implications which we
now briefly discuss; but see also [13, 2, 3, 19].

(1) Let us consider a system in infinite space, M 3 = R x Ω, with Ω = R2. We impose
the boundary conditions that the gauge potentials a and w tend to pure gauges at
infinity, i.e., a(ξ) —> dχ(ξ), w(ξ) —• (gdg~ι) (£), as \ξ\ —> oo. By general covariance of
the Chern-Simons terms, we may then compactify M 3 to the 3-sphere S3. Since SU(2)
is the 3-sphere, as well, there exist S'C/(2)-gauge transformations with non-trivial
winding number, i.e., of non-zero degree. Let # ( n ) denote such a gauge transformation
of degree n. Let us consider the factor

ik f ( 2 \
Zk(w) = exp / t r \wΛdw + -wΛwΛw)... (3.61)

4π J \ 3 /

contributing to the partition function ^ λ R 2 ( α ( λ ) , w ( λ )); see (3.53), (3.60). it is well
known (see e.g. [25]) that

zk(
g{n)w) = zk(w) exp(2πikn), (3.62)
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for arbitrary n G Z. There is no other term in S^2 (&,ΊD) cancelling the factor
exp(2πikn). Thus the gauge invariance of the complete partition function yields the
famous constraint

keZ. (3.63)

It will turn out that k is essentially the "Hall conductivity" for the spin current, and
(3.63) establishes its quantization.

(2) Next, let us consider a system on a space-time of the form M3 = R x Ω, with
dΩ non-empty, as usual. Then the three Chern-Simons terms

(a) — / tr ( w A dw + - w A w A w ) , (3.64)
4π J V 3 /

M 3

σ™ r
(b) a A da, (3.65)

4π J
M3

and

σ ( 2 ) /•
(c) (a + δw3)Λ d(ά + <Sw3) (3.66)

4π J
M 3

in 5 ^ are not invariant under gauge transformations not vanishing at the boundary
of M3, i.e., they are "anomalous." Term (a) displays the two-dimensional chiral
5t/(2)-anomaly, terms (b) and (c) the two-dimensional chiral [/(l)-anomaly. Since
the partition function ££Q(CL,W) is fully gauge-invariant, these anomalies must be
cancelled by additional terms in Sp(ά, w) localized on the boundary of space-time M3,
i.e., by terms among those denoted by "b.t." in (3.53). The structure of these additional
terms is well known [26]. They are the generating functions of the connected Green
functions of chiral Sί/(2)-[term (a)] and chiral (7(1)-[term (b)+term (c)] currents
which are localized on <9M3 and form Kac-Moody algebras, see. e.g. [27]. These Kac-
Moody algebras of chiral edge currents and their representations provide extremely
interesting information on the physics of two-dimensional electronic systems [13, 2,
3]. A detailed analysis of anomaly cancellation and its physical consequences for two-
dimensional condensed matter physics will appear in [19]. Among the results of our
analysis are the following ones: The coefficients σ ( 1 ) and σ(2) of the terms (3.53") in

5^(α, w) are related to the Hall (or transverse) conductivity, σ ( 1 ) + σ ( 2 ) = σ = -? σπ-

It is a rational number belonging to a certain discrete set that depends in an explicit
way on the number of independent chiral [/(l)-currents on dM3. If (σ ( 1 ) + σ(2)) φ Z
the system has excitations of fractional electric charge and fractional (intermediate)

statistics. If the coefficient, k, of the 5'C/(2)-Chern-Simons term — Γ tr [ w A dw+

2 \ 4 π M3 V
- w A w A w 1 - which will turn out to be the Hall (or transverse) conductivity for the

spin currents s- does not vanish then there are, in general, neutral excitations carrying
5f/(2)-spin with fractional statistics, so-called spinons. It turns out that spinons can

/ 5 e2 \
btfermions I presumably realized in the σ# = - —- quantum Hall fluid or semions

\ 2 h J
"half-fermions"; realized in Halperin spin-singlet quantum Hall fluids with σn =
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2 e 2 \
— Γ , Z = 1 , 2 . . . ) - besides more exotic possibilities which do not appear to
41 + 1 a J
be realized in the electron gas, but are encountered in two-dimensional systems of
particles with higher spin. All this is discussed in detail in [19].

Let us briefly sketch one way towards understanding the quantization of the
e 2

plateau-values of the Hall conductivity σ # = σ —, i.e., of the coefficient of the
term — j a Ada in the effective action developed in [2]. For simplicity we ne-

4 7 Γ M3

gleet spin effects, setting μe = 0; but see [19] for the general case. The effective
action in the scaling limit is then given by (3.24), (3.24'), i.e.,

= -(i *jcΛa + i-%- / S
I J 4π J
\

b . t Λ . (3.67)

J
M 3 M 3

Let us suppose the system has only one conserved electromagnetic current, j . By Eqs.
(2.38) and (3.15") there then exists a quantized vector potential, ^ , such that

j = *d^& . (3.68)

We should ask which gauge theory for the gauge potential *Λ reproduces the form
(3.67) of the effective action in the scaling limit? The unique answer, found in [2],
is that the gauge theory for j& is given by the path integral

(α)-1 / e x p f — ί ^ Λ ^ i - [ Λ Λda + (...))
J \4πσ J 2τr J J

(3.69)

where (...) refers to irrelevant terms and boundary terms. This gauge theory has
excitations (static and point-like in the scaling limit) of charge

= ί
£=const

i.e., of the charge of a hole or an electron (in units where e = 1). For these excitations
to be fermions - as they must be if spin is neglected - it is necessary and sufficient
that

σH -r = σ = — , for some leZ. (3.70)
e2 21 + 1

Besides electrons and holes the theory then describes excitations of fractional charge,

τι
± l 2ZQ = ι i

which have fractional statistics. For details see [2], and for a general analysis (involv-
ing several independently conserved electromagnetic currents) see [13, 3, 19]. The
general analysis reproduces all known plateau-values of σ # !

In the next section we discuss the "transport equations" and sum rules for the
current Green functions that follow from the form (3.53) and (3.530 of the effective
action
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4. Linear Response Theory and Current Sum Rules
for Incompressible Electron Fluids

In this section, we determine the dependence on the external electromagnetic field
(J§, B) of expectation values of the electromagnetic and spin currents in essentially
stationary states of a two-dimensional, incompressible electron fluid at very low tem-
peratures. Using the form of the effective action in the scaling limit, found in Sect. 3,
we calculate the current expectation values to leading order in the scale parameter λ.

From the Ward identities, Eqs. (3.4), (3.5), and the behaviour of currents, gauge
potentials and the effective action under scale transformations determined in Eqs.
(3.6)-(3.9) and (3.11), we derive the basic equations of "response theory":

, ^ («J^) ), (4.1)

and

where λ is the scale parameter, and

a(x) — ac(x) + ά(x), w(x) = wc(x) + w(x) (4.3)

are the total electromagnetic vector potential and 5ί7(2)-gauge potential, respectively,
in "mathematical units." The basic hypothesis is that the system is incompressible
when a = αc, w = wc. We are interested in predicting the response of the system
to turning on additional external fields α, w of order A"1, see Eq. (3.8). In our final
equations we shall display only those terms contributing to (jμ(x))a,w and (sA(x))a^w

that are linear in α, w. (They are the leading terms in A.)
As in Sect. 3, Eqs. (3.6)-(3.8), we propose to work in rescaled variables,

Then Eqs.

w

(4.1) and

a μ(x)

μ(a0-

λ2.

(4.2)

x = λξ,
-> α (

μ

λ ) ( z ) = λ " 1

iμ(χ)^jμ(O,

read

[α•Cμiξiλ)

=,μ(ξ;λ)

ί? fixed,

+ Oμ(0] ,

+ wμ(0],

and

\ U w ) , (4.20

up to corrections of order A"1 which we shall usually not display explicitly.
Before evaluating (4.10 and (4.20, we recall from (3.53) and (3.530 the form

of the effective action in the scaling limit. We write it in a form well suited for

the following discussion. In an 5ί/(2)-gauge where wCyμA = — δμoδAi ^- Bc^ [see
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(3.26)] the effective action is given by

- -Sn(ά,w;ac,wc)n

= J j£aμd
3ξ + J

M 3 M 3

+ £; ί ε^βaμduaed
3ξ+^ ί ε^a^

M 3 M 3

M 3

2π / ^ V 6 I w n A d v W e A ~ 3 εABCWμAWvBV>QC \ d3

M3

2

/ r^WμAWvAd
?>ξ> + Σ / T

M 3

2

M 3 ^ ' ^ ! M 3

3 ;

' / ^ ^ (4.4)

Here and throughout this section, summation convention is understood, for μ, z/, ρ =
0,1,2 and A, £?,C = 1,2,3, if 4 < ^ " is not displayed explicitly. Furthermore, for
A, B = 1,2, SAB is the sign of the transposition (AB) of (12). [In the case where
rotation invariance holds in the scaling limit the r-terms can be reduced further, as
shown in (3.46').]

The formula for (jμ(ξ))a,w is somewhat simpler to evaluate than the one for
(sίA(0)a,w> so we start with the former. In expression (4.4) for S^(a,w) only the
first, third and fourth term depend on α. Combining (4.17) with (4.4) we find that

(jμ(O)a,w = j c

μ(O + £- ε^dΛa - ac)ρ + ̂  ε^°dv(w - wc)ρ3. (4.5)
zπ zπ

In order to elucidate the physical content of Eq. (4.5), we now pass from "mathemati-
cal units" to physical units. The connection between aμ and wμ and the corresponding
physical gauge potentials Aμ and Wμ9 respectively, is given in Eqs. (2.8)—(2.11):

aμ = — Aμ , wμ = ̂  Wμ , (4.6)

— β
with μe « the magnetic moment of the electron (up to a factor ft/2). If the

raoc
electromagnetic field (E, B) is the only physical, external gauge field acting on the
electron fluid then

WOA(0 = ~ BA(0 , and WlA(O = - \ eiABEB(0, (4.7)

A = 1,2,3, / = 1,2. Note that, since B and E are electromagnetic field, strengths,
they have scaling- (or mass-) dimension 2. However, μe has scaling dimension —1,
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so that wμ has again scaling dimension 1, as required of a gauge potential; see the
discussion following (3.8).

We define the electromagnetic current, β^μ, in standard physical units by

β° = ρ = ej\ g=ecj. (4.8)

Inserting (4.6) and (4.8) into (4.5), we find the equations

((>(O)E,B = Qc(O + — ^3(0 + ^ — curl W 3(0, (4.9)

where σ# = σ η- is the Hall conductivity; (σ is dimensionless and can thus only
depend on dimensionless parameters of the electron fluid, in particular on the filling
factor v). Expressing Wμ in terms of E and B, as in Eq. (4.7), (4.9) becomes

(άθ)g B = edO + — B3(θ --f—Y MO, (4.10)
' c 8π c

where

BA = BA- BcΛ , EA = EA-EcΛi and V E = ^ - Ex + —- E2 .
dξi dξ2

We note that the Maxwell term

\ {£) \9

φ) I E\ξ)d2ξ + 9m J mOd'ξ] , (4.Π)
L M 3 M 3 J

where
— Ej = djά0 - doάj , and — S 3 = d\a2 - d2άχ,

[see expression (3.23)], would yield another contribution

( O ) l (4.12)

to the right-hand side of (4.10). The coupling constants # ( 0 ) and # ( 1 ) have scaling
dimension —1, i.e., are lengths, and are characteristic of the widht of the system in
the ^-direction transverse to the plane of the system. One would expect that, in general,

g(0\ and g{l) are much larger than — —- « λCθmpton, where λCθmpton = is the
C C TΎlf\C

Compton wavelength of the electron. Combining (4.10) and (4.12) we have that

C

with

(Q(0)E,B = ^ ( 0 + — B3(ξ) - ZoV E(ξ), (4.13)

l° = 9('0)Γ + T- — ( 4 1 4 )

he 8π c
For IQ = 0, Eq. (4.13) reduces to an equation exploited in [2].

Setting μ = i = 1,2 in (4.5) and using Eqs. (4.6)-(4.8) and (4.11), we arrive at
the equation

« — E— Ej(ξ) + chε^djBsiξ), (4.15)
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where

h=g{l)^--^ — , (4.16)
Tic 4π c

ειi is the sign of the transposition (ij) of (12), and r = X~ιt is the rescaled time
variable.

It should be noted that in Eqs. (4.13) and (4.15) only the component B3 of the
magnetic field perpendicular to the plane of the system and the components E\ and
E2 of the electric field parallel to the plane of the system appear. Furthermore, these
equations are manifestly consistent with the continuity equation for the electromag-
netic current.

Next, we calculate the expectation value of the spin current in an external elec-
tromagnetic field. The general formula follows from the form (4.4) of the effective
action. We present it in mathematical units:

- ^ εμ»β{{dvwQA (0 - εABcw,B(ξ)wρC(ξ)}

A3 γ{ wvA ^ εABτ2 wvB j

3

B,C=\

Terms quadratic in w can be discarded within linear response theory. Thus the term
k
— εμ"ρεABcWιsB(0wρc(0 can be replaced by
π

— (1-^°)(1-«Λ3) έ u>cM0εμiεAB&iB(ξ), (4.18)
i,B=\

for our choice, w^μA = <$A3^0^,03 > of the background gauge potential. For μ = 1,2
and i = 1,2, εμi is the sign of the transposition (μi) of (12). Moreover, the term
proportional to η^BC is quadratic in the fluctuation potential w and hence can be
dropped.

We should emphasize that Eq. (4.17) is not SU(2)-gauge invariant, but trans-
forms under the adjoint representation of the Sft/(2)-gauge group. In particular, we
recall that the spin current mμ(ξ) is really the 3-component of an sw(2)-vector
mμ(0 = (0,0, mμ(ξ)), whose 1- and 2-components only vanish because wc has
only a non-vanishing 3-component; see (3.29) and (3.30). Similarly, the coefficient
X of the second term on the right-hand side of (4.17) is the 3-component of the
5^(2)-vector x = (0,0, χ)9 which is constant and whose 1- and 2-components again
vanish only because of our special choice of wc; see (3.54). Furthermore, the r-terms
should be understood as multiplying the orthogonal projection of wμ(£) onto the
two-dimensional plane perpendicular to m°(ξ).



Gauge Invariance of Non-Relativistic Quantum Mechanics 589

With these remarks, we may rewrite Eq. (4.17) in an 5£/(2)-covariant form:

ΰeiξ) - ϋSΛξ) Λ we(ξ)}

v ( 0 - (&v(ξ) • ίh°(ξ))τh

iOtiΛO Λ m°(0 + , (4.17')

°(0=where m ^ ) = μ 0 ( O |

In order to understand the physical content of formula (4.17'), we now specialize
it to different components of s^ and rewrite it in physical units. We define the spin
density by

\ (4-19)

and the spin current density by

he
=Y'A(0, * = 1 , 2 . (4.20)

Using Eqs. (4.6) and (4.7) and omitting terms quadratic in W, we find the following
equation for μ = 0 and A = 3:

(4.21)

£Γ - σt2) γc V E(ξ)

h( — ) (E2 + B2) j , and

? ^ ^ = g/a. (4.22)

We recall that \μe\ ^ Ξ μBθhr = 0.579 10"8 eVGauss"1.

Let us briefly interpret the different terms in (4.21) physically.

(1) Up to a factor of μe, M°(ξ) = - 777,3(0 is the magnetization of the system in an

external field E = Ec = 0, B = Bc(= (0,0, Bc)).

J_
2c

breaking and describes one aspect of the "quantized Hall effect for spin currents."
As shown in Sect. 3, (3.63), the coefficient k is always an integer; so in the case
of vanishing σ s, this is an integer Hall effect. In general, repeating the discussion
sketched at the end of Sect. 3 for the second Chern-Simons term in (3.530, we may
infer the rationality of σ s; see (3.70). This then gives the quantization of the total
coefficient (^H\~σSH2^' (Under normal circumstances, this term will be unobservably
small.)

(2) The term (σ^\n — σ^ 1 ) — V E(ξ) results from spin-orbit interactions and parity
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(3) The term B3(ξ) = χ^μ~λ B^iξ) describes the response of the spin density
4τr c

2 g in the direction perpendicular to the plane of the system to a change,

#3(0, in the external magnetic field. Thus the coefficient

χ± = — ^ (4.23)
4π c

is the magnetic susceptibility in the direction transverse to the plane of the system.
At the end of this section we shall see that the coefficient χ is quanized, so the
susceptibility χ± is quantized, too.

Next, we determine the spin density ( ^ ( 0 ) ^ β m a direction, A = 1,2, parallel

to the plane of the system. From (4.17'), (4.6), (4.7), and (4.19) we obtain that

- - = - n - S p i n —

+ ~r~ \ / , £ABT~I (ξ) — r 2 (ξ)
4 C U = i J (4.24)

where the parallel magnetic susceptibility is given by

i°°(0- (4.25)

The first term on the right-hand side of (4.24) is another manifestation of the (integer)
quantized Hall effect for the spin current.

Below, we shall derive restrictions on the coefficients τ\ and T2 which follow from
full S£/(2)-gauge invariance of the theory.

We proceed to calculate the expectation values of the different components of the
spin current densities. Let us start with {S\(ξ))g g, i = 1,2. From (4.17'), (4.6), (4.7),
and (4.20) we find the equation

:,3 + 5 3 ) ( O

spin spiiix cij fr ίύ\
Λ i nL 2c or

. . , for i = l , 2 . (4.26)

The dots stand for terms of order &\ —— (E2 + B2)) M% = — ml represents a
\ c ) 2

possible persistent spin current circulating in the system, the second, third and fourth
term describe the quantized Hall effect for spin currents. We note that the second
term describes again an integer quantized Hall effect, because k G Z, as follows
from 5t/(2)-gauge invariance. The last term on the right-hand side of (4.26) is a
cousin of the ordinary electromagnetic Hall effect. Terms like the second, third and
the last one on the right-hand side of (4.26) are already predicted by classical physics.
The surprising feature of quantum mechanics is that the coefficients σ^1" and σ ^ are
"quantized," (i.e., belong to discrete sets of real numbers), for incompressible systems.
Suppose we study a spin-singlet quantum Hall fluid or a two-dimensional, rotating
incompressible spin fluid of neutral particles, such as a rotating film of superfluid 3He,
in an external electromagnetic field. Then the last term in (4.26) is absent (χ = 0),

while, in general, the first four terms are still present ί replacing μe - by the magnetic
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moment of the constituents of the corresponding quantum fluid 1. Such systems are
studied in [15, 21]. /

Finally, we consider the expectation value of the spin current density yA, for
A = 1,2. Equation (4.17r) combined with (4.6), (4.7), and (4.20), readily implies that

γ
B=\

+ 4 ( 0 ^ 3 ( 0 + .-., (4.27)

for i,A= 1,2, where

4(0 - ^ ί | T CABCMO + Σ eABriB(0 - eAτ?(θ\ (4.28)

The first two terms on the right-hand side of (4.27) describe again an integer quantized
Hall effect for spin currents. The third term will be studied more closely in our subse-
quent discussion. It is absent if the system is rotation invariant in the scaling limit: see

k
(3.43). The strange last term comes from the r-terms and the term — / tr(w Aw Aw)

in the effective action. It describes some kind of "zitterbewegung" which appears to
be unobservably small.

Next, we derive further constraints on the coefficients of the different terms in
the effective action given in Eq. (4.4) which depend on the physical situation under
consideration. We first recall Eq. (3.58), the "covariant conservation" law of the spin
current, which we showed to be a consequence of 5C/(2)-gauge invariance in Sect. 3.
In rescaled variables, Eq. (3.58) takes the following form; [see (3.6)-(3.8), we return
to work in "mathematical units"]:

dμ(sμ(ξ))α,W = Qp (Λθ)α,W + Y (S(θ)α,«,

(4.29)

d d \ _ 1
where s = (s ,s ) , V = ( ^-j-, ^-j ), wμ = —tr(wμσ), and Λ denotes the usual

vector product. In components, Eq. (4.29) reads

= 2εABc{wc,μB(ξ; λ) + wμB(ξ)} (s%(ξ))atW . (4.290

We now determine the behaviour of both sides of Eq. (4.290 when the scale parameter
λ becomes large, using Eqs. (3.6)-(3.9) and (4,17). For the left-hand side (l.h.s.) we
find

l.h.s. = δA3dμm%(0

+ 2(1 - δA3) Σ εAB \ - είjdi(wc,o3WjB) ( 0 + dμ(τψwVB) ( 0 \

+ 2(1 - δA^dμiT^WvA) (O + , (4.30)
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where the values of i and j range over 1 and 2, and the dots stand for terms of lower
order in λ; (see below). Next, we study the right-hand-side (r.h.s.) of (4.29'). We
recall that τ^v is symmetric, while T^V is anti-symmetric in μ and v. We then find

2

r.h.s. = - 2(1 - δA3) Σ εABWc^{ξ) (sμ

B(O)a,w + 2εABCwμB(0 <*σ(O)α,«,
B=l

2

= 2(1 - δA3) Σ εABm%(ξ)wμB(ξ)
B=\

wCt(β(ξ)

(4.31)

Equations (4.30) and (4.31) are valid in an 5t/(2)-gauge where wc satisfies wCiμA(ξ) =

—SμoδA3 —- Bc,3(ξ), and we recall that

Wc,μA(ξ) = " lim " λwCtμA(λξ) = " lim " wCiμA(ξ; λ); (4.32)
λ—^co λ^oo

see (3.8) and (3.36). Combining (4.32) and the discussion in Sect. 3 on the scaling
properties of the current correlators [see (3.13)], we may order the terms in (4.30)
and (4.31) according to their scaling dimension D, (behaving like λ"^, as λ / oo).
For the terms in Eq. (4.30), one finds the values D = — 2, — 1, and —1, respectively,
the dots stand for marginal and irrelevant terms (D > 0). Likewise, the terms in
(4.31) have the values D = — 2, — 1, —2,-1, and — 1. We note that subleading terms
in the spin current, (behaving like λ"1 as λ / oo, and not considered in this paper)
could give rise to marginal (D = 0) contributions to the right-hand side of (4.29')
when combined with wc,μ(ξ; λ). This is the reason for displaying only the D = — 2
and —1 terms in Eqs. (4.30) and (4.31). Equating the terms of equal dimension D
on the left-hand side, (4.30), and the right-hand side, (4.31), we find the following
constraints [in the 5C/(2)-gauge considered above]:
(a) Setting A = 3, the (D = - 2)-terms give

dμm%(ξ) = 0. (4.33)

This constraint has already been found in (3.34), as a consequence of U(l\P[n-gauge
invariance.
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(b) For A = 1,2, the (D = - 2)-terms imply

2

0 = Σ εAB{m%(0 ~ 2τ°ι

μ(ξ)wcMO}wμB(ξ)
B=\

2

+ 2wc,03(O Σ r2J(0^jA(0 (4.34)

(c) Finally, for A = 1,2 the (£> = - l)-terms lead to

\

^ C D , ^ (4.35)
B=l C,D=l

We propose to discuss the implications of the constraints (b) and (c) in several
physically distinct situations. Unless stated otherwise, we always assume the two-
dimensional system to be incompressible for certain non-zero values of the background
potential wc. Unless specified otherwise, the indices can take values as follows: μ, v =
0,1,2, fc,Z = 1,2, and A= 1,2,3.

Case (1). For arbitrary fluctuation potentials ύ)μA(0 ( m some Schwartz space,
S(M3), over M3), (c) implies

τ Γ ( 0 = 0 = 7-^(0 and ^ ( 0 = 0, (4.36)

and from (b) we find that

r°Λ0-^%:. (4.37)

Together with (4.36), this implies that

Mμ(ξ) = - mμ(ξ) = 0, for all μ, (4.38)

i.e., the magnetization M° and the persistent spin current M of the system in the
background field wc vanish. This means that the groundstate of the system is es-
sentially a spin-singlet state. We would expect, however, that, generically, systems
subject to a strong external magnetic field (wc ^ 0) exhibit a non-zero magnetization,
M® φ 0. Our conclusion (4.38) might thus appear to be puzzling! We have to ana-
lyze where the solution to this puzzle lies. To this end, we must draw attention to a
somewhat subtle aspect of our analysis that we have not elucidated, so far, namely
the differentiability properties of the effective actions SψΩ(a, w), 1 < λ < oo, in the
fluctuation fields α, w, for a given background field ac, wc.

Presently, we are only interested in the differentiability properties with respect
to the 5C/(2)-gauge potential w = wc + w, and thus we suppress the £/(l)-gauge
potential a = ac 4- a in the following. To be more precise, we have assumed, so far,
that Sχh(w) be four times continuously (Frechet) differentiate in w on a Schwartz
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space neigbourhood, ^f(λM3), of wc(x). The space Jf(λM 3) consists of fluctuation
potentials of the form wμA(x) = ^μAi

χ) — λ~lrwμA(ξ) t s e e (3.8)], where Xξ — x,
and wμA(ζ) £ ^(Mi), the space of smooth fluctuation potentials of "rapid decrease"
on M 3. We have assumed, for example, the existence of a continuous linear map

f f£9
DμASfΩ(wc) = —*&- on J¥(λM3) such that

δwμA

\SfΩ(wc + w)- SfΩ(wc) - DμASfΩ(wc)wμA\

as ||ϊDμA||^f —> 0, for all wμA G
Just as well as full (Frechet) differentiability of SψΩ on 5f(λM3) at wc, we could

only have assumed the existence of directional (Gateaux) derivatives of SχΩ at wc in
particular directions it)μ^ G ̂ f(λM3), with Jτf(λM3), z = 2,3, . . . , certain subspaces
of J^f(λM3). As a matter of fact, the puzzle connected with Eq. (4.38) suggests
that a selfconsistent analysis of the physics of the system will show which space of
fluctuation potentials is to be considered, i.e., what kind of differentiability properties
of SψΩ (w) to expect. We emphasize that, in the analysis of Sect. 3, it was not necessary
to precisely specify the space of fluctuation fields, w, for which Eq. (3.53) for the
effective action SΩ holds, since in Eq. (3.53) we have found the most general form
of SΩ compatible with general principles. It is only in dicussing the full implications
of 5C/(2)-gauge invariance, Eq. (4.29), that specifying more precise differentiability
properties of Sχ^ in w, for large values of λ, becomes essential. A selfconsistent
analysis shows that these differentiability properties of the effective action are closely
related to specific physical properties of the quantum fluid in a given background field
wc. We propose to consider some typical examples.

Case (2). Since we are primarily interested in studying essentially stationary states
of incompressible quantum fluids, it is natural to investigate the consequences of the
assumption that the effective action, for a specific choice of gauge, is four times
continuously differentialbe in w at wc only on a space, ^f(λM3), of fluctuation fields
w which are time-independent or, at least, are so slowly varying in time that time
derivatives of w can be neglected in constraint (c), Eq. (4.35). More precisely, we
assume Sχ^ (1 < λ < oo) to be four times (Frechet) differentiable in a neighbourhood
of w = 0 of the spaces

= {wμA G ^(XM3):wμA(x) = \-lwμA(ξ; λ),

with wμA(ξ; X) G ̂ ( M 3 ) , dowμA(ξ; λ) = 0(X~1} . (4.40)

The terms proportional to —~ wμA(x) therefore scale with an additional factor of
oxΌ

λ"1 and drop out of constraint (c), as λ —> oo. The implications of (4.29) in this case
are as in (4.36), except that the coefficients τ®°(ξ) and η^iξ) need not vanish, but
must only satisfy the equations

doτ™(0 = 0, and η™(0 = - : J ^ L . (4.41)

Furthermore, Eq. (4.37) follows as in Case (1).
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We conclude that

Mμ(ξ) = Q m°3(0, Q) , with mlφO, in general, (4.42)

i.e., the system may exhibit a non-zero magnetization but no persistent spin (super-)
current in the background field wc. Note that, from (4.41), (4.37), and (4.42) and
constraint (a), it follows that, for consistency,

doWcMO = 0-

It may be useful to discuss these findings a little further: For Sχft(wc + w) to be
several times continuously differentiable in w at w = 0 on some space 5?(λM3), a
weak form of incompresibility must hold for all potentials w = wc + w, with w €
5f(λM3). Equation (4.38) tells us, therefore, that incompressibility of a system with
non-zero magnetization in a background potential wc is unstable against perturbations
wc —• wc + w, for arbitrarily small but strongly time-dependent potentials w. In
contrast, the result in Case (2) says that a form if incompressibility for a system in
a suitable background potential wc may be stab/e against tiny perturbations wc —>
Wc+it;, provided it) is only very weakly time-dependent, and in an SU(2)-gauge where
wc is time-independent.

Case (3). In addition to the restrictions on wμA in Case (2) we might also choose the

spatial variations of wμA to be very small, i.e., to assume differentiability of 5 ^ on

J^(λM3) = {wμA e <5f(λM3):wμA(x) = X~ιwμA(ξ; λ),

with wμA(ξ; λ) G S^(M3) and

dvwμA(ξ; λ) = O(X~l\ for all μ, i/} . (4.43)

From constraint (b) we then derive again Eq. (4.37), together with

τf(ξ) = 0. (4.44)

All components of τfv can, in principle, be non-zero, (taking into account, of course,
(3.42)), but they must satisfy

9 μ r Π ί ) = 0, and 0zτjfc(O = O. (4.45)

Furthermore, there are relations between η- and r-components of a similar type as in
(4.41) which we do not wish to display explicitly. In conclusion, systems to which
Case (3) applies can exhibit a non-zero magnetization M°(ξ) and, possibly, support
a persistent spin (super-) current. Combining Eqs. (4.45), (4.37) and constraint (a),
it follows that, for consistency, the (rescaled) background field wc,03(O [see (4.32)]
must be constant on M3. [This determines, in part, our choice of an S'C/(2)-gauge!]

Case (4). Since in the SU(2)-ga\ige in which we are working, the identifications (4.7),
hold, i.e.,

wOΛ(ξ) = -τr BA(O, and wlA(ξ) = - £• elABEB(ξ), (4.46)
2c Ac

one may wish to repeat our analysis in Cases (l)-(3), assuming differentiability of
the effective actions only on subspaces of fluctuation potentials as described here and,
in addition, requiring the fluctuation potentials to be of the form (4.46). The results



by antisymmetry;

and

see (3.42)]. The only restrictions are

r,0μ(O = 0, 5,r2

0 i(O =

ί , Λ Λ
\τ\ +}_^ε ft (0 =
I J=l J

o,

= 0.
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are similar to those in Cases (l)-(3), but slightly less restrictive. As an example we
consider a situation similar to that corresponding to Case (3). We define

S%{\M3) = {wμA e y$(\M3):w0A(ξ; λ) = bA(ξ; λ), wlA(ξ; λ) = εlABeB(ξ; λ),

with dμbA(ξ\ λ), dμeA(ξ; λ) = O(X~ll for all μ and A} .

In this case, no component of τ^v and τ%v has to vanish [other than τ%u which vanish

(4.47)

(4.48)

All components of Mμ(ξ) can be non-zero, and we have the following relations:

m°3(O = 2wcfi3(Oτ?)(O, (4.37')

and

m1(0 = 2wcfi3(O I r?fc + Σ ^2 I (0 (4-49)

Again, one can derive relations between η- and r-components which, however, are
of little interest in linear response theory and are therefore not presented here.

Case (5). Let us finally consider a two-dimensional quantum fluid which is incom-
pressible in a vanishing background potential, i.e., for wc = 0, and let us assume that
the effective action is four times differentiable on some space ^(XM3). Then we infer
from constraint (b) [Eq. (4.34)] that Mμ(ξ) must vanish identically. Our conclusion
is independent of the particular choice of the space ^(XMy), for i = 1,2,3,4. This
result is a variant of the Goldstone theorem [28]: If any component of Mμ(ξ), in
particular the magnetization μeM°(ξ), does not vanish in the limit where wc tends to
0 then the system cannot be incompressible in a vanishing background magnetic field.
In other words, the system must exhibit gapless excitations, the Goldstone bosons,
coupled to the groundstate by the spin current.

It is necessary to discuss the main formulas of linear response theory, see Eqs.
(4.13), (4.15), (4.21), (4.24), (4.26), and (4.27), in some more detail and to ask whether
there are relations between the four fundamental parameters, σ, χ, σs, and k of the
theory.

First, we note once more that Eqs. (4.13) and (4.15) confirm that

satisfies the continuity equation, (i.e., is a conserved, classical current), on account of
Faraday's induction law (in 2 + 1 dimensions)

- ζ- B3(0 + dιE2(ξ) - d2Eγ(0 = 0. (4.50)
c or

Second, if the background field Ec, Bc is chosen to be of the form Ec = 0, Bc —
), then the current
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satisfies the continuity equation to first order in E and J3, as expected. This is seen
from Eqs. (4.21) and (4.26), by using (4.33) and (4.50).

Finally, formulas (4.24) and (4.27) show that, for A = 1, or 2, and in the situation
of, for example, Case (2),

B(O + \d(E) (ξ), (4.51)

where we have used that dτχ\\ = 0, as can be seen from definition (4.25) and Eq.
(4.41), and K is defined by

& ( ξ ) . (4.510κ(O kBCi3(ξ).
8τrc

Let us suppose that Bc(ξ) is constant, so that κ(ξ) is constant as well. If E(ξ) =

E(ζ°i ζl > ζ2) is independent of £3, for ξ3 « 0, (i.e., in the vicinity of the plane of the
system), we have that

Then if
μ~ιcχ\\ = - K = const. (4.52)

it follows from Faraday's law in 3 + 1 dimensions, i.e.,

- — BA(ξ) + (curl E)A ( 0 = 0,
c or

that the right-hand side of Eq. (4.51) vanishes, i.e., that ( ( 3 ^ ( 0 ) ^ § i^λiO)E B^ i s

conserved to first order in B and E.
It follows from (4.25), (4.517), and (4.37) that Eq. (4.52) would hold, provided

8πc2 M°
k = 2Γ^2- (4.53)

μ\tι B2

c3

If the system does not exhibit spontaneous magnetization, as Bc -^ 0, M° is propor-
tional to Bc^3, for Bc^ small, and (4.53) would imply that

7 const. ,
k = —— = const, v , (4.54)

Bc,3

for small βC ) 3, where u is the filling factor. However, for an incompressible quantum
Hall fluid, k must be an integer [see (3.62), (3.63)], and relations (4.53), (4.54) will
therefore be at best approximately valid. Thus the currents ( (^(O) jg β? {2^(0}E Φ

are, in general, not conserved, even in first order in E, B, as one might expect;
(see Sect. 2). Approximate conservation of these currents would imply approximate
validity of Eqs. (4.53) and (4.54), i.e., k oc u, or ke2/σHh « const., for large u,

o
6

because σn « — z/, for large values of v. This would mean that, for large filling
factors v, the number of spin-singlet bands would be large. There are no obvious
reasons why this should be the case, but these remarks pose, at least, an interesting
problem - relations between k and v.
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These considerations bring us to the next topic, that of relations between the funda-
mental parameters, σ, χ, σs and k, characterizing a two-dimensional, incompressible
electron fluid; [see formula (4.4) for the effective action S%, or Eqs. (3.53), (3.530
and (3.54)]. Here it is convenient to work with dimensionless quantities. The con-
ductivities σ#, σ^ n , i— 1,2, etc., can easily be computed from σ, χ, σs and k. The
problem of relations between σ, χ, σs and k requires a more careful study of the
quantum dynamics of the system than we wish to present in the present paper. We
therefore just summarize some elementary considerations and defer a detailed analysis
to another publication, [19].

The integer k counts the number of spin-singlet (edge current) bands of the quan-
tum Hall fluid. If the fluid has a single (edge current) band which is a spin singlet
then

fe=l, σ = 4 ^ Y ' i = 0,1,2, . . . , σ s = 0 , χ = 0; (4.55)

this follows from results in [27]; see [2]. For k > 2, there can be mixing between
different spin-singlet bands, and the formula for σ becomes rather complicated.

If the quantum Hall fluid has only one fully polarized (edge current) band then

fc = 0, σ = σs=χ=^-j, J = 0,1,2, . . . . (4.56)

If there are two oppositely polarized (edge current) bands then k = 0, χ = 0, σ = σ s,
but the formula for σ becomes more complicated.

Quite generally, σ, σs and χ are found to be rational numbers, and there are
relations between them generalizing those in (4.55), (4.56). These results follow from
a detailed study of the representation theory of chircal edge current algebras and of
anomaly cancellation [26]; see [13, 19].

Finally, we propose to discuss the most important sum rules for current Green
functions that can be derived from the form (4.4) of the effective action S^.

From the structure of the terms in (4.4) we derive, using identity (3.4) and definition
(3.5), the following sum rules for current Green functions; (we are working tin the
thermodynamic limit, Ω / R2):

(a)

J (T[g(χ) ρ(ymc,Wc d3y = 0, (4.57)

and
J

J (T[j(x) j(y)])c

ac,Wc d3y = 0. (4.58)

Taking into account the next to leading (Maxwell) term in the effective action, we
also have that

' (0(3?, t)g(y, t))c

actWc d2y = 0 (4.59)
/ •

which is the Stillinger-Lovett sum rule expressing a weak form of screening.

(b) The Hall conductivity of the electron fluid can be found from the sum rule

h

/
χ - y)μ (Tϋμ(χ)f(y)])cac,Wc d3y = ^σ. (4.60)



Gauge Invariance of Non-Relativistic Quantum Mechanics 599

(c) From the absence of a term cubic in a in S^ we conclude that

{T[3μ(x)f{y)jρ{z)])c

ac,Wc d3yd3z = 0, (4.61)
/ •

for all μ, v and ρ.
Next, we derive some sum rules for the spin currents. For example:

(d) For A = 3 and μ = 0,1,2, and for A = 1,2, μ φ 0 in Case (3)

f (T[sμ

A(x)sμ

A(y)])c

ac^Wc d3y = 0. (4.62)

For A = 3 and μ = 0, we can also derive the following improved sum rule (next-to-
leading-order terms in the effective action):

{s°3(x,t)s°3(y,t))c

ac>Wcd
2y = 0. (4.63)

(e) The Hall conductivity for the spin current is found from

εμvβ(x - y)μ(T[sA(x)sA(y)])c

actWcd'y = 6i (^δΛ3 ~ ^) • (4-64)

Moreover, for A φ B e {1,2},

{T[sι

A(x)s2

B(y)])c

acWcd
3y = 2iεAB ί-wcfi3(x) + τj2(x)j . (4.65)

(f) We also obtain mixed (j — s) sum rules:

J (T[jμ(x)sμ

A(y)])c

acιWcd
3y = 0, (4.66)

and

' - V)μ(Tϋμ(x)sξ(y)])c

acιWcd
3y=-χ. (4.67)

(g) Let us finally note that there is another kind of sum rules which are consequences
of SU(2)-gauge invariance: For an arbitrary polynomial, F(s), in the spin currents s,
one has that

l , w c , (4.68)

where g is an 5C/(2)-gauge transformation, and R is the adjoint representation of
SU(2). Equation (4.68) is an SU(2)-Ward identity. Since the left-hand side of (4.68)
is independent of g, arbitrary derivatives of the right-hand side of (4.68) in g must
vanish. Expanding the right-hand side of (4.68) in g — 1 ~ X G su(2), setting
w := 9wc — wc, we find the infinitesimal versions of the Ward identities which have
the form of "sum rules." They are rather striking consequences of the non-abelian
gauge invariance of the system. An example of this kind of "sum rule" is the covariant
conservation of the spin current disucssed in Sect. 3, see (3.58).

A detailed discussion of the quantization of the constants σ, σ s, k and χ and ex-
tensions of our methods to other incompressible systems, including three-dimensional
ones, is deferred to forthcoming papers.

Acknowledgement. We thank A. Wipf for a very useful comment concerning consequences of non-
abelian gauge invariance.
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