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Abstract. We consider Yang-Mills fields in Minkowski space-time and prove that
all spherically symmetric solutions in the canonical gauge decay in time, provided
the initial data has finite conformal energy.

1. Introduction

We consider Yang-Mills equations in Minkowski Space-Time JR3 + 1:

V = °> (1.1)
*V = 0. (1.2)

FA: R3 + 1 -* AlcS is the Yang-Mills curvature tensor of a Yang-Mills potential
A: R3 + 1 -> Al(S and ^ is the Lie algebra of the gauge group G. System 1.1-1.2 is
a non-linear hyperbolic system of partial differential equations after the choice of
a gauge. The question of global existence has been settled already and one obtains
global solutions in Hs (cf. [4]) but no information about the asymptotic behavior
of its solutions was obtained. It was proved later in [1] (see also [2]) the existence
of global large solutions in the weighted Sobolev spaces Hsδ together with the
characterization of the asymptotic behavior in time. The major drawback though is
the strong fall-off rate of the Cauchy data, requiring for example that the electric
field decays like £(0, x) = 0 ( | x |~ 4 ) as |x | -> +oo. This excludes configurations
containing Coulomb charges and also dipole-type waves. In the special case of
small-amplitude solutions one can obtain estimates (cf. [3, 11, 12 and 13]) which
give the long-term behavior in time of the solutions.

The purpose of this work is to investigate solutions corresponding to dipole-
type Cauchy data and to provide the time-asymptotics in the large amplitude
sector. Our results apply to generic spherically symmetric Yang-Mills fields in the
so-called canonical gauge ([12]):

Ao= £ φfar)^, (1.3)
1=1
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N

1 = 1

; Σ UuLTmί p^εmjnj + a2llTp pt-]j - Tj\ A d 4)

Here au and a2i are functions of ί, r alone, Tt = λ*(0(i)) with λ: SU(2) -• G
a group homomorphism1 and ^^ is defined in terms of su(2) representation
matrices:

<n - \ J Y1' (-

The functions Yιim are the standard spherical harmonic functions on the sphere
and ®fι

m are a basis for an su(2) representation of dimension 2/ + 1 labeled by the
third eigenvalue.2

The theorem proved here extends a result, due to Glassey and Strauss (reference
[6]) concerning a particular class of SU(2) spherically symmetric solutions,
namely:

Λβo = 0 , (1.5)

α(ί, r) - 1 xbA- = εiab— . (1.6)

This is a special case of Ansatz 1.3-1.4 and the Yang-Mills equations reduce
then to a single scalar wave equation. We shall extend this result for any group
G and when F is of general spherically symmetric type. In this case the field
equations cannot be significantly reduced and a more elaborate geometric analysis
is needed. The goal of the work is to prove the following:

Theorem. Let G be a compact semi-simple Lie group containing at least one SU(2)-
subgroup and let (£(0), ^4(0)) be initial data for the Yang-Mills equations 1.1-1.2
satisfying the constraint equation ΌivA E = 0 and the spherically symmetric Ansatz
1.3-1.4. Assume that the conformal energy

Eo= j ( l + | x | 2 ) | F ( 0 , x ) | 2 ^ (1.7)

is finite Eo < + oo and the initial data satisfy the estimate

|F(0, )li:= sup(sup(l + |x|)5 / 2 + | α | |^F(0,x) | ) < +oo . (1.8)
| α | ^ l \ x /

It follows that the solution exists globally and satisfies the decay rate

JL^Cott+tΓ1 (1.9)

with Co depending only on t h e conformal energy E o and t h e norms \F(0, β)\ίm

1 One proves that all possible lifts of the action of the rotation group on the base space R3 to
the total space of the G-bundle will be in one to one correspondence with homomorphisms
λ: SU(2)^> G, when G contains at least one Sί/(2)-subgroup. One says then that this mapping
determines the type of spherical symmetry of the gauge field FA. See [12] and references therein
2 cf. [8] for more details
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Remarks.

1. The constraint equation DivAE = 0 is preserved by the non-linear flow and it
will be automatically verified for later times.

2. The global existence part of the theorem follows from [4]. One has only to
remark that the Yang-Mills flow preserves the canonical class of potentials 1.3-1.4
(cf. [12]).

3. Due to the asymptotic behavior of the initial data, configurations containing
Coulomb charges cannot still be accommodated in the hypotheses of this theorem.
In that case the fall-off rate of the electric field is of order O(r~2).

The proof of this theorem consists of a non-trivial bootstrapping argument. To
clarify the proof we present here the main ideas. The basic notation and the local
energy estimates are presented in Sect. 2.

The decay estimates are obtained by a decomposition of Minkowski space-time
into two different regions: a small cone of aperture ε > 0 around the central line,
which we call the interior region Σh and its complement, Σe, named by us the
exterior region. The number ε depends only on the initial data as EQ *, so that in
the case the initial data has very large energy our interior region will reduce to
a very narrow cone. The plan is the following: On Sect. 4 and its subsections we use
the spherically symmetric Ansatz and apply the method of integration along
characteristics. We are able to prove an estimate of the kind

, (1.10)

where Q(t) and [F (£)]<*, denote the norms3

[F(ί)]co = sup(l + M)(l + τ + |x | ) | F(τ, x)| , (1.11)
Σi(t)

Q(t) = sup (\x\2\p(t,x)\ + \x\2\σ(t,x)\ + (1 + t + \ x \ ) \ x \ 3 / 2 \ a ( t , x ) \
Σe(t)

+ |x |( l + | t - | x | | ) | α ( ί , x ) | ) . (1.12)

Here p, σ, α and α are the null components of F relative to a null frame (cf. Sect. 2).
This decomposition is the key to exploit (in the wave zone) an appropriate version
of the null condition of Klainerman.

The last term on the right-hand side of 1.10 is due to the fact that for one
component of F (namely the component α) one can only integrate along the
outgoing direction. Here we integrate towards the central line, up to the boundary
of our interior region, where the field can be estimated in a different way. The
exterior estimates are independent of the choice of a gauge but rely heavily on the
spherically symmetric Ansatz. The second part (Sect. 5) concerns the interior
region. We follow the approach of [4] and use a local gauge here. By using the
fundamental solution representation of the wave operator we are able to obtain an
estimate of the type

. (1.13)

By choosing ε small enough we are able to close the argument.

Here we define Γ f(ί) = Σtn{s^t} and Σe(t) = Σen{s^t}
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2. Notation

In this section we record the definitions used in the course of the paper. We shall
consider Minkowski space-time R3 + 1 with coordinates (ί, x) = (x°, . . . , x 3) and
endowed with the flat metric η = —dt2 + dr2 + r2dΩS2. We also use Einstein's
convention of raising and lowering indices. The gauge group is a Lie group G and
we denote its Lie algebra by ̂  and the Lie algebra commutator by [.,.]. The gauge
group G is assumed to be compact and semi-simple. In particular, the Lie algebra
^ admits a Killing form, namely a bilinear symmetric positive definite form that is
invariant under the Ad action. In the sequel we will often write ' ' for this bilinear
form. Finally, we fix a basis Ta, a = 1, 2, . . . , N of ^ which is orthonormal with
respect the Killing form. The Yang-Mills potential is a ^-valued 1-form
A = Aμdxμ = (Aa

μTa)dxμ. The Yang-Mills field-strength of A is a 2-form
FA: R3 + 1-+A2& defined as Fμv = dμAv - dvAμ + [Aμ, Λ v]. D will denote
the covariant derivative Dμ = δμ + \_Aμ, •]. We will also refer to it by the
use of semicolon " ". The gauge copies of A are denoted ig)A = gAg'1 — dgg~x,
where g: R3 + 1->G takes values in the group G. The corresponding curvature
tensor and covariant derivative will change accordingly as {9)F = gFg~x and
(G)D(9)F = gDFg-\

We shall introduce the null frame

{eue2,e3ie4.} , (2.1)

where e3 = dt — dr, e 4 = δt + dr and eA=- ξA, ξA the standard orthonormal frame
r

tangent to the unit sphere. Associated with ξA we consider the angular gradient
f and the angular operators f -u = fAuA, f xu = εAB(fA^B — ̂ BUA) defined for
every 1-form u tangent to the spheres r = constant.

In connection with 2.1 we shall use the weights

τ_ = 1 + | τ - r | , τ+ = 1 + τ + r

and define the null decomposition of F as follows:

UA = FA3, (*A = F A 4 , (2.2)

p = - F 3 4 > σ = F12. (2.3)

We will also need in the sequel a localized null decomposition of the curvature
tensor F. Denote by Kp the backward light-cone of an arbitrary point p = (ί0, x0):

Kp={(t,x)\t-t0 = \x-x0\} (2.4)

and by Bp its intersection with the initial data hyperplane t = 0. Introduce local

coordinates r = t — tθ9 ω = —, so that we can write an arbitrary point in
|x-xol

Kpas

t = t0 + r, x = x0 + rω .

We define the local null frame

{^1,^2,^3,^4} (2.5)
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relative to the vertex p as follows. The local null vectors are

The tangent frame is (p)eA = -(p)ξA, where {p)ξA denotes the standard local

orthonormal frame tangent to the unit sphere with center xo We will also use the
local light-cone coordinates

2 ' 2 '

and the local null decomposition

0ίA — Γ A3> V-A — Γ AΛ- 5 l z Ό ;

<">p=l/2F3 4, (p)σ = Fί2. (2.7)

When there is no risk of confusion we shall drop the superscripts (/?).

3. Energy Estimates

In this section we shall recall some basic facts concerning the energy identities of
the Yang-Mills field. We also consider a local energy estimate which is used
together with the fundamental solution representation of the wave equation.

The energy-momentum tensor of the Yang-Mills field F is defined as

If X, Y are vector fields in Minkowski space we write Q(X, Y) = QμvX
μY\ It is

known4 that the tensor Q is a symmetric traceless 2-tensor and that it satisfies the
positivity condition Q(X, Y) ̂  0 for any pair of non space-like future-directed
vectors X and Y. Computing its divergence we find

1 μv u

Now, if X is a conformally Killing vector field, i.e., X μ ' v + Xv>μ = Aημ\ for
some function A, then defining the 4-momentum vector Pμ = QμvX

v we obtain

dμP
μ = 0. (3.2)

We can now integrate this equation on a space-time domain @) bounded by two
space-like hypersurfaces Σ0,Σί and by a null cone C. Letting Bhί = 1, 2 denote the
intersections of Σt and C, ί = 1,2 and N denote the normal unit vector to Σ we
obtain

Bi Bo C

cf. [7] for example
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in the case C is a backward light-cone and

j <P,N}= J <P,JV>-J<P,e4> (3.4)
Bi Bo C

in the case C is a forward light-cone.
We shall consider the case when one of the hypersurfaces reduces to a point

p and C is either the forward or backward light-cone Kp of the point p. In this case
N = T = dt and we choose X to be the conformal vector field

X = K = (1 + t2 + r 2 ) ^ + Itx1^--.
dt ox

Equations 3.3-3.4 give
J β(<*>*4, K)dΣq = J β(Γ, K)ώc ^ E0(ί) (3-5)

K P τ = f

in the case Kp is the forward light-cone of p and

f Q(ip)e3, K)dΣq = J β(Γ, K)rfx ^ £ 0 ( 0 (3.6)
Kp τ = t

in the case Kpis the backward light-cone of p. Here Eo is the total conformal energy
of the Yang-Mills field at the time t:

£ 0 ( 0 = ί (l + ί2 + r 2 ) ( | F | 2 + | * F | 2 ) ^ . (3.7)

We remark that E0(t) = Eo is a conserved quantity, as it can be seen from
integrating Eq. 3.2 in a slab [0, ί] x # 3 . Our next result consists of using the energy
estimates to obtain some ZΛbounds of the null decomposition of the tensor F. We
first consider the decomposition relative to the origin:

Proposition 3.1. If the Yang-Mills curvature tensor F satisfies Eqs. 1.1-1.2, and
2.2-2.3 denote its global null decomposition, then the following estimates are verified

J τ 2 _|α| 2 + τ 2 ( | p | 2 + | σ | 2 ) r f Σ ^ c £ 0 (3.8)

for every backward light-cone Kp with vertex p on the central line r = 0. Also

c£ 0 (3.9)
κp

for every advanced light-cone Kp with vertex p on the central line r = 0.

The proof of this proposition consist of computing the energy-momentum
tensor in null coordinates:

4 , K) = τ2_

where

These energy bounds are sufficient in the exterior region. To estimate the field
in the interior region we need to estimate the energy on a cone with vertex p not
necessarily on r = 0. We are able to prove anyhow the following:
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Proposition 3.2. If the Yang-Mills curvature tensor F satisfies Eqs. 1.1-1.2, and
2.6-2.7 denote its local null decomposition relative to the point /?, then for the
backward light-cone Kp with vertex p the following estimate is verified:

J τ2_ (3.10)

The proof is similar to the previous one, with a few technical details added. In
local null coordinates we have

otBεBAσ ,

Computing further in local coordinates:

3, K) = K3\a\2 + KA{-p aA + aBεBAσ) + K\p2 + σ2) .

Introducing the vector % = (α l 5 α2, p, σ) in the 4/V-dimensional space
x. . . x % we can represent the last equation in terms of a quadractic form B:5

4 T((p)K) (

where (β, YΊ and B denotes the 4N x 4N symmetric matrix

/ K3
K3

0

0

-\K2

\ o

0

κ4 I

The form B can be diagonalized by means of a unitary matrix P, i.e., B = P~ λΛP,
with A = diagf/li, . . . , A4), so that by setting if = P% and m = infj λt we get

^ m\Y\2 = m\qι\2 = m(|α|2 + p2 + σ2) .

The infimum m is computed by solving the eigenvalue equation det(£ — λl) = 0
and estimating from below the eigenvalues. One finds

λ2 - λ(K3 + KA) + ( K3K4 - - + {K2)2)j\ = 0 .

The linear term in λ is just 2K° = 2(1 + t2 + |x | 2 ) while the last term equals
—\K2, K2 = — τ l τ + . From this it will follow that m ̂  ^τ2- and the proposition

will follow.

We shall drop here the dependence on the Lie algebra parameters
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4. Estimates of the Solution for |x| + 1 ^ εt

Let 0 < ε < 1 be a fixed real number. In this section we shall estimate the curvature
tensor F(ί, x) in the exterior domain:

1 + |x| ^ εt. (4.1)

The exterior region includes the wave-zone | x | + 1 = ί, along which the curva-
ture tensor cannot decay better than ί"1. There we must take advantage of the
asymptotic behavior of the components of F to exploit the null condition in the
non-linearities. For that matter we shall use the representation of the Yang-Mills
equations in light-cone coordinates (see [12]):

σ = 0 , (4.2)

σ = 0 , (4.3)

+ - p + J> α = 0 , (4.4)
r

D3--)p-t> a = 0, (4.5)

- ) σ + | ) x α = 0 , (4.6)

D3--)σ + Pxa = 0. (4.7)

Using now the relation

F DλF + DλF F = dλ(F F), (4.8)

we obtain from 4.2-4.7 the following equations:

dΛ\rgtA\
2) = -r2gcA'(pAP ~ SABPB^) , (4.9)

δaflrα^l2) = r2*A (pAp - εABpBσ), (4.10)

d4(r*p2)= -r4pot p , (4.11)

<33(r4p2) = r*pa-p , (4.12)

3 4 ( r V ) = - r 4 ( | ) x α ) σ, (4.13)

7. (4.14)

The terms appearing on the right-hand sides of Eqs. 4.9-4.14 can be estimated
by using the spherically symmetric Ansatz 1.3-1.4. The invariant connections can
be characterized infinitesimally by

Se0J + [7ί, F ] = 0 (4.15)
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for all i = 1, 2, 3, where Tt = λ^(0^) denote the matrices appearing in the defini-
tion 1.3-1.4 of the spherically symmetric Ansatz.6

Our task now consists of estimating the right-hand-sides of Eqs. 4.9-4.14 by
lower order terms. This is essentially achieved using Eq. 4.15.

Proposition 4.1. Let FA: R3 + 1 —• A1(S a spherically symmetric tensor. It follows that
in the exterior region we have

l + \r2σ\li%xt)\ω\ (4.16)

for every component ωB of F relative to the null frame and every derivative ψA.

Proof Breaking up the covariant derivative and the gauge-covariant derivative we
have

= F>AωB + lower order terms

IΛA> ω B ] + l.o.t. .

The lower order terms are directly estimated by r~ι |ω | , while the others are treated
as follows. Applying the Lie derivatives 5£O(i) we obtain for an arbitrary component
ωB:

\rKωB\
2ύ Σ \^o{ι)ωB\

2= £ | - [ Γ t , ω β ] | 2 ^ c\ω\2 .
i = 1 i = 1

The last term requires a more subtle argument. To control the tangential
components 4 of the potential we look back to the Ansatz 1.3-1.4 and observe that
the normal component σ of the curvature is completely constrained by the tangen-
tial components of the potential. Indeed, computing the magnetic curvature:

1 N

σ = ~ϊ Σ (aϊl + a2l~ l)Pz
r 1 = 1

This completes the proof of the proposition.
With this estimate one can prove the following result:

Proposition 4.2. There exists a constant C = c£ 0

1 / 4(l + c£ 0

1 / 2 l^(0)li) 1 / 2 + 1^(0)1!
depending only on the initial data such that the following estimates for the null
components {<xA, aA, p, σ} of the Yang-Mills curvature tensor F are verified for all
points (ί, x) in the exterior region \x\ ^ 1, \x\ + 1 ̂  εt:

(4.17)

(4.18)

(4.19)

[F(t)]co), (4.20)

6 They measure the isospin contribution to the total angular momentum whereas j£?O(0 measures
the orbital angular momentum. The operators J^Ό(I) = «#Ό(/) + UΊ,'] satisfy the commutation
rules [J^Ό(i), &oU)~\ — εijk^O(k) = 0 when applied to the spherically symmetric tensors 1.3-1.4

\p(t,

\σ(t,

l«(ί,

|α(ί,

x)|

x)\

x)\

x)\

VII
VII

VII
VII

C\xΓ2

C\xΓ2

C(l + t

>

+ iχi)-1ι^r3/2

i + i t - i ^ i i ) " 1
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where

[F(ί)]oo = sup (1 + |x |)(l + τ + |x |) |F(τ, x)| (4.21)
Σi(t)

measures the curvature tensor F in the interior region 27£(ί): 1 + |x| ^ ετ, τ ^ t.

The estimates of the curvature will be established in the next subsections. This
will be done in three separate steps.

4.1. Estimates of the Components p and σ. First we shall estimate p and σ. Set

Q(t) = sup(r2|p(τ,x)| + r2 |σ(τ,x)|), (4.22)
Σe(t)

where Σe(t) denotes the intersection of the exterior region |x| + 1 ̂  ετ with the
region {τ ^ ί}.

Let now (ί0, Xo) belong to the exterior domain. Integrating Eq. 4.12 along the
characteristic v = t + r = constant we get

4\p{to,xo)\2 ^ β(0)2 + c]r*\p(u,vo)\ \Pa\du , (4.23)

where

^o = l^ol, Wo = ί o - I * o l > ^o = ίo + l*ol, M* = -to - |xol (4.24)

Using 4.16 and the Cauchy-Schwarz inequality, we obtain

MO " 0

J r*\p(u,vo)\ \pa\du ί c J r |α |r 2 |p | (l + \r2σ\i/2)du

/«o \ 1/2

^ c ί f r 2 |αj 2(l +u)2du\

.1/2

J r 4 | p | 2 ( l + w)-2(l + \r2σ\)du
M* ^

The first factor can be bounded now by looking to the local energy of the field
F in the backward light-cones. One considers the backward cone Kp with vertex
p = (v0, 0, 0, 0) and applies Proposition 3.1. We remark that the surface measure is
dΣp = r2dudω and that for this particular cone τ l = (1 + u)2. We get then

MO /"O \ l / 2

J r*\p{u, »0)| \Pa\du ί c£ 0

1 / 2(β + β 3 / 2 H J (1 + u)~2du

S c£ 0

1 / 2(β + β 3 / 2 ) ,

where £ 0 is the conformal energy of F. Henceforth

\4p\2 5Ξ β(0)2 + c£o

1 / 2(e(to) + β(ίo) 3 / 2) (4.25)

Similarly, using now Eq. 4.14 we get

\rϊσ\2 ύ β(0)2 + c£o

1 / 2(β(ίo) + 6(ίo) 3 / 2) (4-26)

Using the definition of Q we obtain

β ( ί 0 ) 2 ύ β(0)2 + c£o

1 / 2(β(ίo) + β(ίo) 3 / 2) , (4-27)
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and by a trivial bootstrap argument we arrive at

Proposition 4.3. For any (ί, x) satisfying \x\ ̂  1, \x\ + ί ^ εt we have

\p(t,x)\ίC\xΓ2,

\σ(t,x)\^C\x\-2

(4.28)

(4.29)

with some constant C = CEQ14 + | .P (0) | ! depending on the initial data but indepen-
dent of t, x and ε.

4.2. Estimate of the Component α. To estimate α(ί, x) for 1 + |x| ^ εt consider the
quantity

x)|). (4.30)
Σe(t)

Integrating now Eq. 4.10 along the characteristic v = t + r = constant and repeat-
ing the argument used in the proof of Proposition 4.3 we obtain

1*01

where again r0 = |xo |, u0 = t0 - |xo |, u* = -t0 - |x o | and v0 = t0 + |xo | .
Applying the Cauchy-Schwarz inequality, estimate 4.16 and using the bound-

ness of the conformal energy on backward light-cones (see Proposition 3.1), we find

+ c £ 0

1 / 2 ( l + Co) 1/ 2 J | α

^ c ^ ( 0 ) 2 ( i + ίo + | χ o l ) - 2 | χ

+ C ^ ( ί o ) 2 ( l + ^o)~ :

\ l / 2

vo)-2du)

\

ί
\XO\

- 1

χo\ l /2

^ (R(0)2 + CR(to))(ί + ί0 + \xo\Γ2\xoΓl

Bootstrapping this inequality we obtain as before:

(4.31)

Proposition 4.4. For any (ί, x) satisfying

\oc(t,x)\ ̂  C(l + t0

with some constant C = c£ 0

1 / 4(l + c£ 0

1 / 2 | ^ (0) | i ) 1 / 2 +
itial data but independent of ί, x and ε.

we have

(4.32)

depending on the in-
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4.3. Estimate of the Component α. The estimates for the component α are done
somewhat differently, since we have only the possibility of integrating Eq. 4.9 along
the ray t — \x\ = u0 = constant. The result is

vo

r§|α(wθ9 vo)\2 ^ k*α| 2 (r*, ί j + c j r2\a\(\pp\ + \pσ\)dv (4.33)
v*

with v% = t* + r^ and ί*, r* being determined by the equations

r* = - 1 + εί* ,

if w0 ^ -N/2 and

r* = 1 ,

if 0 Su0 S Λ/2. The first term in the right-hand side of Eq. 4.33 can be estimated as
follows. Introduce the notation:

= sup|x|(l + |τ - |x||)|α(τ, x)| . (4.34)
Σe(ΐ)

It follows that

where [^( ί ) ]^ is the interior norm of F appearing in Proposition 4.2. Now,
recalling that (1 -f ί* + r*) ^ 1 + lί* — r j = 1 + u0, we have

/ vo

(1 + I to - ro\y2 + c ί j r | α | ( | p | + | σ | ) ( l + | r 2 σ | 1 / 2 ί

^ c [ F ( ί ) ] i ( l + I to - r o l Γ 2 + c ( ] r | α | ( | p | + | σ | d Λ . (4.35)

In the last inequality we used the estimates of the component σ which have been
already proved in Proposition 4.3. Now, applying Proposition 3.1 to the advanced
cone Kp with vertex at p = ( — uθ9 0, 0, 0) we can bound one of the factors in the last
integral by the conformal energy of F and obtain the estimate

(1 + \t — r I ) " 2

/vo \l/2

+ c£ 0

1 / 2(l + C 0 ) 1 / 2 ί I |α | 2 ( l + u)-2dυ) . (4.36)

Multiplying 4.36 through by the appropriate weights and using the definition of
θ we get
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Bootstrapping the last inequality we arrive at:

(4.37)

for all x and t in the exterior region such that |x | ^ t. The case when |x | ^ ί is
analogous and we get

) | ^ C . (4.38)

Combining estimates 4.37 and 4.38 we arrive at:

Proposition 4.5. For any (ί, x) satisfying \x\ ^ 1, 1 + |x| ^ εt we have

|α(t, x)| ^ C l x Γ H l + \t - I x l l Γ ' ί l + [FίOloo) (4-39)

with some constant C = cE^{l + cE£/2\F{0)\i)
1/2 + {FiO)^ depending on the

initial data but independent of ί, x and ε.

5. Estimates of the Solution for |JC| + 1 ^ εt

In this section we shall estimate the curvature tensor F in a neighborhood of the
central line r = 0, namely on the region where

|x| + l ^ ε ί or |x| g 1 .

Here ε is a fixed positive real number depending only on the initial data. If

0 ^ ίo = ~9 then the approach used in [4] shows that the L°°-norm of the curvature
ε

tensor F(t0,-) is bounded. Therefore it is only necessary to consider the case when
2

to ^ -» where ε is a fixed number to be specified later. The basic idea in the
ε

subsequent estimates consists of using a wave equation for F. By straightforward
differentiation we get from Eqs. 1.1-1.2:

• Λ = 2 [ F α M ^ ] , (5.1)

where Π^ = —DλD
λ denotes the wave operator relative to the Yang-Mills poten-

tial A. Writing 5.1 explicitly in terms of the gauge potential, we find

DFaP = -

(5.2)

2
Let us consider now a fixed point p = (ί0, x 0 ) with |x o | + 1 ^ st0 and t0 ^ -.

ε
Following again [4] we use a Cronstrόm gauge adapted to the point p, that is to
say:

(ί - to)Ao{t, x) + Σ (χj - χJo)Aj(t, x) = 0 . (5.3)
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Using the fundamental solution representation of the wave equation we may
write (cf. [4]):

FΛβ(p) = F%N(p) - i - j rdrdω{-2dy{lAy9 Faβ~\)
κp

~{h+h + h + h), (5.4)
4π

where F^β

N(p) is the solution of the wave equation dF^N = 0 with the same initial
data as Faβ, and Iί9 . . . , I4 denote the terms containing the non-linearities. The
bound on F^β

N is well-known:7

l ^ I N ( p ) I ^ C ( l + ί o Γ 5 / 2 (5.5)

for every \xo\ + I ζ εt0 with C depending on the norm 1.8.
In order to estimate the non-linear terms Iu /2, /3, /4 in the right-hand side of

Eq. 5.4 we shall use the local null frame 2.6-2.7.
We will proceed now with the estimates of the non-linear terms in Eq. 5.4. Let

us estimate Iλ. Here one is better off if we translate the coordinates of the point p to
the origin (0, 0). Integrating in the angular variables:

Ii(to,xo) = ί ί rdrdω(dμlA»,Faβ])(-r9rω)
o s2

= J J rdrdω(d3P
3 + d4P

4)(-r, rω) ,
o s2

where Pμ = \_Aμ, Faβ\ Recalling that the gauge condition 5.3 implies xμP
μ = 0, we

obtain by differentiation with respect to x4:

P 4 + xμdAP
μ = 0 .

Since on Kp we have (p)x4 = 0, then one obtains

P 4 + rd4P
4 = 0 ,

and then

to

h(to,xo)= ~ ί ί drdωdr(rP4)
o s2

I 0, x 0 — toω) .
s2

Using the fact that |P(0, x)| ^ \A(0, x)\ |F(0, x)| and the decay of the initial data,
we get8

7 See [10] for example
8 Observe that in the class of canonical gauges the potential A cannot be made to decay faster
than r " 1
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with x = x0 — toω. Now, if | JC0 I ̂  —, then

4
-tθ9

and then

t o Γ s / 2 (5-6)

for all points in the interior region, provided we choose ε such that ε < 1/5.
The integrals I2 and I3 are estimated similarly. It follows from the local gauge

5.3 that on the cone Kp we can represent the potentials A in terms of the curvature
as

Av(x) = J ({p)x3F3v(p + λ(x - p)))λdλ
o

1

= J rF3v(t0 — λr, x0 + λrω)λdλ ,
o

dvAv(x) = j (p)x3[F3v(p + λ(x — p)\ Av(p + λ(x — p))λ2dλ
o

1

= j rlF3v, Av~\(t0 — λr, x0 + λrω)λ2dλ
o

for all x in the cone Kp (see [4]). Inserting these formulas in the integrals I2 and I3

we obtain

h =

h =

ίo

= ί
0

F

ίo

= ί
0

s2

s2

1

r3drdω J
0

(ί0 - μr,:

1

r3drdω J
0

1

λdλ\μdμ[_[_l
0

x0 + μrω)], ^

x
λdλ I μdμ[[l

0

73^((^o — λr, x0 + 2rω),

\β(to-r,xo + rωn9

73A((to — λr, x0 + λrω\

F3(t0 - μr, x0

and from the Cauchy-Schwarz inequality:

ίo

\ + \h\ Sc $r3dr sup |F( ί o -r ,x o
0 ω

1 / \ l / 2 \ 2

\λdλ[ j dω|α((ί0 - M x0 + /irω)|2 . (5.7)
o \s2 J J

We appeal now to the following lemma:

Lemma 5.1. IfO<a< 1, then:

} λf(λ)dλ)2 S 2a j \f(λ)\2λ2dλ + - } \f(λ)\2λ*dλ.
J a'



440 V. Georgiev and P.P. Schirmer

Proof of the lemma. Starting from

(] λf(λ)dλ)2 S 2 (] λf(λ)dλ)2 + 2 (} λf(λ)dλ)2 ,
\O / \O / \a J

and using the Cauchy-Schwarz inequality

(]λf(λ)dλ)2 ύ]ldλ] λ2\f(λ)\2dλ = a ] λ2\f{λ)\2dλ .
\O / 0 0 0

/I \2 /I jχ\ ί1 \ 1 1

j λ/μ)dλ ^ J π J |/μ)|2A4^ U - ί |/μ)|2λ4Ai.
\O / \β λ J \a J a a

Similarly

This completes the proof.

We proceed now by dividing the region of integration in the right-hand side of
(5.7) into three parts and applying the previous lemma with a — 1/5. The result is

ίo/5 1

| / 2 | + | / 3 | ^ c J r3drsup\F(t0-r,x0 + rω)| \λ2dλ \ dω\u(t0 - λr, x0 + λrω)\2

0 ω O S 2

to 1/5

+ c J r3dr sup |F( ί 0 - r9 x0 + rω)\ j A2J/ί j dω\a(t0 - λr, x0 + λrω)\2

to/5 ω O S 2

ίo 1

+ c J r3dr sup |F( ί 0 - r, x 0 + rω)\ j A4J2 j dω\a{t0 - λr,x0 + Arω)|2 .
to/5 ω 1/5 S 2

The first of these terms can be estimated as follows. Making the change of variables
f = λr we obtain

r

1
3 \λ2d\λ2dλ \ d ω | α ( ί 0 - λr, x0 + Arω)|2 = J r2dr J

O S 2 O S 2

N o w we remark that for y = x0 + rω with \f\ ^ ίo/5, | x o | ^ ίo/5 we have

and then

J f2rfr J rfω|α(ί0 - r, x 0 + rω)| 2 ^ J |α(ί0 - r5

o s 2

so that we obtain the estimate

ίo/5 1

J r3dr sup |F( ί 0 - r, x0 + rω)| J A2ί/i J dω\a(t0 - λr, x0 + λrω)\2

0 ω O S 2

fo/5

<^cEoto
2 J drsup |F(ί 0 - r, x 0 + rω)\ .
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To estimate this last integral one must recall the definition of the interior norm 4.21
and observe that for the point t = t0 — r, x = x0 + rω, with |x o | ^ to/2, t0 ^ 1, we
have:

t + |x| = t0 - r + |χ 0 + rω\ ^ t0 - r + r - |x o | = t0 - x0 ^ c(l + ί 0 ) , (5.8)

so that

c(1 + [ f y o ) ] ) . (5.9)
U + r0J

We have made use here of the estimates of Sect. 4 valid for points in the exterior
region 1 + \x\ ^ εt.

Remarking now that for |x o | + 1 ύ ε̂ o a n ( i h ^ 1 one has

^ < C ε

We obtain the final estimate

ίo/5 1

j r3dr sup |F(ί 0 - r, x 0 + rω)| j/l2J/l j dω|α(ί 0 - λr9x0

0 ω O S 2

V ;

with C independent of ε.
The second integral is estimated in a similar fashion and we obtain:

ίo 1/5

j r3dr sup \F(t0 -r,xo + rω)\ J λ2dλ J rfω|α(ί0 - Ar, x 0 + λrω)\2

to/5 ω O S 2

l J

The third term is estimated directly in terms of the conformal energy

1

r3 j λ2dλ J dω\a(t0 - λr, x0 + λrω)\2 ^ £ 0 < + oo .
o s2

Remarking that for r 0 ^ ίo/5 and ε < 1/5 one has the inequality

l*o + rω\ ^ r - |χ o | ^ (1/5 - ε)ί0 ^ cί0 .

One finally concludes that

Finally, let us estimate the term

ίo

h(tθ9 xo) = ί f rdrdω[Faμ, F$](t0 - r, x0 + rω) .
o s 2
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We decompose the cone Kp into two pieces:

Kp = Kp — Kp ,

and denote

14 (to, *o) = J rdrdωlFzμ, F#](ί 0 -r,xo + rω) .
±

These two integrals consist of quadratic terms which are gauge-covariant. Both
integrals are estimated by examining the special structure of the terms that appear
in the commutator. This plays the role here of the null condition of Klainerman
([9]). The lower part of the integral is estimated by using once again the local null
frame (2.5) whereas the upper part is estimated by using a global null frame relative
to the origin.

Let us estimate J4~. In the local null frame we can express the term [Fα μ 5 i7^] as
a linear combination of terms

[ ( p ) F σ v , ( ^ ] , (5.13)

where σ, v and ξ denote the coordinates in the local frame. The important thing to
notice is that the coefficients of this linear combinations are all uniformly bounded
(cf. [4])

I[ί"«M,-F/f]^CsupI[^F^^FI]I .

Now, for different choices of the null indices, the right-hand side of (5.13) will have
the form

Llp)F3A,
 ip)Ftt = [α, α] ,

= [>, α] ,

[ ( P )F 4 B, ( p ) Fl] = [α, σ] ,

and zero for all other choices of σ, ξ. Setting now

F + = ( α , p, σ), F- = (α, p, σ),

| F + | = |α| + |p | + |σ|, | F _ | = |α| + \p\ + \σ\

Then each of the terms in (5.13) satisfies the estimate

and then we obtain

-\^c J \F+\'\F.\rdrdω.
Kv
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We remark now that F_ contains exactly the components which can be absorbed
in the conformal energy in Kp, so that at least one of the terms can be taken in the
ZΛnorm. Using the boundness of the conformal energy, we get

\l/2 / \l/2

r2τ2-\F-\2drdω\ ί J τZ2\F+\2drdω\

\l/2

τZ2\F+\2drdω) .

The important thing to notice now is that on the part K ~ of the light-cone Kp

the retarded time τ_ is equivalent to the advanced time τ+ so that

τ_ = 1 + | ί 0 - r - \xo + rω\\ ^ C(l + ί0)

by using (5.8). Here \F+ \ is the component relative to the local decomposition of F.
It can be estimated by the invariant norm of F which by its turn can be estimated as
in (5.9) by the exterior norms (cf. estimate 4.2 of Sect. 4). We obtain this way

ί Γ

1

+ ί f (OH-) (5 14)

In the last step we have used the fact that | x0 \ + 1 5ί εί0.
To obtain a similar estimate for 74

+ we use instead a null frame with respect the
origin and repeat the same arguments that led to inequality (5.14). The main thing
to remark is that if ε is sufficiently small (say ε < 1/2), then we have the inclusion
Kp a KPΓΛ {\x\ + 1 ^ εί}. In particular, we are in position to apply the estimates
from Sect. 4 and obtain

M ) 2 '

for all (ί, x) e Kp . By restricting further the choice of ε (ε < 3/8 say), one can show
that for points (ί, x) in K*, one has r Ξ; ίo/2 and we arrive therefore at

/ 4 < C : : -drdω
~ J l | | ||o/ ί§

The last integral can be estimated by using a lemma due to F. John (see [10] also)
which exploits an integration over the angular variables:

to ^ ίo I

ί ί drdω = J —^
S2 to/2 1 + Ko ~~ r ~~ I ̂ 0 + r ω 11 to/2 r

ί o / 2 Γ l X θ l \ Jjcol — r | L ^ \ L 0 '

= c0
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The range of integration in the variable r avoids the logarithmic contribution
coming from the integral in λ. The constant Co is independent of the point (ί0, x0).
We obtain then

1 4 i = (i

Combining now (5.6), (5.12), (5.14) and (5.15), we have

n . | U 1

C ' . ,M + [F(ίo)]oo)

(1 + | x l ) ( l + h + l * l )
for all |x o | + 1 ^ ε ίo and t0 ^ 2/ε. Choosing now ε sufficiently small that Cε < 1/2
we can bootstrap the last inequality and finally arrive at

LFitoΏoo ύ C , (5.16)

which was the desired goal. This completes the estimate of the curvature tensor

near the central line. Combining (5.16) with the estimate (4.17-4.20) from Sect. 4, we

conclude the proof of the main theorem.
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