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Abstract. We construct the scattering operator for a spinor field in a time
dependent background by the Dyson expansion. Then we show that the restriction
of the scattering operator to the positive spectral subspace (with respect to a
reference Hamiltonian) is Fredholm. The computation of the index of this
restriction is reduced to the index computation for an elliptic pseudodifferential
operator of order zero. We obtain the index in terms of a cohomological formula
by means of the Atiyah-Singer index theorem.
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1. Introduction

The scattering operator Q _ describes how the time evolution of a field governed by
a time dependent Hamiltonian H(t) behaves in comparison with an evolution
given by a constant reference Hamiltonian H,. The operator 2_ maps the space of
incoming states with respect to H, to the incoming states of H(t). Q_¢=:v is



488 U. Bunke and T. Hirschmann

given, roughly speaking, by the condition that ¢(t)~y(t) as ¢ tends to — co. (1),
¢(t) are the backward time evolutions of p =(0), ¢ = $(0) with respect to H(t), H,
respectively. The scattering operator exists if H, and H(t) are close enough for
small . Analogously, one defines 2, using the forward evolutions. The scattering
matrix is then defined as Q:=Q*Q _.

Let P be the projection onto the positive spectral subspace of H,. For
constructing a second quantized theory it is interesting (see [5]) to know how
much of the negative spectrum of H,, is mapped by Q into the positive and vice
versa. This is measured by the index of PQP on the image of P. If H, has non-
absolute continuous spectrum one has to restrict the considerations to the
absolute continuous subspace.

Under some assumptions we show the Fredholm property of P, PQPP,.. Here
we use the following simple fact: If U is an unitary operator modulo compact
operators,ie. UU*—1, U*U —1 are compact, and [U, P] is compact then PUP is
a Fredholm operator on im P with a parametrix PU*P because of

PU*PPUP=PU*UP + PU*[P, U]P =P+ compact, )
PUPPU*P=PUU*P+ P[U, PJU*P = P + compact. @)

As in [5] we introduce families of gauge transformations W,(t) defined for
t>T,,t<T_, respectively, which measure the behaviour of H(¢) for large |¢|. This
allows us to express the index in question by the index of a simpler operator

ind;,p, pP,.PQPP, = —ind;,,p, PWP, 3)

where W:=W¥(T,)W_(T-). This formula is proved by a deformation argument
using a Dyson expansion representation of the scattering matrix Q.

The abstract setting described above will arise from the following geometric
objects:

® M — noncompact complete Riemannian spin manifold;

® S(M) — spinor bundle;

o E, VE — Hermitian vector bundle with connection;

® H,:=D; — twisted Dirac operator on L(M, S(M)®E);

o {i['(t)e I'(M,End(E))},.g — smooth family of selfadjoint operators;

o {VE(t)},.gr — smooth family of connections in E;

@ D(t) - twisted Dirac operator with respect to VE(t);

® H(t):=D(t)—1I(t).
We will formulate our Assumptions 1... 6 as boundedness and support conditions
on these objects.

In Sect. 2 we will show how these things relate to the Dirac equation on a
pseudo-Riemannian manifold M xR.

In view of (3) we have to compute

ind,,,PWP=ind(1— P+ WP).

The index of operators of such type on compact manifolds has been considered by
many authors. It could be interpreted as the pairing of the K,(C*(M)) class
represented by W with the cyclic cocycle given by Dy, as spectral flow or as a KK-
product. If M is compact then 1 — P + WP is an elliptic pseudodifferential operator
and its index can be computed from its symbol by the Atiyah-Singer formula. If the
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dimension n=2k+1 of M is odd then the result is

ind(1 — P+ WP)=(—1)*CS(W)A(M)[M], @
where CS(W) is the Chern-Simons class associated to W. Let
E->MxS!

be the bundle obtained by glueing together the ends of the cylinder M x I and
identifying the fibres by

w
PYTE|M><(0} R prTwam >

where pri:M xI—-M is the projection onto the first factor. Then CS(W)
—prl*ch(E) It is represented by the differential form

t—t?)
2n

CS(W)::#TrW*VWjexp( W*VWW*VW)dt,
0

r

1

(2 )y (2 )'

Italic letters denote the differential forms while the corresponding cohomology
classes are indicated by bold ones. For a similar computation see [2].

If the dimension of M is even then this index is zero.

If M is noncompact our assumptions assure that 1—P+ WP is (modulo
compact operators) a very special elliptic pseudodifferential operator, the symbol
of which is 1 at the infinity of M. We show in Sect.4.1 that there is a
pseudodifferential operator A* on a compact manifold M* containing a large
subset of M such that

CS(W)zp—1= S Tr((W*P w11,

ind(1— P+ WP)=indA* .

Moreover, A* has the same symbol as 1 —P* +W*P*. Here P™ is the positive
spectral projection with respect to the twisted Dirac operator on M *oand Wt is
some extension of W(0), where {W(1)}._, is a deformation of W such that 1—W(0)
has compact support and W(1)= W. Hence the index of A is given by the formula
(4). Examining the supports one obtains

ind(1 — P+ WP)=(—1)*CS(W)A(M)[M].

The main theorem of this paper, proved in Sect. 4.3, is

Theorem 1.1. Suppose the Assumptions1... 6 (see Sects. 3.1,3.2,and 4.2) hold. Then
ind;;,p P, .PQPP, = —(—1)*CS(W)A(M)[M],

where W:=W(0) and dim(M)=2r+1.

Note that CS(W) is a cohomology class with compact support.

The special case M =R3 was considered in [5]. The present work was intended
to extend the results of [5] to more general situations. In contrast to this reference,
where a global pseudodifferential calculus and the Fedosov formula has been

employed to compute the index, our method relies essentially on Rellich’s theorem
and the index formula of Atiyah-Singer.
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We are grateful to T. Matsui for the discussion of a preliminary version of that
paper and pointing out a technique used in Lemma 4.6. We thank the referee for
showing us [2].

2. Geometrical Setting

2.1. The Spin Bundle. The scattering operators Q, considered in this article are
associated to a scattering process of a spinor field in a time dependent background
field. The §p1nor field satisfies the Dirac equation on a pseudo-Riemannian spin
manifold M of signature 1. We assume that M has a decomposition into a product
M =R x M of the time axis R and a Riemannian spin manifold M. Then the Dirac
equation can be viewed as an equation for a time dependent spinor field on M.
First we present the structure of the spinor bundle S(M) of M.

Since the index under consideration will be trivial if dim M is even we restrict
ourselves to manifolds M of odd dimension n=2m+1. Let n: M—M be the
projection onto the second factor. Then the spinor bundle of M admits a
decomposition

S(M)=n*S(M)®r*S(M)=S*®S~, ®)

where 7* denotes the pull back. This identification respects the connection and the
Hermitian metric. The decomposition into the plus and minus part is the usual one
on even dimensional manifolds with the associated involution

(o -2)

The tangent vectors of M act by Clifford multiplication fibrewise on S(M).
According to the decomposition (5) X € TM acts as the matrix

(o)

and the unit vector in time direction 0, acts as

0 1
-1 0)°
We note that the square of 0, is 1. For definitions and proofs see [1].

2.2. Twisted_Dirac Operators. The background field mentioned above is a
connection VE on a Hermitian vector bundle E over M. We assume that E is the
pull back of a Hermitian vector bundle E over M. Then V% gives rise to a family
VE(t) of connections of E and a family of antihermitian endomorphisms

r@:= (1“76% — g) e (M, End(E)).

Every connection on E, together with the Levi-Civita connection in S(M)
induces a connection ¥® in S(M)®FE and a family of connections V®(f) in
S(M)® E. Furthermore, the Clifford bundle structure of the spinor bundle extends
to the tensor product via the action on the first factor.
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Let D(t) be the twisted Dirac operator on I'(M, S(M)® E) given locally in terms
of an orthonormal frame of M by

D():= ii X72(0).

Then the twisted Dirac operator D; on I'(M, S(M)®E) is given by

0 \[é 0 DG
DE:(—z 0>[E+F(”]+<D(t) 0)

according to the decomposition (5). We are interested in the space of solutions of
D¢ =0, where ¢ is a section of S* ®E. Identifying sections of this bundle with
time dependent sections of S(M)®E we get the equation:

2 =060, ©

Below we will compare (6) with a time independent equation. Let VE be a
connection on E. Then it induces a connection V% on E and repeating the above
construction we obtain the corresponding equation

0
lad):DOd)a

where D, is the twisted Dirac operator on S(M)® E associated to V', In the special
case M =R3 considered in [5] E is the trivial bundle and V* is the flat connection.
In general there is no canonical choice of V% One has to choose it appropriately
just by hand. In order to get through the analysis we will add further analytic
assumptions to this geometric framework which we will describe later.

3. Construction of the Scattering Operators

3.1. The Propagator. The operators H,:=D, and H(t):=D(t)—i[(t), teR,
introduced in 2.2 are essentially selfadjoint on L*(M,S(M)®E) with domain
CP(M,S(M)®E). The closures of these operators are denoted by the same
symbols.

The operator family {H(t)} generates a unique propagator U(t,s) (cf. [7,
Theorem 4.4.1]) if the domains of H(t) are independent of t. The following
assumption assures that dom(H(t))=dom(H,).

Assumption 1. The endomorphism-valued one-form VE—VE satisfies
sup |VE—VE| < o0.
7t
The propagator is then characterized by
1. Ul(t,s) is unitary and strongly continuous in t and s.

2. U(t,s)U(s,u)=U(t,u), t,s,ucR.
3. U(t,s)domH,=domH,,.
4

. 1% U(t,s)p=H(@)U(t,s)¢p for g edomH,.

5. = z(% U(t,s)p=U(t,s)H(s)¢p for pedomH,.
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3.2. Asymptotic Constants. Representing the propagator U(t,s) by a Dyson
expansion as in [5] we have to adapt Lemma 3.4 (loc. cit.) to our situation. Let
WeI'(M,U(E)) be a gauge transformation satisfying

[W—1]e Cy(M), (7

where C,(M) are the continuous functions on M vanishing at infinity. W acts as a
unitary multiplication operator on LM, S(M)®E). Let P, be the projection onto
the absolute continuous spectral subspace of H,,.

Lemma 3.1. If the gauge transformation W satisfies (7), then

s— lim e ""HoweHop, =P, .

| Sdloo]
The analogous result holds for t— — co.
Proof. Let ygr(H,) be the spectral projection of H, with respect to the inter-
val [—R,R], R>0. Then by Rellich’s theorem (W—1)xx(H,) is compact. Let

¢eimP,.. For every >0 we can choose R>0 such that ||[(1—yx(Ho)o| Ze/2.
Moreover, we have

w— lim e"Hog =0.

t—>

It follows
lim (W—1)yx(H)e" =0,
t—

and hence
lim ||e”"HoWe"Hogp — p| L.
t—=> o

Since ¢ can be made arbitrary small it follows
lim e~ "HoWeHop= ¢ .

t— o0

This proves the lemma. [

3.3. Dyson Expansion of the Propagator. Having the propagator U(t, s), we define
the scattering operators Q. and the scattering matrix Q by

Definition 3.2.
Q,:=s5— liin U(0, t)e"Hop,_,
t— t oo

8
Q:=0Q%Q_, ®

provided the limits exist. We are going to prove the existence of the scattering
operators by Dyson expansions. In order to obtain a norm convergent Dyson
expansion of the propagator alon% the lines indicated in [5] we require that for
large |¢| the connections VZ and P are nearly gauge equivalent. More precisely,
there should be some fixed times T_<T, and smooth families of gauge
transformations W, (¢) of E defined for t > T, and t < T_, respectively, such that the
following holds.
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Assumption 2.
sup || VE— WEVEW, ||, < G(1),
M

where G(t) is a bounded continuous integrable function defined outside of [T_, T, ]
vanishing at infinity.
Assumption 3. W, (t)—1e Cy(M,U(E)) for all t¢(T_, T,).

Assumption 4. lirin W (t)= W, uniformly on M.
t—=t oo
Then the families of selfadjoint operators

0
H,(0):=WEOH W, ()~ 1WE(0) 5 W (1)

for t= T, and t<T_, respectively, satisfy the assumptions for the existence of a
propagator denoted by U ,(t,s) for t,s= T, or t,s<T_. Under the Assumptions
1...4the operators H, and H(t) are close enough that we can prove the existence of
the scattering operators (8). The proof yields an explicit representation which will
be useful later for the index computation.

Proposition 3.3. If the Assumptions 1 ... 4 are satisfied then the scattering operators
Q, exist, are partial isometries and can be represented by
Q. =UO, Ty)Vy W¥(Ty)e ' T+HoP,, )

where
+ o0
Vii=T—- exp{ ) Xi(u)du}
Ty
with

Xy :=1U4(Ts,1) {H(t)+ lWi‘(t)g; W;(t)— Wi"(t)HoWi(t)} Ut Ty). (10)

Proof. We will only consider 2 since the proof is analogous for Q_. First we
check that the time ordered exponential

V+ = 1 + TI X+(t1)dt1 + Tj tj X+(t2)X+(t1)dt2dt1
+ Tj tj X (t3)X 1 (t)X ((t))dtzdt,de + ...

t

is well defined. Since X ,(¢) is bounded it is sufficient that

0

f X4 @)ldt<co. 11

T+
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But this follows from Assumption 2. Actually, in terms of a local orthonormal
frame {X;}7-, of TM we have

H()~ WHOH W, 0+ 1WH) & W.(0)

= ¥ X(Ph—WEVEW.)0) T~ WEVEW.)(0). (12)

Since U(t,s), is unitary we obtain from (12) and Assumption 2,
X+ @) =CG().
This implies the claim (11). It remains to verify (9). We write
U(0,t)e"Hop, =U(0, T,)[U(T,,t)e”"HoP, ].
Thus it is enough to compute
s— tlirg U(T,,t)e "Hop,

It is easy to see that
U (1, 5)=W¥(t)e' " oW, (s),
since the right-hand side satisfies the conditions 1,...,5 characterizing the
propagator (cf. 3.1) with H,(¢t) instead of H(t). Hence we have
U(T,, t)e™"#oP, = [U(T, )U (T4, )*IW. (T, )*
x e~ T+ o[ HoW, (t)e™""°P,].
The term U(T,,t)U ,(T,,t)* satisfies the differential equation

U, U (T, i = UT., U (T, X o0

and is therefore given by a time-ordered exponential converging in the uniform
topology to V, as t—oo. Since W,(f) converges uniformly to W, we have
W, —1€ Cy(M,End(E)). Applying now Lemma 3.1 to W, and using Assumptlon 4
one obtains

s— lim e"#oW, (f)e "Hop, =P,

t— o0

This proves the proposition. []

4. An Index Theorem for the Scattering Operators

The aim of this section is to prove that under some conditions, the restriction of the
scattering operator to the positive spectrum of H, is a Fredholm operator, and to
relate its index to a Toeplitz-type elliptic pseudodifferential operator on M. We
show how the index of this elliptic pseudodifferential operator is related to an
index problem on a compact manifold M™* containing a large open subset of M.

4.1. AnIndex Lemma. In this section we show how one can compute th¢ index of
certain pseudodifferential operator A of zero order. We assume that M =KuU,
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where K is compact and that there exist smooth functions y,y, satisfying
suppx,suppx; CK, x;x=yx such that A=y, Ay +(1 —x) and 4 is elliptic in the local
sense. This means that A is elliptic, localized near the diagonal and it is the identity
on U. We say that 4 has a constant symbol at infinity. There is a parametrix B of 4
of the same type, i.e. B=y,;By+(1—y).

The computation of the index of an elliptic operator A with constant symbol at
infinity can be reduced to the index computation for an elliptic operator A on a
compact manifold M™*. Let X be a relatively compact subset of M containing
suppy;. It is possible to find a compact manifold M *, a suitable vector bundle E*
and measure du* on M* such that X can be viewed as a subset of M ™, E* extends
Ex and dpx=du. The operator A™ :=y,;Ay+(1—y) is an elliptic pseudodif-
ferential operator on M*, where 1 here means the identity operator on M *.

Lemma 4.1. The operators A and A* have same index.
Proof. We employ the analytic index formula to compare these indices. Set
R,:=BA—1, R,:=AB—1,
R}{:=B*A*—1, Rj:=A*B*—1.
The analytic index formula implies
indA=TrR}*'—TrR}* !,
indA* =Tr(R{)"** —Tr(R;)y"*!.

The operators R}* 1, ... belong to the trace class and can be represented as integral
operators with continuous kernels r,(x, y), ... and their traces are given by

TrR?* = | trry(x, x)du(x), ...,
M

where tr denotes the fibrewise trace. But it is easy to see from the definitions that
ri=r{ and ry=r3 on X x X and all kernels vanish outside of this set. This proves
the lemma. [

The index theorem of Atiyah and Singer gives the tool to compute the index
of A*.
4.2. The Positive Spectral Projection. In this section we investigate properties of
the projection P onto the positive spectral subspace of H,,. First we show how it is
localized near the diagonal. This eventually allows us to apply the result of
Sect. 4.1 to the index computation. The rest of this section is a preparation of the
main result stated in the next section.

In the present section assume for simplicity H := H,. Let Ey( ) be the spectral
family of H. For ¢>0 and R< oo with é<R we set

Q0:=0(R,e): =Ey([—R,RI\[—¢,¢])..
Lemma 4.2. For ¢ eimQ we have

_? o tim Lt -1
Po="3+ lim o | (H+1)'¢d2 13)
—® L e gda, (14)
2 ®wo
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The integrals are strongly convergent.

Proof. The claim is a éonsequence of the identity
S
0(x)=1+ lim 1 [ (x+14)~tdA if x=+0 15)
2 S—w 2n =S

and the spectral theorem. []

Note that P is given by these formulas on a dense set in L*(M, S(M)®E).
Let K, C KCM be compact subsets such that K contains a neighbourhood of
K, and y, x, € C*(M), supp(x,) CK}, supp(y) CM\K.

Lemma 4.3. The composition y,Py is compact.

Proof. Let l(x)e C*(R) be such that [(x)=0if xe[—1,1] and supp(1 —1)e[—2,2].
We define L=I[(H) via the spectral theorem. Then

x1Px=x:1PLx+x;P(1—L)x.

Since y,P(1— L)y is compact by Rellich’s theorem it is enough to consider y, PLy.
Using the second representation of P in Lemma 4.2,

1 1 ®
¥ PLy= EXILX+ - [ x1H(H?+ 2%~ 'LydaA.
)

But

XaLyx=x1xL+x:[L, 1=y [L—1,%]
is compact by Rellich’s theorem. Using

H[H2+/12]—1 = THe—t[H2+;.z]dt
0
we find
(j) X H(H?*+ A%~ 'Lydl= ( ) Ij +§ Ij) x1HLe ™+ XYy ded), (16)

where
I :={t,A)e[1, 0)x[0,0)},
I,:={(t,)e[0,1] x [0, c0)}.
There are constants C, < o0, ¢, >0 such that
g HLe M+ ¥y < C e~ 4 v(t, Jel,.

Furthermore,

1
jlj x1HLe "+ 2y grd) — ]/ijlHLe"’"’zxdz
2 ]
1
=)/n [ xHe *Hydz
0

1
+ /7 [ HL— e~ Fydz,
0
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By the finite propagation speed method [4] we have C;,C5s< o0 and ¢, >0 such
that

lx He™# x| SCse™4%,  Vze[0,1],
I HL—1e " y|<Cs, Vze[0,1].

Thus (16) converges with respect to the operator norm. Since the heat operator
is smoothing and y,; restricts to a compact set, the integrand is compact by
Rellich’s theorem. [

Lemma 4.4. Let We C*(M, U(E)) be a gauge transformation such that W—1 has
compact support. Then 1+(W—1)P is (modulo compact operators) an elliptic
pseudodifferential operator with constant symbol at infinity and principal symbol
0 4(x, & )=1+(W(x)—Dp(x, £), where p(x,&) is the projection onto the positive
spectral subspace of the Clifford multiplication with 1¢.

Proof. Let y, € CX(M) be such that supp x, C K. Employing the representation (14),
the fact that (H2 + A?)~ ! is a parameter-depending pseudodifferential operator for
large A and that y,y, restrict to compact sets, one shows that there is a
pseudodifferential operator (in the local sense) B such that B— y, Py is compact.
For the symbol of B we get ag(x, &)= yx,(x)p(x, &)x(x). In fact, one can take

B:= %+— [ H(H?+ %) diy (17)

(R large enough). By Rellich’s theorem y, Py — B is compact. To see this note that
X.Px—B= % :j:XZH(HZ +4%) " 1ydA.
Let Q:=E(R\[—1,1]). Then
% :I:XZHQ(HZ +A%) " 1ydA
converges in the operator norm and the integrand is compact. Moreover,
- Isz(l —QH+1) i=2(1-0) arctan( )(1 ~E({0h)r.

But y,(1—Q) is compact and
arctan <§> 11— E({O}))x“ < g .

Let xe C;°(M) with yx=1. Then 1+(W—1)P equals 1+(W—1)Py modulo
compact operators, which in turn has a pseudodifferential approximation A. It

turns out that A is elliptic with constant symbol at infinity. The principal symbol of
A s 0 (x,8)=1+W(x)—1p(x, ). O

Lemma 4.5. Let Fe C*(M, End(E))nCy(M, End(E)). Then [P, F] is compact.

Proof. 1t is enough to show this for F with compact support, say in K. Let K be
compact containing a neighbourhood of K; and ye C®(M) with suppyCK,
Xk,=1. Then by Lemma 43 FP(1—y)~0, (1—xPF~0, hence [P,F]
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~ xPF — FPy (~ denotes equality modulo compact operators). As in Lemma 4.4
this is (modulo compact operators) a pseudodifferential operator which is
compactly supported and has order —1. []

Lemma 4.6. Let Y(t) be a continuous family of sections in Co(M,End(S(M)®QE)).
Then for s<t the commutator

[P, } e™Y(r)eH dr]

is compact.

Proof. Using an approximation argument one can assume that Y(¢) is a smooth

family of smooth sections with compact support in K C M. Let E4( ) be the spectral

family of H. For some a>0 we set Q:=Eg[a, ©0), R:=Eg(— 00, —al]+ Egx[a, «).
o 1 1 .

Note that the recombinations RER and RﬁR are well defined. We will apply

Rellich’s theorem and Lemma 4.3 several times. We have
(P-Q)Y()~0, (1-R)Y()~O0,

1 H
=3k <”|H|>R

Here we have used that the spectral projection of H onto a bounded interval is
smoothing. Then

t t
[P, jerHY(r)e 8 dr] = [e" [P, Y(r)]e "Hdr
t
~ j ™ [Q, Y(r)]e "Har
[ er _‘_I_-I_ —wH
=5 £ [R ] R, Y(r)] dr

+ 2 [ —R), Y(r)]e™""dr

__I_—I_ —-wH
[R T Y(r)] dr.

NIH

We compute

H ! 1
e"HR—RY rje "Hdr- e"H R
Je"R - RY() f o @R

1 1
tsHR__RYS e—tsH_ettHR_RYte—ltH>
i e R

RY(r)e™""dr

1
j‘ trHR

- —wH
] R (Y(r))e dr

+ je"”R !

RY(r)He "Hdr
] (r)

~je”HR 1

RY(r)He "™Hdr.
i
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1 1 . . . .
Note that RER and R 7l R raise the Sobolev order and their composition with
the multiplication with a bounded, compactly supported function is compact.
Hence

t 1
[P, ferH Y(r)e"’”dr:l j et [R ] R, Y(r):l He "Hgr.
It remains to show that
1
R—R)Y r):| H
(R
is compact. Let y, x; € C°(M) with y =1, x, Y(t)=Y(¢), and yyx, =y,. We write

1
[RHR, Y(r)]H lHIRY(t)H Y(t)R' R (18)
+(1—pR IHlRY(t)H (19)
+Y(®R ﬁ R(1—pH. (20)

(18) is compactly supported. Hence one can use pseudodifferential calculus in
order to show the compactness of (18). Now we investigate (19),

a —x)R|1—l

—(1—X)R

RY()H

R[Y(t),H]+(1 —x)RiRY(t)

H] H|

<rep1ace R— H R by 2Q and note that (1 —y)RY(¢) is compact)

A
~(1= DR g R HR 37 RLY(O, H]+201 = 9QY0)

(replace Q by P and use Lemma 4.3)

H 1 1 i
~(1= DR 1 RysR 7 REYOLH] +(1 = OR i R HIR 17 RLY(0, H]
~ (1~ QxR 35 RTY(), H]
~0.

Note that [Y(¢), H] is a differential operator of first order, R%R[Y(t),H] is

bounded and that [H, x,] bounded. This proves the compactness of (19). The
compactness of (20) follows from

H
Y(t)R ¥ R(1—y)H= Y(t)R el R[(1—y), H]+ Y()R — i R(1—7y)

~2Y0Q(—0~0. [
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4.3. The Index of the Scattering Operators. In this section we show that the index
of the scattering operators 2, on the positive absolute continuous spectral
subspace of H,, is well defined and can be computed in terms of an integral of a
differential form over M. For this we need two further assumptions. Let
Y(¢):=H(t)— H,. It is a smooth family of bundle endomorphisms of S(M)®E.
Assumption 5.

Y(t)e C°(M, End(S(M)® E))nCo(M, End(S(M)QEnd(E))).
The family is operator norm continuous.
Assumption 6. Let R:=1—P,_. For any fe C{(M) the composition fR is compact.

This is true if, for example, the non-absolute continuous spectrum of H,, is
contained in a bounded interval. Assumption 6 is fulfilled if M is euclidean at
infinity and the connection V% is flat outside of a compact set. Then it follows by the
results of [3] that H, has absolute continuous spectrum outside zero. Another
example is the hyperbolic space H", where (E, V'F) is the flat bundle.

Lemma 4.7. Suppose the Assumption 5. Then for s <t the commutator [P, U(s, t)] is
compact.

Proof. We employ the representation of U(s,t) as a time-ordered exponential
U(s,t)=e "HoT—exp (; erHoy(r)eH °dr> esto,
Hence it is enough to show the compactness of
I:P, } eHoY(r)e~rH °dr:| ,

but this is true by Lemma 4.6. []

Proposition 4.8. Assume the Assumptions 1...6. Then [P,Q2,] and [R,Q.] are
compact. Moreover, there are norm continuous families Q% , 1€[0,1], joining Q.
and W¥(T,)P,, such that [P,Q%] and [R, Q%] are compact, too.

Proof. We employ the representation (9) of Q.. We will consider only Q, since the
proof is analogous for Q_. Note that we are free to replace T, by S, > T, in (9).

But Jim 1~ V,]=0, 1)

where V, =V, (S ). Since [P, U(0, S ,)] is compact by Lemma 4.7 and [P, W(S.)]
is compact by Lemma 4.5 we have

[P,Q,1=U(0,5,)[P, V., JWX(S +)e™ > P, + K(S ),

where K(S,) is compact. Because of (21) taking the limit S, — oo one obtains the
compactness of [P,Q2.].

Using the representations of the terms in Q, by norm convergent Dyson
expansions one gets the compactness of [R,Q,] by Assumption 6.

The family Q% is constructed replacing X .(f), Y(t) by AX_.(t), AY(),
respectively. [

Now we can prove the main theorem of this section.
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Theorem 4.9. If the Assumptions 1...6 are satisfied then the operator P(Q, + R)P
is Fredholm on imP and
n—1
ind,,,p P(Q, + R)P=ind(1 + (W¥(Ty)—1)P)= —(—1) 2 CS(W,)AM)[M],
where W, is a deformation of W, (T,) defined below such that CS(W,.) has compact
support,
CS(W): =5 Tr W*VWj (’(tz ) W*VWW*VW) dt,

r

1
(2 ) (2 )'

is the Chern-Simons form, A(M) the form representing the A-class and [M] is the
fundamental cycle of M.

CS(W),— 1= S Tr((W*P w1t

Proof. By Proposition 4.8, because 2, R=0, the sum Q, + R is unitary modulo
compact operators and [P,Q,] is compact. Hence by (1) and (2) 2, +R is
Fredholm on im P. By Proposition 4.8

ind,,, p P(Q4 + R)P=ind(1 — P+ P(W¥(T,)P,.+ R)P)
=ind(1 — P+ PWHXT,)P+ P(1 — W¥(T.))RP)
= —ind(1 +(W.(Ty)—1)P).
Thus it remains to compute the index of (1+(W—1)P), where W:=W,(T,). We
construct a deformation W(z) of W such that W(t)—1eC(M, U(E)), W(1)=W
and W(0)— 1 has compact support. Let M = M, U be a decomposition of M into

a compact subset M, and an open subset U:=M\M,, V be a neighbourhood of
M;and e C*°(M)with§=1on M,,suppfeVand sup |W—1|smallenough.

~ supp(1—6)
Let W(z) be the unitary part of (0W + (1 —60)(1 — 1)+ (1 —6)c W) with respect to the
polar decomposition. Since (1+(W(r)—1)P) is an operator norm continuous
family of Fredholm operators we have

ind(1 +(W—1)P)=ind (1 +(W(0)—1)P).
The theorem follows now from Lemma 4.4, Lemma 4.1, and (4). [

Theorem 4.10. The index of the scattering matrix Q on the positive absolute
continuous spectral subspace of H, is

indinp, p POP=(—1) = (CS(W,)— CSO¥ )AM)[M]
=—(— 1)%CS(W:!‘ W_)AM)[M].
Proof. This follows from
ind;, p, pPQP=ind,,,P(Q+ R)P
=ind,,p P(Q*Q_+R)P
=ind;,,p P(2, + R)*(2_ + R)P
=ind,, p P(Q_+R)P—ind,,,p P(Q, +R)P. [
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