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Abstract. We are defining the trigonometric Lie subalgebras in
X^ = Λ^B^, CQO, D^) which are the natural generalization of the well known Sin-
Lie algebra. The embedding formulas into X^ are introduced. These algebras can
be considered as some Lie algebras of quantum tori. An irreducible representation
of A, B series of trigonometric Lie algebras is constructed. Special cases of the
trigonometric Lie factor algebras, which can be considered as a quantum
(preserving Lie algebra structure) deformation of the Kac-Moody algebras are
considered.

1. Introduction

The trigonometric Sin-Lie algebra [1] is the one-dimensional extension of the
quantum (Weyl-Moyal) [2]) deformation of the Poisson Lie algebra on the two-
torus [3]. In the explicit realization [1] it is defined by the generators Tn, the central
element c and relations

ίTmT^ = 2isinhl(ήxm)Tn+m + nlδn+1Λtΰc9 (1)

where n and m are vectors belonging to a square integer lattice Z2\(0,0), n x m
= nim2 — m1n2 and ht is an arbitrary real parameter.

The Lie algebra (1) is associated with an associative C*-algebra, usually called
irrational rotation algebra AΛί, which defines the noncommutative two-torus [4].
More precisely the C*-algebra Ahl is generated by two unitary operators Uί and
U2 and the relation

* Permanent address: Institute of Theoretical and Experimental Physics 117259, Moscow,
Russia
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If we choose Tn = qn'n2U\'Un

2\ then the commutator TnTm-TmTn, which defines the
Lie algebra structure on Λhί, coincides with the right-hand side of Eq. (1) with
c = 0.

There exist a one-dimensional extension of the Lie algebra Ahί, which is defined
by the two-cocycle ω(Tn,Tm) = τ(δί(Tn)Tm). (The most general two-cocycle corre-
sponds to the aδί + bδ2, where δ2U2 = U2, δ2Uι = 0, but we restrict ourselves to
the special case b = 0, a = 1.) Here τ is an invariant trace operator on Ahι defined by
τ(Σ/ni« 2^ΐ 1^2 2)=/o,o a n d <5i is one of the derivatives on Ahι satisfying the
condition δ1U1 = Ul9 δJJ2 = § [4], The two-cocycle ω defines the one-
dimensional extension of the Lie algebra Ahi, which coincides with (1).

Note, there is a natural connection between the quantum group GLq(2) and (1):
the first one acts, naturally, on the generators Tn:Tn^>T,l = qnin2U'?1U2

n2. Here U\
are the images of the action of GLq(2) [5]. Due to one of the defining properties of
GLq(2): U'2U'1=q2U'1U2, this action preserves the commutator relation (1).

In this paper we will start from the natural generalization of (1) which will be
denoted by AΛ, where h = (hί,...,hk) and ht are arbitrary real valued parameters.

k

Let α = (α 1 ? . . . , ock) e Zk be an integer valued multi-index and (h, α) = ]Γ h^ denotes

the usual inner product1. The Lie algebra Ah is defined by the generators AΛtm9

which are labeled by the multi-indices (α, m) e Zfc x Z\(0, ...,0), the central ele-
ment c and relations.

[ ^ . m ^ / ϊ j = 2/sin[m(ft,i^-/(ft,α)]^+^m + z + mδ β + / ? f ϋ 5 w + j | f oc. (2)

There is an explicit realization of (2) with c = 0, which is a straightforward
generalization of the corresponding realization for the Sin-Lie algebra [6, 7],
The Lie algebra (2) can be realized as a cross product of the algebra of the
functions on fc-torus, Tk = {t = (tu..., ί fc)| ί, mod2π} by the shift operator
U = e2(hid/dtι + ... + hkdfdtk)^

k

Let q = {qu •• ><2JΛ where q-3 = eihi and define qa= f] q)\ then the generators
J=I

^«,m = ̂ mV'(α'ί)t/W, (3)

satisfy the commutation relation (2) with c = 0 where ma = m(α l 5..., αfc). Therefore,
the Lie algebra (2) can be associated with some subalgebra of the quantum 2k-
torus. We will denote the Lie algebra (2) with c = 0 as Ah. Then the bar over Ah

means the one-dimensional central extension. [We will reserve the bar to denote a
one-dimensional central extension of any Lie algebras, for example A^ will denote
a one-dimensional extension of Ao0 = gl(co) and so on.]

The motivations to introduce the Lie algebra (2) are as follows. First of all, an
embedding formula (17) is the "maximal" generalization, among a certain class, of
the corresponding formula from [7]. (The same result was discovered in [8] from a
different point of view.) So that the Lie algebra (2) is the most general, among a
certain (trigonometric) class, which can be embedded into an infinite-dimensional
Lie algebra ^(00) = ̂ . Another series oϊ trigonometric algebras can be intro-
duced in a natural way. One can define Bh, Ch, and Dh series of trigonometric Lie
algebras as an intersection of Άh with the Xo0=BOC),CO0 or D^ Lie algebras [9-11].

1 We will reserve Greek indices <x,β,y,... to denote multi-indices and Latin indices n,m,/,... to
denote the single ones
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The following motivations were also very important for us. It is well known that
Kac-Moody algebras of the A-D serieŝ  can be embedded (periodically) into an
infinite-dimensional matrix algebra XO0=Ao0, B^, C^ or D^ and can be
considered as a periodic reduction from X^ [10,11]. There is an application of this
fact to the theory of integrable equations. To any Lie algebras X^ one can
associate an integrable hierarchy of nonlinear equations, the so-called generalized
X^-Toda lattices [12]. Then A-D series of generalized Toda lattices [13,14] can
be obtained as a periodic reduction from the X^ ones [12].

The Sin-Lie algebra and its Ah-Dh generalizations give a new example of non-
periodic embedding into X^. On the other hand, there is a similar situation in the
theory of integrable equations. As it was discovered recently [15], the general
classes of some non-local integrable equations (the so-called ILWn, MILWn, and
2-dimensional non-local Toda lattice [16]) can be considered as a non-periodic
reduction from A^ Toda lattice hierarchy. More definitely the reduction
φι+N{t1 + 2ihl912, ί3,...) = Ψι{tu h> •) i n the A^ generalized Toda lattice also leads
to integrable equations (see [15] for further details).

Since all times t{ are "equal" in the integrable hierarchies, the shift operator
/ \/ \

L/ = expl X hjd/dtj I in Eq. (3) reproduces this democracy between all the times.

(Of course, one can put, formally, k = oo and work with an infinite set of times.)
Let us state the main results and describe the structure of this paper.
In Sect. 2 we apply the Kac-Kazhdan-Lepowsky-Wilson (KKLW) construc-

tion [17] to the case of Ah. We construct an irreducible highest weight
representation of Ah in terms of the vertex operators. We will follow the ideas of
[8] and generalize the results of [7] to the case of Ah.

In Sect. 3 we derive the embedding formula into A^.
In Sect. 4 we introduce the Bh, Ch9 and Dh series of the trigonometric algebras

and their embedding formulas into X^ = 5^,0^ or D^. Note, that in the case of
Bh, when h = hu we obtain the Weyl-Moyal quantization of the central extension
of the so-called "area-preserving" algebra for the Klein bottle [18]. (Due to the fact
that the Klein bottle is non-orientable, the term "area-preserving" is not well
defined, but we will use it formally following [18]. The authors thank
M. Olshanetsky for pointing this paper out to us.) As far as we know, the other
series are novel.

In Sect. 5 we apply the KKLW approach to the case of Bh Lie algebra and
construct an irreducible highest weight representation of Bh in terms of the vertex
operators.

In Sect. 6 we investigate some special values of the parameter h = (hί9 ...,hk).

The most important value is h = I —, h1 ), when h1φπQ (here Q defines, as usual,

the field of the rational numbers). We will show that in this case the Lie factor
algebras XN,hί (see Sects. 6.2, 6.3 for the definitions) are the Weyl-Moyal
quantization of an appropriate Kac-Moody algebra. In particular, the vertex
operator representation of ANih or BN hί9 when hx =0, coincides with the basic
representation of the Aφ or D\2\ if AT = 2/+ 2 and A{H if N = 2l+1 Kac-Moody
algebras in the principal realization [17].

Finally, we would like to point out that our algebras are an example of the wide
class of continuum Lie algebras introduced in [19]. We would also like to point
out that similar objects appeared previously in the gauge theory of higher spins
[20] and it will be interesting to clarify this connection.
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Even though our main interest is to apply our algebras to integrable equations,
our results, probably, may be useful in string theory (see [21] for motivation). We
finally remark that some of the results of this paper were published in [22].

2. Vertex Operators Representation of Ah

In this section we will generalize the approach of [8] which is nothing but
application of the Kac-Kazhdan-Lepowsky-Wilson construction [17] to the
trigonometric-Lie algebras.

Fix one of an infinite number of infmite-dimensional Heisenberg subalgebra of
AH, namely, S = {AQ>m|meZ\0}. The maximal commutative subalgebra of Ah is
H = {Aat01αeZfc\(0, ...,0)}. Define the generating functions Xa(z) to be

Xa(z)= Σ A^z-',

where α e Z*\(0,..., 0) and z belongs to the complex plane. Note, that all generators
of Ah are either in s or are Laurent coefficients of the fields Xa{z).

It is easy to check that the following relations are satisfied:

ft,φmXΛ{z), meZ\0, αeZ*\(0,...,0). (4)

There is a standard irreducible representation of the Heisenberg subalgebra s in
the space of polynomials in infinitely many variables V~ ftxi>*2>*3> J :

J = mxM, πo(c) = ί9 m>0. (5)

If in Eq. (4) we substitute for A0±m,m>0 their representation above, we get a
system of coupled differential equations for Xa(z).

This system has a unique (up to multiplication by arbitrary constants aa)
solution in the space of the differential operators on V [17,11]:

^ / ^ 2i Σ z"*sin(ro(ft,α))*m 2i Σ ^-^sin(m(ft,α))d/dxm

Xa(z) = aae " ^ e rnzi ™ . (6)

As we do not know at the moment that the ring of polynomials V coincides with an
irreducible ^-module or not, we cannot conclude that (5), (6) realize a
representation of Ah. Nevertheless, in fact, it is true. More precisely, define

where the contour of integration Γ contains the point 0 e C. Then

Theorem 1. (1) The map

= XΛj; αeZ*\(0,...,0);
(o)

gives an irreducible highest weight representation of the algebra (2) in the space
V=C\_xux2,Xz, ...]> provided the constants aΛ in (6) satisfy the equation:

(9)
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(2) The kq. (9) has unique solution

up to the phase multiplier eί{cc'λ\ λ = (λl9...,λk).
(3) The vacuum state is given by |0> = 1, and the highest weight ΛeH* is defined by
the equations Λ(Aa0) = aa.

The proof of this theorem is based on a direct calculation of the commutation
relations between the generators Xa^. For this one needs to know the O.P.E. of
two vertex operators (6) at different points z and ζ of the complex plane. It is simple
to check that

where \z\ > \ζ\, provided aa satisfy Eq. (9). The normal ordering is defined so that all
creation operators in :Xa(z)Xa,(ζ): are standing on the left.

Since the right-hand side of (11) is invariant under permutation z<->£ and
α<->α' the calculation of the commutation relation \_XafH,Xα< > m ] , where α + α ' φ θ
leads to the calculation of the contour integrals

Σ J^l §dζζm-1§dzz"-ίF(z,ζ),
ί=i (2πι) r Γi

where F(z, ζ) stands for the right-hand side of (11) applied to some state \φ} and Γt

are two small contours around the poles of (11); z = qa+a'ζ and z = q~(<x+a>)ζ. (We
would like to point out a phenomenon of shifting poles in (11) is very similar to
those in the case of quantum Kac-Moody algebras [23]. We will be glad if it will be
not an accident.) When α + oί = 0, the two simple poles combine into a second order
pole and we get the usual situation.

The final result is as follows:

when α H- α' + 0,

— 2/ sin [/?(#, ot)~\d/dxp, /? = m + / > 0,

2φsin[/?(ft,α)] x p , p = —(m + / ) > 0 , (12)

m 1,

Comparing (12), (8), and (2) one can see that the algebra of differential operators

Xz,«> ^—> *m> 1? where neZ, αeZ*\(0, ...,0) and m > 0 is closed under the
όxm

operation of commutation (which is not evident without performing explicit
calculations) and moreover, it realizes some representation of Λh. Since the
restriction of the representation π on s is irreducible by construction, the
representation π is also irreducible. Using the explicit form of the vertex operators
Xa(z) it is easy to check that XΛfO\0) = aa and X(xn\0) = 0, when n>0. This means
that we have constructed the highest weight representation of weight A e H*,
where Άh = n++H + n_, n+ (n_) is generated by Aa^, / > 0 (^<0) and H is
generated by Aa 0 and coincides with the maximal commutative subalgebra of Ah.
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The weight A e H* is defined by its values on the bases of H from the equations

3. Embedding into A00 = gl(oo)

By substituting u = zqa, v = zq ~α, it is simple to check that the vertex operators Xa(z)
can be obtained from the standard vertex operator [10, 11]

\ (13)

which realizes the basic representation of the A^ =g/(oo) Lie algebra. Using the
expansion Z(u,v)= YjZiju

iυ~j and substituting the above substitution in, it is

simple to check that

Km=cΓ Σ q2n^n,n+m+δm,0ax-c. (14)
neZ

But the operators Znn+m realize the basic (c = 1) representation of A^. This simple
observation has a natural generalization.

Theorem 2. Let Eu j9 i, j e Z satisfy the commutation relation of g/(oo) with arbitrary
central charge:

[ £ , , , EkJ = EtJhk-EK jδu + φ(£, p EkJ -c, (15)

where the 2-cocycle ψ on Ax defines

U EiJ if

\\p{Eu p Ek t) = 0 in all other cases J

Then the generators Aam defined by the equation

AΛ,m = qm* Σ Λ , . + » + ̂ o<". c, (17)
neZ

where the constants aa are defined by (10) will satisfy (2).

Note that Eqs. (16) are the natural generalization of the appropriate^equations
from [7, 8]. Equation (17) gives the explicit formula of the embedding Ah into A^.
If we define the standard basis vectors in the infinite-dimensional linear space C0 0

by ek, (ek)i = δκ f, then we can realize (17) with c = 0 as the maps from C00 to C00 by

ίKJe»=ί""A-- (18)

4. BfrCh9Z)ft-Series of the Trigonometric Subalgebras in X^^B^C^D^

Since Ah is isomorphic to the subalgebra of gl(oo) = A00 defined by the explicit
formula (18), one can define the Lie subalgebras Bn, Ch, and Dh in Ah in a very
natural way.
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Recall [11] that there are subalgebras B^, C^, and D^ of A^ preserving the
bilinear forms in C^xC00:

(i) < ^ ^ > = (- l )^ . j in the case of B^ (19.1)

(ϋ) < ^ ^ = ( - l R i - i in the case of C^, (19.2)

(iii) <<?;, βj} = δu j _j in the case of D^. (19.3)

The one-dimensional central extensions of these subalgebras are defined by the
2-cocycle r ψ, where ψ is defined by (16) and r = 1/2 for the B^ and D^ cases and
r = \ for the case of C^.

Now, it is natural to look for those linear combinations Va t = £ vζAβ t
β

(Val = Bab CabDal\ which preserve the bilinear forms (19.1H19.3). This will give
the natural Lie subalgebras in Ah.

Straightforward calculations give the following list of results.

4.1 The Bh Case

Trigonometric basis Bal of Bh:

B^A^-i-ψA.^. (20)

The second order automorphism τB of Ah such that τ β(5α m) = β α m is defined by:

τB(A«,J=(-ψA_Λ,m. (21)

The commutation relations for Bh in the trigonometric basis are:

β M - ( - 1 ) m < W o ) < W o (22)

The embedding of Bh into Bx is given by:

Ba,m = q™ Σ q2na(En,n+m-(-irE_n-m,-n) + δm,0ba-c, (23)
ZΣ

neZ
where ba=l/2(qa + q~a)/(qa — q~a). In analogy with the Ah case, it is possible to
construct the vertex operator realization of the basic representation in the Bh case.
We will present these results in the next section.

In the special case, when h = h1 and h^^φπQ the Lie algebra (22) coincides with
the central extension of the Weyl-Moyal quantization of the "area-preserving"
algebra for the Klein bottle [18]. As we were informed by M. Olshanetsky, some
second-order automorphisms of Ahί were also constructed in [25].

4.2. The Ch Case

Trigonometric basis of Ch\

Catm=Aa,m-(-\Tq2ΛA.a<m. (24)

The second-order automorphism τc of Ah such that τc(Cα>m) = Cam is defined by:

. ^ . (25)
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The commutation relations for Ch in the trigonometric basis are:

[Cα, m> Cβ, /] = 2 i sin (m(ft, β) — /(ft, α))Cα + β t m+1

? sin (m(h, β) + l(h, α))Cα -βtTn+ι

The embedding of Ch into C^ is given by:

neZ

4 J . T/zβ Dh Case

Trigonometric basis of Dh:

D —A —q2aA (28)

The second-order automorphism τD of Ah such that τD(Dam) = Dam is defined by:

The commutation relations for Dh in the trigonometric basis are:

))Da+β,m+ι + 2iq2β sin (m(h, β) + l(h, α))

/ ? , O ~ ^ 2 0 C ^ a - / ? , o ) ^ m + / , O * C - ( 3 0 )

The embedding of Dft into D^ is given by:

Da,m = Qma Σ ^2n<X(£«,« + m-^l-»-m,l-«) + ̂ m,0^a*C- (31)

Note that Eqs. (17), (20), (24), (28) give the construction of the representation of
AfΓDh series in the space CCO(S1) of the complex valued functions on the circle
S1 = {tί mod2π} (compare with [6, 7]):

Aa>m~^q e e . wΛ)

5. Vertex Operator Representation of Bh

In this section we will describe, briefly, the vertex operator construction for the
case of Bh.

Fix an infinite-dimensional Heisenberg subalgebra of Bh, namely,

s=\pm=2Bό,m> q=—Bo,-m, ™>0, rn - odd>, and define the generating

functions Bal(z) to be

)= Σ Ba,nz-\
neZ

where αeZ k\(0,...,0).
It is easy to check that

m, B&Ώ = " 4/ sin [m(fc, α)]z ~ mBa(z).
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By the 'same arguments as in Sect. 2, Eq. (33) in which pm and qm(m^l,m- odd)
are represented by the operators d/dxm and xm have a unique, up to multiplication
by an arbitrary constant, solution in the space of the differential operators on

- , li Σ z«sin[m(ft,α)]*m 4i Σ ^sin[m(fi,α)]e/δxm

Ba(z) = bae m^l m-odd β m*l;m-odd m . (34)

By similar arguments one can prove the following theorem

Theorem 3. Let βa n= — - §dz-zn~ιBa(z), where the contour of integration Γ
2πι r

contains the point 0 e C. Then

(1) The map

^l, m-odd,
= l , αeZ f c\(0, ...,0),

gives an irreducible highest weight representation of the algebra (22) in the space
F = C [ x 1 , x 3 , x 5 , . . . ] , provided the constants ba in (34) satisfy the equation

h h =

 ί

α α' 2 ( ^ -

(2) T/ίβ £̂ f. (36) has unique solution

q-a) (37)

up to the phase multiplier.
(3) The vacuum state is given by |0> = 1 and the highest weight ΛeH* is defined by
the equation A(Ba 0) = ba, where H = {Ba 0} is the maximal commutative subalgebra
of K

Note, that the vertex operators (34), (37) can be obtained from the vertex
operator [10, 11]:

_ , λ 1 U — V Σ ( « ^ + t;^)jcw - 2 Σ ^ (u ~ ™ + v ~ ™)d/dXrn

ΓJU,V)=- gmilίm-odd e mM;m-oddm , (38)

2 u + v

which realizes the basic representation of the B^ Lie algebra, by substituting
u = qaz, v= —q~az.

The embedding formula (23) is compatible with this substitution into (38) and
(34), (37).

6. Realizations of the Lie Algebras Xh for Special Values of the Parameter h

In this section we consider some special values of the parameter h = (hu ...,hk),
which cover the cases of the Sin-Lie algebra and their generalization, Kac-Moody
Lie algebras of the A-D types and Lie algebras which can be considered as
ft-deformations of the corresponding Kac-Moody algebras.
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6.1. The Bhι, Chι, and Dhί Analogies of the Sin-Lie Algebra

Let us consider first the case when the vector h has only one component (i.e. k = 1).
Then h = hί and we require that h^φπQ, so that the Lie algebra (2) coincides with
(1). Let us rescale the generators Tn in a way equivalent to dividing the right-hand
side of (1) by — 2ihί. Then in the limit hγ ->0 we obtain the area-preserving algebra
on the two-torus T2 = {(tι,t2)mod2π} introduced in [3]:

where τn = ei(nitι+n2t2\
In the same limit, the Bhl and Chί Lie algebras coincide with the "area-

preserving" algebra for the Klein bottle [18], which is the Poisson Lie algebra of
functions f(tu t2) on the torus T 2 satisfying an additional symmetry: f( — tl9t2 + π)

In the case of Dhι in the same limit we obtain similarly the Poisson Lie algebra
with additional condition: f( — t1,t2) = —f(tl9t2).

Note that the Lie algebras Bhl9 CΛί, and Dhι do not possess the structure of a C*
algebra.

6.2. Quantum Two-Torus Algebra ANihl

Let us take h = (π/N9hί), hxφπQ and consider first the case of the Ah series.
Equation (17) shows that for this special value of the parameter h one can impose
on the generators Aam (α = (nl5n2)) a n d additional condition

— ( — 1V (39)

Let us denote by ANthl the factoralgebra with respect to the relation (39). Let us
show first how to realize the AN ftl Lie algebra as the cross product of the
Aβl^SliN) Kac-Moody algebra by the shift operator U2 = e2hιd/dt\

Let us choose a trigonometric basis in the A^l ί:

(40)

where

ω

Q =

ω

\°
Y - l

/

> /

2πi

ω=e N .

, P=

r
0

0

id

1

0

0

0

0

1

0

0

... o\

... 0

... 1 ,

... o/

(41)

This is exactly the principal realization of A#l1 [17, 11]. Fix the special bases in
the cross product of ^ - I by ^i'

(42)
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The generators Anuϊl2m in Eq. (41) satisfy the commutation relations (2) (with

c = 0), for h= I — 9 h Λ and the additional condition (39).

Note that the above algebra is a very natural object in non-commutative
geometry on the quantum two-torus [24].

The commutation relations (2) with c =1= 0 is also very natural. Let us define the
one-dimensional central extension of Ma.t(N)®Ahί by the two-cocycle

ω(A(Uu U2\B(UU U2))= ^ T t r ( M ( ^ i , V2)B(Ul9 U2))9 (43)

where A(Uί9 U2)9B(Uί9 U2)eMat(N)®Ahί and the operators τ and δ1 were
defined in the Introduction. The generators (42) define a subalgebra in the central
extension (43) of the Lie algebra Mat(N)®Ahl which gives a realization of AN hί.
[That is the commutation relations (2) are satisfied.]

Another way to define ANthί is the following. Define a Lie subalgebra in the
central extension (43) of Mat(ΛΓ)® Ahί by the condition τ tτ(A(Uί9 U2)) = 0. Due to
the property τtτ[A(Ul9 U2),B(UU U2J] = 0 this condition really defines some Lie
subalgebra. Using the representation JJ1 = eiι\ U2 = e2hίd/dtl it is easy to show, that
the above Lie algebra is isomorphic to ANthι. (The proof is based on the
isomorphism of the principal and basic realization of the Aff Kac-Moody
algebra [11].)

In the limit ^ ->0 (£/2->l) one can obtain the Kac-Moody Lie algebra A^\.u so
that the ΆN hl can be considered as a quantum (Weyl-Moyal) deformation of sl(N).

In general, the algebra Ah for h= ί —, hu ...,hk) can be considered as a

fe-parameter deformation of the sl(N) Lie algebra.

6.3. Quantum Two-Torus Algebras of the Bh, Q , and Dh Series ί h= I —, h1

The generators of the Bh, Ch, and Dh series when h= I —, hί ) are labeled by the

triplet of indices (nl9 n2, m). Analogously to the case of AN hι one can require that
[cf.Eq.(39)]

where V=B, C or D. Let us define the algebras BN hι, CNtΛl, and DN hι as the Lie

algebras which are obtained from Bh, Ch or Dh putting h = ί —, hx) in (22), (26) or

(30) and factorizing by the relations (44). Substituting (42) into (20), (24) or^28) one
can obtain an explicit realization of the Lie algebras BNtftl, CNttίί, and DN hί.

Note that since the Lie algebras constructed above do not possess the structure
of C*-algebras, there is no realization of them as cross products of the
corresponding Kac-Moody algebras by the shift operator.

The following theorem shows the importance of the above algebras.
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Theorem 4. In the limit h1 ^0,

1. BNJii goes into D j ^ if N = 2l + 2 and into Afl if N = 2l + 1.
2. CN>hl goes into C| 1 } if N = 2l and into A<$ if # = 2/4-1.
3 BN[ni goes into Dj 1 } if N = 2l and into B\l) if N = 2l+ί.

Proof. Following [1] we introduce the trigonometric bases in the classical Lie
algebras of B,C,D types. Fix the trigonometric basis in sl(N):

where P,Qesl(N) are defined in (41). Then the trigonometric basis in Bx can be
chosen as:

where Anmesl(2l + \). (It is easy to check the relation SBtS=—B, where

0 ... 1

1 : I and thus

... 0/
There is a trigonometric basis in Cι of the type:

The Lie algebra generated by {CΛt w} consists of {21 x 21) complex matrices which
are antisymmetric with respect to the bilinear form (Sx, y\ where

and hence coincides with the Cx.
There are two ways to fix the trigonometric basis in Dt:

(i) Dn9M = Antm-coT
(ii) D;,m = ̂ m - ( -

where Anm esl(2l). The matrices Dnm are antisymmetric with respect to the
skew diagonal. Matrices D'nm preserve the nondegenerate, symmetric bilinear
form with the matrix

S =

/ 0

0

0

- 1

0 ...

0 ...

1 ...

0 ...

0 ...

- 1

1 0

0

0

0

o\
0

0

0

1/
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In all cases the second index m defines the Z/NZ gradation. Therefore, there exist

the following bases in Kac-Moody Lie algebras of the types B,C,D:

(45)

in D\» or Z>;,,m®l/r in D\2\ Xπ > m®[/7 and Yn,m®U7 in A®

and A, im

Now, we can return to the algebras Bh, Cn, and 5 Λ , with tι= I — , /^ 1 and

relation (44). ^ '

Comparing (42), (20), (24), and (28) with (45) one can easily check the statements

of the theorem.
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