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Abstract. The small algebra of loop functionals, defined by Rovelli and Smolin, on
the Ashtekar phase space of general relativity is studied. Regarded as coordinates
on the phase space, the loop functionals become degenerate at certain points. All
the degenerate points are found and the corresponding degeneracy is discussed. The
intersection of the set of degenerate points with the real slice of the constraint surface
is shown to correspond precisely the Goldberg-Kerr solutions. The evolution of the
holonomy group of Ashtekar's connection is examined, and the complexification of
the holonomy group is shown to be preserved under it. Thus, an observable of the
gravitational field is constructed.

1. Introduction

With the introduction by Ashtekar [1-4] of an SX(2, C) connection Aa

Aβ and a
densitized triad σaAβ as new variables in canonical general relativity, the phase
space takes on the appearance of a Yang-Mills gauge theory. A connection as a
configuration space variable suggests the using of the parallel transport as the main
device to construct gauge invariant quantities. The parallel transport of an arbitrary
vector in the spinor space around all closed loops in the base manifold defines the
holonomy group of the Yang-Mills connection. Elements of the holonomy group are
given by the path ordered exponential of the integral of the connection Aa around
closed loops. The traces of the holonomy integrals are gauge invariant functionals on
the phase space, the Wilson loops. These functionals, identified as Γ°, and the traces
of the product of the holonomy integrals and the σα, T 1 functionals, form a closed
Poisson bracket algebra. Therefore, they may be considered to be new configuration
and momentum variables, thus new coordinates on the phase space. In fact, the use of
these variables as new phase space coordinates was first introduced by Jacobson and
Smolin [5] for the Ashtekar phase space for general relativity. Rovelli and Smolin [6]
then showed that functionals Tn defined by the traces of the product of the holonomy
integrals on polynomials homogeneous of degree n in the σa form a graded algebra.
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These functional have been used in the quantization of 2 + 1 gravity [7] and the
Maxwell field as test examples [8]. In general relativity, the Tn-functionals are being
studied intensively and it is hoped that the connection and the loop representations of
Γ n ' s will lead to a nonperturbative formulation of quantum gravity [3, 5, 6, 9, 10].

However, in considering the transition to a quantum theory, there are certain pre-
cautions one must take in considering which phase space variables to take over as
quantum operators [3]. One wants to choose a set of elementary classical variables
whose Poisson bracket algebra is closed and at the same time is large enough to
define any sufficiently regular function on the phase space. This is certainly satisfied
if the elementary variables are themselves canonically conjugate variables. If they are
not, as is the case with the T° and T 1 variables, there may be functional of interest
which cannot be constructed with the chosen set of elementary variables. In this case
the set is incomplete. The set may also be overcomplete in that there may be some
algebraic relations among the variables. When this happens, additional care must be
taken in the construction of a quantum algebra.

Here we are concerned with the question of completeness of the T° and T 1 vari-
ables. We examine the question raised by Rovelli and Smolin [6] whether given the
T° and T 1 functional, it is possible, up to a gauge transformation, to recover the con-
nection variables and their canonically conjugate momenta. Phrased another way, are
there sets of gauge equivalent points on the phase space of connections and momenta
which cannot be recovered uniquely from knowledge of the T° and T 1 functionals
alone? While this question has relevance for all gauge fields, we focus our attention
on the group 5L(2, C) and the Ashtekar phase space of general relativity. The method
of analysis we use can be applied to any other group of interest; e.g., SU(3) used in
QCD.

Thus, the aim of our work is to study what information about an 5L(2, C) con-
nection A and an 5L(2, C)-densitized vector field σ - both defined on a spatial three
manifold Σ - is contained in T° and T 1 functionals and to identify what information
is missing. Those pairs (A, σ) which cannot be completely recovered (up to a gauge
transformation) from (T°,Tι) will be called "degenerate points." We shall find that
these degenerate points define surfaces of "measure zero" in the group space.

In Sect. 2 we introduce our notation and recall the precise definitions of (T 0 , ! " 1 ) .
Since an important tool in our considerations is the holonomy of the connection,

and it is known that any Lie subgroup of the gauge group can be the holonomy group
of a particular connection, in Sect. 3 we list real and complex Lie subalgebras of
s/(2, C) (see also [12]).

In Sects. 4 and 5 we study the T-functionals in a phase space of complexified
gravity, i.e. in the set Γ of the 51/(2, C)-gauge inequivalent pairs (A, σ). We find and
classify all sets in Γ, points of which are indistinguishable by (T°,Tι). The general
result is that any of those sets contains more than one element if and only if the
holonomy group of A is included in the four dimensional subgroup of null rotations
(via s/(2, C) Ξ o(3,1, R)). Then there are four kinds of degeneracy depending on the
holonomy group and the triad σ.

In Sect. 6 we formulate a pure T-description of degenerate points. We show that
sets of points of the same class of degeneracy can be described as solutions to certain
equations imposed on (T°,Tι) functionals. We also note that an important feature
of degenerate 04, σ) is that the connection A admits a covariantly constant spinor
direction.

In Sects. 7 and 8 we complete a bridge between 3 + 1-Hamiltonian approach in
terms of Ashtekar variables and a covariant 4-dimensional formulation of gravity the-
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ory. The task is to relate the holonomy group of the connection A with the holonomy
group of the self dual connection of the corresponding space-time endowed with a
complex gravitational field. In order to see that relation, we study the Hamiltonian
evolution of the holonomy group from initial data. The final result of Sect. 8 consists
in finding the intersection between: (i) the set of degenerate points in Γ and (ii) the
real slice of the constraint surface which corresponds to real vacuum solutions to Ein-
stein's equations. It turns out that the intersection consists of Goldberg-Kerr solutions
[11, 12].

Another issue, however, is to what extent is degeneracy at (A, σ), for (A, σ) be-
longing to the real slice of the constraint surface, also included in this surface. We
study this problem in two steps. First, in Sect. 9 we restrict (T°,Tι) to the subspace
/ R of Γ which consists of all the configurations (A, σ) such that the corresponding
3-metric is real and its reality is preserved by Hamiltonian evolution. At this level of
the argument (A, σ) need not satisfy the constraints. It turns out that the reality condi-
tions remove some, but not all of the degeneracy. We construct, in particular, all the
configurations (A, σ) of the 4-dimensional holonomy group and linearly independent
triads such that there still exist in ΓR nontrivial surfaces of those (Af,σf) which are
indistinguishable from (A,σ) using (TQ ,Tι).

Finally, in Sect. 10, we impose the constraints as well as the reality conditions
on (A, σ)I'S. We find the intersection of the surfaces of the same value of (T°,Tι)
with the real slice of the constraint surface. We find that the remaining degeneracy is
transversal to orbits of the group of transformations generated by the constraints.

To simplify our considerations we treat the 3-manifold Σ as R3 or as the 3-sphere
S3. It implies that the SX(2, C) bundle related to Ashtekar gauge configuration and
the holonomy subbundle of A are trivial. It is not difficult, however, to generalize
our study to (A, σ) which are associated to a SL(2, C)-ρrincipal fiber bundle over an
arbitrary 3-manifold. In particular Theorem 7.1 about the propagation of the holonomy
group is true in a general case.

Beginning with Sect. 7, we require that the triad is linearly independent, i.e. the
determinant of the 3-metric tensor is not zero.

2. Formalism

Ashtekar variables [1] A and σ are defined on a 3-dimensional manifold Σ. A is an
5/(2, C) valued differential 1-form and σ is an s/(2, C) valued vector density of weight
1. Pairs (A', σ') and (A, σ) are gauge equivalent if there exists a gauge transformation
a:Σ -> 5L(2,C) such that

A! = a~ιAa + a~ιda, σf = a~ισa. (2.1)

The set Γ of gauge equivalent classes [(A, σ)] can be regarded as a phase space for
complexified gravity. It is convenient to introduce a 2-comρlex-dimensional vector
space (a spinor space) endowed with a symplectic form ε, i.e. a bilinear mapping

ε'.VxV^C. (2.2)

The gauge group of A and σ will be considered as the group of endomorphisms of
V preserving ε. The 1-form A defines a parallel transport of a spinor λ £ V from a
point x e Σ to y e Σ along a given curve 7. If 7: [t\, t2] —> Σ is a parametrization
of 7 and 7(^1) = x\, 7(^2) = V then

λ(y):=h(t2,ti)\(x), (2.3)
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where an 5L(2,C) element h(t2,t\) is given by the following equation along 7,

j t , U) (2.4)

with the initial condition

h(jbutι)=l. (2.5)

If 7(t2) = 7(^1) = x, i.e. 7 is a closed loop, then we denote

hΊ :=h(t2itι). (2.6)

All hΊ's associated with a fixed point x constitute a holonomy group H c SX(2, C).
Given holonomy at x, i.e. the mapping 7 —> /ι7 for all the closed loops starting
and ending at x, one can reconstruct the connection A up to gauge transformations.
On the other hand, if the holonomy hΊ at x corresponds to A then holonomy of
A' = a~ιAa + a~ιda is given by h'Ί = a(x)~ιhΊa(x). Hence 4̂ and A' possess the
same holonomy at x if a(x) commutes with all the elements of the holonomy group
at x.

Following Rovelli and Smolin [6] we will study mappings T° and T 1 which label
each loop 7 starting and ending at x. The labels T° are C numbers T 7 ,

T 7 : = T r / ι 7 , (2.7)

and those of Γ 1 are C valued vector densities of weight 1 T* defined as follows:

(2.8)

where indices a labels coordinates of tangent vectors and 1-forms with respect to
coordinates (xa) on Σ. TΊ and T^ don't depend on a parametrization of 7 and they
are invariant with respect to gauge transformations.

3. Subalgebras of s/(2,O

Our aim will be to study points in Γ at which the coordinates (T°,Tι) become
degenerate. The key to our consideration is the holonomy group H of A. Since H
can be a priori an arbitrary subgroup of SX(2, C), we first list all Lie subalgebras of
5/(2, C).

In order to specify a basis in s/(2, C) let us fix a normalized basis in V, i.e. two
spinors O,L £V with

A B l. (3.1)

Then define τuτ2, r 3 e s/(2, C):

r/β :=i(oAoB-LALB),

r2

Λ

B := ( o Λ o β + A B ) , (3.2)

The following linear combinations of τ\ and τ 2 and their commutation relations will
also be useful,

τ+ := n + iτ2 , τ_ := n - iτ2 , (3.3)

τ±r 3 = ±iτ± = - r 3 r± ,

τ+τ- = - 2 ( 1 + i ) r 3 , τ_τ+ = - 2 ( 1 - i ) τ 3 . (3.4)
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We treat s/(2,C) as a 6-real-dimensional algebra spanned by generators (τi,T2,T3,
zτi, zr2, iτ3). Every Lie subalgebra Λ? C sZ(2, C) is equivalent (via a~xJ&a = Λ) to
one of the subalgebras listed below consisting of real combinations of the following
generators:

(a) (Tl,T2,T3,ZTi,iT2,ZT3),

(b) ( r i ,T2,r 3 ) ,

(c) (ri,iτ2,zτ3),

(d) (r+,iτ+,r3,ir3),

(e) (r+,zr+,e^r 3),

(f) (r+,ir3), (3.5)

(g) (τ3,iτ3),

(i)

0)

(o) (0).

(Note that a transformation o —> £, ^ —> — o carries τ+ —> r_ and r 3 —> — r3.) The
subalgebra of the type (3.5d) plays a role in further considerations and we denote
it by ^ ( + , 3 ) . Note that each ^ of one of the types (3.5d)-(3.5o) is included in

Given a real algebra ^ spanned by generators V*, i.e.

^ = {oVi I α* e R } , (3.6)

we denote by ^$c t n e complexification of ^S, i.e.

V c* G C } . (3.7)

The list (3.5) leads to the following classification of the complexifications of subal-
gebras Λ> of 5/(2, C),

Λ = 5/(2, C), (3.8m)

, 3) = {aτ3 + bτ+ I α, b e C} , (3.8a)

(+) = {6r+ \b e C} , (3.8b)

- {αr3 I α G C} , (3.8c)

= {0} . (3.8o)

4. Nondegenerate Points

Consider closed loops {7} which begin and end in a fixed point x £ Σ. Given a loop
7 the corresponding holonomy element hΊ may be written as

hΊ = cos |n 7 | /+ i^η-ίl -cos 2 | n 7 | ) 1 / 2 , (4.1)
|n 7 |
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where / denotes the unit matrix diag(l, 1) and

n 7 = n\ri e 5/(2, C), (4.2)

\nΊ\ := ((n\)2 + {n2

Ίf + (rφ 2 )) 1 / 2 (4.3)

with nι

Ί being complex numbers. (Given a complex number z as z — exp(2iφ) \z\,

where φ e [0,π]; then y ^ = &φ(iφ)y/\z\.) If | n 7 | = 0 then (4.1) holds with

| n 7 |

By (2.7),

T 7 = 2 c o s | n 7 | . (4.5)

Given composition 7 o £ of two loops 7 and 5

hΊoδ = hΊhs (4.6)

and in the consequence

T Ί 0 δ = - \TΊTs - [ ( 4 - Γ 7

2 ) ( 4 - Tj)]1'1 . γ ° Λ I . (4.7)

Hence, if \nκ\ = 0 (K, = 7 or δ) then the corresponding factor

(4-72)1/2

\nκ

2. (4.8)

Statement 4.1. If the complexification of the holonomy algebra of a connection A is
sί(2, C), and A7 is a connection such that

TΊ(A) = TΊ(Af) (4.9)

holds for all the closed loops 7 with the starting point x, then A is gauge equivalent
to A;.

Proof. The idea of the proof comes from Samuel [11]. Using T°-functionals we will
recover the holonomy at the point # in a certain gauge fixed in x.

We can find three loops a, β, and 7 such that

M,M,|n 7 | 7̂ 0,
nίnβ = n > 7 = nβnJy = °

(It can be done since the holonomy algebra is spanned by generators (3.5a), (3.5b) or
(3.5c).) The above properties of n α , πp, and nΊ can be found by using of the values
of T° corresponding to the loops a, β, 7 and to their superpositions αo/3, Fix
a gauge in the point x by the requirement that

nn

1 — z ' 1

Πβ\ \nΊ

=r3. (4.11)

(It may happen that we have to change names of the loops by a <-> β - the proper order
can be found by using of T^o/3, . . . which involve the information about εijknιnk.)
Given any loop δ we can find h§ as follows: from Tg, TδoOί, T$oβ, T$OΊ and from
Eq. (4.7) solved with respect to nτ

δ/\ns\ [see also (4.1)].
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Since \ve obtain h$ for each δ at x, we can find the connection 1-form A on Σ
determined up to gauge transformations which concludes the proof.

Having Statement 4.1 in hand we can prove the following:

Theorem 4.2. Given [(A, σ)] and [(A',σf)] if the complexification of holonomy alge-
bra of A is 5/(2, C), and

TΊ{A) = TΊ(Af), T7

α(A σ, y) = T$(A', σ', y) (4.12)

for all the closed loops 7 with the starting point y, and for all y G Σ, then [(A, σ)] is
equal to [(A',</)].

Proof From the equivalence of T°(A) and T°(A') [the first equation in (4.12)] and
from the proof of Statement 4.1 we can see that we can find representatives 04, σ)
and (A', σ') such that

A' = A. (4.13)

Having chosen A we can find hΊ for any closed loop in Σ. The variables σa can now

be uniquely obtained from the T 1 functions. In fact, it suffices to use the equations

(4.14)

at any y e Σ and for K, = α,/?,7 such that the corresponding n κ [see (4.1)] are
linearly (in the complex sense) independent, σ' is the solution to the same equations
and thus is equal to σ.

5. Degenerate Points of (T°, T1)

We turn now to study cases, when the holonomy algebra 3$(A) of A is of one of the
remaining types, i.e. one of (3.5d)-(3.5o) or, in other words, when the complexification

of M(A) is a proper subalgebra of s/(2, C). Then

β£(A)Cs#(+,3) (5.1)

[see (3.5d)]. Therefore there exists a gauge such that

A = A3τ3 + A+τ+ . (5.2)

The holonomy element associated to a loop 7 and a starting point x £ 7 is in general
given by an ordered exponential, namely

f A (5.3)

7

(where the ordering P depends on the choice of x). Since

(r + ) 2 = 0 (5.4)



384 J. N. Goldberg, J. Lewandowski, and C. Stornaiolo

and by (3.4) the series expansion of Eq. (5.3) contains only terms independent of A+

or linear in A+. Thus

hΊ = cos / A31 + sin / A3 τ3 + n+τ+ , (5.5)

7 7

nt = ί JA+ , (5.6)

7

where J is a certain complicated function of A3

aj
a. Our first observation is that T 7

is independent of A+, namely

T 7 = 2cos0 7 , ΘΊ= Aό. (5.7)

7

Therefore knowledge of T 7 ' s suffices only to reconstruct the A3 component of A.
However, T 7 contains information about A+, σ3, and σ~, where

σ = σ3τ3 + σ + r + + σ~τ_ . (5.8)

Consider first a connection A such that neither A3 nor A+ can be gauge transformed
to zero. That is, the holonomy algebra is of one of the types (3.5d)-(3.5f) thus the
complexification 3@Q,(A) of β$(A) is

J$Q(A) = ^ ( + , 3). (5-9)

Suppose that in some point x e Σ the vector field

( 5 1 0 )

and consider loops that begin and end at x. Take two loops a and β such that

ha = cos 6>α/ + sin θaτ3 + n^τ+, (5.11)

^0^ny (5.12)
We are free to perform a gauge transformation α: Σ1 —> SL(2, C) which is compatible
with (5.2), i.e.

α A

B ^ = B*,A + C o Λ , (5.13)

5 and C being complex functions. By a suitable choice of £? and C we carry /ια, hβ
in (5.11) and (5.12) into

ha = cos θal + r 3 (l - cos2 θa)
ι/2 , (5.15)

Λ0 = l + τ + . (5.16)

Values of σα 3(x) and σa~{x) in this gauge are given by

TZ = -[4-(Ta)ψ2σa3(x), (5.17)

T$ = -4σa-(x). (5.18)

The component σ α + does not appear in (T°,Tι).
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Now, let hΊ be an arbitrary element of the holonomy group of A at x,

1 Γ (T Ϋ~\1/2

h T± \ κ L \j . 7 _i_ ι j I A Λ i \ ιu^ ι-\- . (5.19)

We must still determine n^ and the correct sign of the τ3. The sign can be specified
by TΊoa, ΓQ, and TΊ using Eq. (4.7) [see also (4.8)]. To find n+ we consider the
quantity T 7 . Applying the equation

Γ7

α(x) = - [4 - (Γ7)
2] σα 3(x) - 4n+σ α ' (x) , (5.20)

we express n+ by T"(x), Γ7, σα3(x), and σα~(x). Thus ft7 is completely determined
for any loop 7 starting at x. This information enables us to reconstruct the connection
A determined up to residual gauge transformations. Using A, we can find Λ7's at
each other point y G Σ. Finally, we read σ3(y) and σ~(y) from /ι7's, T^'s, and T 7 's.

Summarizing, given (T°, T 1) which by assumption correspond to a certain [(A, σ)]
such that 3$Q = ̂ ( + , 3) and σa~(x) φ 0 in at least one point x G Σ1 we recovered
A = A3T3 -f A+τ+ and σα~, σα 3 at each point y e Σ. A component σa+ remains
arbitrary. The question arises however, whether one can find another (A',σ') also
corresponding to the same ( T 0 ^ 1 ) but possessing holonomy algebra which is not
included in ̂ ( + , 3) or σ' such that σ'~ = 0 everywhere. The answer is no.

In fact, each T 7, T^, and TΊθδ computed for A = A3τ3 + A + r + satisfy (4.7) with

n 7 r 4 = ± | n 7 | \nδ\. (5.21)

Thus, they can not be associated to any connection form A' of the type (3.5a), (3.5b)
nor (3.5c). Also if σ'~{x) = 0 then T'Ί = 2 implies T'^{x) = 0 which is not true in
the case of the considered (T°,Tι).

The examination of the cases when the holonomy algebra is of one of the types
(3.5g)-(3.5o) can be done in a similar manner as above. Before stating the results and
classifying the degeneracies of (T°, T 1) in Γ let us make our notation precise. Given
[(A, σ)] G Γ denote by

the set of [(Af, σ')] G Γ such that (T°, T 1) take the same values as in [(A, σ)], i.e.

Γ7(A/) = Γ 7(A), (5.22)

Γ-(A/,σ/,j/) = Γ^(A,σ,2/), (5.23)

for any closed loop 7 and any y G 7. Using this definition we can state the following
theorem which gives the sought for classification.

Theorem 5.1. Suppose [(A, σ)] G Γ and
(i) the complexification of the holonomy algebra

= sl(2,C),

then Deg[v4, σ] consists of only one point

(ϋ)
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and σ~(x) φ 0 at some x G Σ, then

Deg[A,σ] = {[(A',σ')] 6 Γ \ (A'+, Aβ,A'-,σβ,σ'-)

= (A+, A3,0, σ3, σ~) and σ'+ is arbitrary}

(iii)

and σ~(x) φθ at some x € Σ, then

Deg[Aσ] = {[(A',σ')] € Γ \ (A'+,Aβ, A'-,a'~)

= (A+, 0,0, σ~) and σ'+, σβ are arbitrary)

(iv) either
(a)

and σ~ — 0 on Σ, or
(b)

then

Deg[A,0

= (A*

z(A)

%c(A

r')] e

,0,σ

r\(
3,0),

A'3,A'-,σ'3,,

andA'+,σ'+
J )
arbitrary)

= (0, -A3,0, σ3) a/irf σ/+, σ'" arbitrary}

(v) eii

(a)

and σ~(a;) = 0, or
(b) ^ «

^ ) l G Γ; (Af\Af-,σf~)

= (0,0,0), and Ar+, σ/+, σ/3 arbitrary}

U {[(A;, σ7)] e Γ ; i ' = 0) and σ arbitrary} .

Remark 5.1. The above classification exhausts all possible choices of [04, σ)].

6. Other Descriptions of Degenerate Points

As we saw in the previous section, points at which {T°,Tι) take the same value
constitute leaves in Γ which are unions of continuous surfaces. The leaves of the
same type set up a class and classes are listed in Theorem 5.1. As we see below, the
classes of Theorem 5.1 can be defined in terms of (T°,Tι).

Statement 6.1. The set of points at which (T°,Tι) become degenerate as coordinates
of Γ is given by the condition

[2Taoβ - TaTβf - [4 - (Ta)
2] [4 - (Tβ)

2] = 0 (6.1)

where a, β are closed loops in Γ starting from the same point.
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Statement 6.2. Classes (i-v) in the Theorem 5.1 can be defined in the following way:
(1) Class (v) (i.e. Deg[0,0]) is given by

for any closed loop a and any yea;
(2) Class (iii) is given by

(6.2)

(6.3)

for each loop a and for some loop β at some point x e /?,
(3) Class (iv) is given by the conditions that the following variation vanishes at each
a and yea,

δ Γ TZ(y)2 1

δ^[^ΊτJi\=0> ( 6 4 )

and that there exist loops a such, that

(Ta)
2φ4. (6.5)

[Equation (6.5) ensures that the expression in brackets in (6.4) has a well defined
limit when |(Γα)| -* 2].
(4) Class (ii) consists of the [(A, σ)] which satisfy Eq. (6.1) but are not contained
in (1), (2), nor (3) above.
(5) Class (i) consists of the [(A, σ)] such, that Eq. (6.1) is not in satisfied in general.

Note, that Class (v) of the Theorem 5.1 is in fact the set of [(A, σ)] which are
indistinguishable from [(0,0)] with respect to (T°,Tι). In Classes (i), (ii), (iii), and
(iv) the leaves Deg[A, σ] are labeled by (T°, T 1) according to the remaining freedom.

The fact that the complexified holonomy algebra of A is included in ^ ( + , 3)
has a nice geometrical meaning. Then there exists o n Σ a spinor field such that its
direction is covariantly constant. In fact,

DoA = doA - AA

Bo
B = iA3oA (6.6)

[by (3.2)]. The converse, is also true: if there exists a spinor field XA φ 0 such that

XADλA = 0, λ φ 0, (6.7)

then in the spinor basis (o, t) = (λ, t)

A = A+τ+ + A3r3. (6.8)

On the other hand, λ is covariantly constant, i.e.

DX = 0 (6.9)

if and only if
The above observation about the existence of a covariantly constant spinor direction

and field respectively will be applied to find an intersection of the set of degenerate
[(A, σ)] with the real slice of the constraint surface.
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7. Hamiltonian Evolution of Holonomy Algebras

The constrained surface in the phase space Γ is defined by the vanishing of the
following functions

W:=ΊvσaσhFab, (7.1)

%:=ΊrσaFab, (7.2)

2* := Daσ
ai, (7.3)

where
F:=dA + AΛA. (7.4)

The time evolution CA(£), σ(t)) corresponding to the Hamiltonian constraint W and
lapse function TV has the form

jt Aa(t) = -j= [Nσ\t)9 Fab(t)], (7.5)

jt σa(t) = -j= Dh[Nσ\t), σa(t)]. (7.6)

In other words curves (A(t), σ(t)) are required to be integral lines of the vector field

X = -L [Nσb, Fabf ^τ- + ^ Db[Nσ\ σaf -/- (7.7)

y/2 8Aι

a y/2 δσaι

The σι are three vector densities in Σ of the weight 1 taking values in C. In the next
theorem we assume that (σι) are linearly independent in the complex sense, i.e. that
CLiσ1 = 0 implies α̂  = 0 for any complex numbers at. This section is devoted to the
proof of the following.

Theorem 7.1. Suppose (A, σ) represents a point of the constraint surface for complex
gravity and complex vectors (σ ι), i = 1,2,3 are linearly independent in each point
of Σ; then the Hamiltonian evolution (A(t),σ(t)) such that (A(0),σ(0)) = (A, σ)
preserves the complexification β&c(t) of the holonomy algebra of A(t).

Proof It suffices to show that the time evolution does not carry J$c(t) o u t of the
holonomy algebra Me of A,

3βc(t) C Jgc(O). (7.8)

Then we note, that the same is true when we change t into —t and TV into -TV. Thus
from (7.8) it follows that

^ c ( O ) C ^ b a ) . (7.9)

All the complex subalgebras of 5/(2, C) are listed in (3.8). Let us first consider the
three simpler cases. Namely, if J^(0) = {0} then F = 0 and by (7.5)

^ A ( f ) 0. (7.10)
at

On the other hand, if ^c(O) = sl(2, C), then it is obvious from (7.5) that β^c(t) C

Let Jlίc(O) = ^ ( 3 ) . Then A may be written as

A = A3τ3. (7.11)
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The constraint equations W — 0 = g^ read

F3

abσ
a-σb+ = 0 = F3

abσ
a3 . (7.12)

Thus, since σ α + , σα~, and σα 3 are by assumption linearly independent,

F = 0. (7.13)

But it is in contradiction with the assumption about the holonomy algebra, thus this
case is excluded by the constraints.

Now let us turn to deal with a case when we are given A such that 3$cΦ) = ̂ ( + ) ,
i.e. in some gauge

A = A+τ+. (7.14)

It is convenient to go to the space Γr of pairs (A, σ) (not divided by the gauge group)
and introduce apart from the Hamiltonian vector field X (7.7) a modified vector field

^ ( 7 1 5 )

where N is the same lapse function as in (7.7). The motivation to define this vector
field is that Y is tangent to the surface of (Af, σ1) such, that

Aβ=0, A ' - = 0 . (7.16)

Thus, in other words, the condition (7.16) is preserved along the integral curves of
Y. But integral curves of Y agree with those of X when we restrict ourselves to the
constraint surface. Hence, it follows, that if (A+τ+,σ) satisfies the constraints then
the Hamiltonian evolution preserves the form of A (7.14) and the inclusion

« c i

The last part of our proof is to study ^c(t) when 3@cφ) = ./&{+, 3). In this case
the proof proceeds as above with a modified vector field in Γ' defined by

Z = X + VlN \{σa+ + σα3) σ
b~ % - ]- σa+ &]-£-, (7.17)

L 4 ί J δA-
where σaidxa denotes the dual cobasis to σa% ——. Such a defined vector field Z is

oxa

tangent to the surface consisting of (A', σ') such that

A'- =0.

On the other hand Z = X on the constraint surface. Thus we can conclude that if
(A+τ+ + A3r3, σ) belongs to the constraint surface, then

which completes the proof.

Remark 7.1. The assumption that the vector fields (σ α l ,σ α 2 ,σ α 3 ) be linearly inde-
pendent was not used in the proof above when the complexification of the holonomy
algebra was

(7.18)

Remark 7.2. If A is like a complex electromagnetic potential, i.e.

A = A3r3,
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then the constraints W — 0 — Wa are not satisfied unless A is flat or (σ α l ,σ α 2 ,σ α 3 )
are linearly dependent.

Statement 7.1. Theorem 7.1 does not hold if we drop the assumption that (σ α l ,σ α 2 ,
σα 3) define a complex tangent basis in each point of Σ.

This claim can be demonstrated by the following example.

Example 7.1. Let
A = A3τ3, σiτi = σ+r+. (7.19)

The scalar and diffeomorphism constraints are automatically satisfied, and the Gauss
constraint reduces to

S?+ = σa+ - 2ίA3

aσ
a+ = 0 . (7.20)

Hence given an arbitrary σ+, a connection A3 is given, but not uniquely, by (7.20).
For example, let (u,x,y) := (xa) be coordinates in Σ, and

σ = σ α + τ + έ = r + έ ' (7 21a)

A = (adx + bdy)τ3. (7.21b)

Suppose that Hamiltonian evolution of the above (A, σ) leaves 3@c of A invariant.
Then the consistency conditions at the initial point of time are that τ+ and τ_ com-

d
ponents of — A(t) vanish up to a gauge transformation. More precisely, we expect,

dt
that given a lapse funtion N in (7.5) there exists an sZ(2, C) field A (generating a
gauge transformation) such that

-j=[Nσ\Fab]
± = DΛ±, (7.22)

where + and ~ denotes τ+ and τ_ component respectively. Now, in particular, let us
set N = 1 and substitute A = (dx + udy)T3, and σ of the form (7.21) into (7.23).
We get for the τ + component

4Λ
dy

which leads to a contradiction, namely

Λ+

(124)

(7.25)

8. Intersection of the Surface of Degenerate Points of (T°, T1)
with the Surface of Real Vacuum gravitational Fields

Up to now we have been studying the complexified gravity. Here we shall find the
intersection between the real slice of the constraint surface and the surface on which
(T°,Tι) coordinates in Γ become degenerate. In order to do it, we expend a 3-
dimensional configuration (Σ, A, σ) - by using the time evolution (A, σ) (t) provided
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that the initial (A, σ) satisfies constraints - to a 4-dimensional space-time Σ x R en-
dowed with the corresponding spinor structure 4σμAB/ and self dual spinor connection
4AμAB.

First we make a few observations about relations between (A, σ) and (4A,4σ)
before imposing the reality conditions.

Statement 8.1. If (A, σ) satisfies the assumptions of Theorem 7.1 [see paragraph fol-
lowing Eq. (7.7)] then the complexified holonomy algebras 4 ^ c and Me of the
connections 4A and A respectively are equal to each other.

Proof. To construct 4A, we immerse Σ into Σ x l and regard the time coordinate t
as the fourth coordinate completing coordinates (xa) in Σ to a coordinate system in
Σ x R. If the time evolution is given by (7.5, 7.6) then the spinor connection 1-form
4 A is defined as

4A = Aa(t)dxa. (8.1)

In the proof of Theorem 7.1 we have shown that A(t) takes values in ^ C We wish
to stress here that the essential reason why Statement 8.1 holds, is that we did not
use in the proof of Theorem 7.1 any extra gauge term DA (A being an s/(2, C) field)
to make

(8.2)

Otherwise, the Atdt term should have to appear in (8.1) which would have spoiled
our argument.

Let us go back now, to the results of Sect. 2. According to Theorem 7.1 and
Statement 8.1 degenerate points (A, σ) of (T°,Tι) correspond to connection 4A of
the complexified holonomy algebra belonging to one of the following cases:

= {0}, (8.3a)

= ^ ( + ) , (8.3b)

or
4Jgfc = ^ ( + , 3 ) . (8.3c)

We can easily establish the Petrov type of the curvature

4F = d4A + 4A Λ 4A. (8.4)

In the case (8.3a) 4F = 0. On the other hand in the case (8.3b)

4FA

B = 2i4F+oAoB (8.5)

[see (3.2)]. It follows that
4FA

Bo
B = 0 (8.6)

thus oA is a fourfold spinor of the Weyl spinor (Petrov type N).
In the case (8.3c) we have

4FA

Bo
BoA = 0φ 4FA

Bo
B . (8.7)

Hence oA is a triple principal spinor of the Weyl spinor (Petrov type III).
We can also repeat the arguments of Sect. 6 to claim that 4β@c *s °f m e tyPe

(8.3b) if and only if there exists in Σ x R a covariantly constant (with respect to 4A)
nontrivial spinor field o,

4DoA = 0, (8.8)
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and 4 J^c is of the type (8.3c) if and only if there exists a covariantly constant spinor
direction oA, i.e.

oA

4DoA = 0. (8.9)

Finally, let us focus our attention on (4^4,4σ) corresponding to a real gravitational
field. In terms of initial data (Σ1, A, σ) the reality of the metric on Σ is expressed by

6 = 0, (8.10)

and the reality conditions on the connection A are given by the propagation of (8.10)

ReTr(σ α σ c D c σ 6 + σbσcDcσ
a) = 0. (8.11)

Below we shall refer to these conditions as the "3-metric reality condition," and the
"evolution reality condition," respectively. However, in the spirit of this section the
reality conditions are that (4A, 4σ) are the self dual part of the spinorial connection
and the spinorial structure of a real Riemann geometry with metric tensor 4g of
Lorentz signature (because of the constraints 4g is a solution to the vacuum Einstein
equations).

In the real case, Eq. (8.8) means that there exists a (real) null vector k, namely

kμ = oAόA> (8.12)

which is covariantly constant:
4Dkμ = 0 (8.13)

(we extend the meaning of 4D to the Riemannian connection related to 4 A and 4σ).
The vacuum solutions to the Einstein equations admitting a covariantly constant vector
field are called p.p. waves [15]. Locally the metric tensor can be expressed by suitably
chosen coordinates (z = x -f iy, z = x — iy, u, r) as

g = Idzdz - 2du(dr + Hdu), (8.14)

H = Reh(z,u), (8.15)

where h(z, u) is an arbitrary function holomorphic in z.
The spinor transformation algebra 5/(2, C) is now regarded as o(3,1) algebra of

Lorentz transformations, while the holonomy algebra (8.3c) is identified with the
algebra generating null rotations which preserve the distinguished null direction k. It
is consistent with (8.9) which in the real case implies

4Dkμ ~kμ. (8.16)

The class of vacuum gravitational fields which possess a holonomy group consisting
of null rotations was studied by Goldberg and Kerr [13, 14]. The Einstein equations
were completely solved for that case, and a metric tensor was derived in the following
form:

g = Idzdz - 2du(dr + Wdz + Wdz + Hdu), (8.17)

where

W = f(z,u), (8.18)

H=i(Wz + Wz)r + H°, (8.19)

H° = ReKWWz + Wu) z + h(z,«)], (8.20)

and f(z, u), h(z, u) are arbitrary functions holomorphic in z.
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In both cases (8.14) and (8.17)

oAδA>

 Ξ I - , (8.21)
or

and the holonomy algebras (as sets) of 4A are equal to their complexifications.

9. (T°, T 1 ) Restricted to the real Slice ΓR of the Phase Space Γ

In terms of the phase space variables A, σ, the real slice Γ R C Γ consists of points
which satisfy the reality conditions (8.10) and (8.11).

We will study in this section (T°,Tι) restricted to ΓR. For [(A,σ)] G ΓR, if
(T°,Tι) is invertible at [(A,σ)] in Γ then it is also invertible at this point in ΓR.
Thus again, degeneracy of (T°, T 1) can appear only when the complexified holonomy
Lie algebra ^ c of A is equivalent to one of the following: ^?(+, 3),
or ^ ( 0 ) . The degeneracy is described by the set

DegR[A,σ] := D e g [ Λ , σ ] n ί R . (9.1)

We shall divide our considerations into two parts. First we shall consider the re-
strictions on ΓR imposed by the 3-metric reality condition (8.10) and only after that
consider the further restrictions due to the evolution reality condition (8.11).

Henceforth, we will assume that the spinorial triad σι (σ =: σιTi) is C-linearly-
independent and that the signature of Ύr(σaσb) is (+ + +). Then, the 3-metric reality
condition (8.10) implies that there exists a gauge such that

(9.2)

a) Degeneracy Restricted only by the 3-Metric Reality Condition (8.10)

From now on, our gauge freedom is broken down to the subgroup of real gauge
transformations which preserve Eq. (9.2), i.e. to SU(2) C 5L(2,C). It turns out
that if Mc(A) is of the type . ^ ( + , 3 ) , ^ ( + ) or ^ ( 0 ) up to an SX(2,C) gauge
transformation, then there exists an SU(2) gauge transformation which carries β$c(A)
respectively into ./^(+, 3), ^ ( + ) or ^4(0). On the other hand 3%Q(A) is of the type

), then using SU(2) gauge transformations we can establish only

eC}, {g

τ3(φ) = exp(-0r + )r 3 exp(^r+),

where φ is a real function in Σ. Furthermore, given a connection A, such that the
holonomy algebra 3%(A) is a proper subalgebra of 5/(2, C), A itself may not take
values in that subalgebra. Of course, we can always find a (complex) gauge transfor-
mation such that A does lie in 3@(A). However, here we are confined to real gauge
transformations and we can write a connection A with 3@c of the form ^ ( + , 3),

or ^ ( 0 ) as respectively

A = A+τ+ + A3τ3, (9.4a)

A = e~2φaτ+ + id φτ3 , (9.4b)

A = A3r3(φ) + dφτ+ , (9.4c)

A = g-ιdg, (9.4d)
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A+, A3, a being C-l-forms, φ and φ being real functions and with SX(2, C)-valued
function g. Denote by Degjfyl, σ] C Deg[A, σ] [see (5.23, 5.24) and above] the set
of all the elements which satisfy the reality condition (9.2). Given [(A, σ)] we will
find Degj [A, σ] in two steps. First we specify all real σ/a and mappings 7 —>• h'Ί G
SX(2,C) (S77(2)-gauge inequivalent) such that (ΊxtiΊ,Ίxh'Ίσ

la) = (TQ,TX) {A, σ\
Then we find all A! which correspond to h'Ί. Since two connections A, A' have the
same holonomy hΊ (for each loop 7 with a starting point y G Z1) if and only if

Λ ' ^ - U s + ff-'ds, (9.5)

g(y) commuting with all the elements of the holonomy group of A at y G Σ, each
of the cases (9.4a-9.4d) will be treated separately. We begin with the case (9.4c). A
holonomy element is of the form

hΊ = cos ΘΊI + sinθΊτ3(φ). (9.6)

The T°'s equivalence implies that

h'Ί = cos ΘΊI + sin θΊτ3(φ'). (9.7)

Comparing T« and T^ we find

(9.8)

From this one condition we see that there is a large class of real σ', φr which have
the same Γ 1 . Holonomy (9.7) corresponds to any A' given by

J4 ; = (A3 + id </?)τ3 (</>') + d0'ί+ , (9.9)

where ψ in is an arbitrary real function which doesn't change holonomy and represents
an additional degree of freedom.

Turn now to the case (9.4b). Here we have

/ι7 = l + n + r + . (9.10)

Suppose, that /ι7, σ and h'Ί, σ' possess the same (T°, Γ 1). We get

h'Ί = l+ n'+τ+ , n + σ α " - n'J σ/a~ . (9.11)

Hence, there exists such a function k that

n ^ = i f i + , σ ;- = fcσ-, (9.110

for each 7. By real gauge transformations we can make k real. Equation (9.11') is
equivalent to

h'Ί — exp ί — — \nkτ3 1 h 7 exp ( - \nkτ3 J , (9.12)

and such holonomy can be associated to any A' of the form

e~2φ ( 1 \
A'= —— (a + d\)τ++i [dφ+-d\nk r3, (9.13)

k \ 2 /

where λ is an arbitrary complex function creating an additional degree of freedom
and φ is as in (9.9).
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In the case (9.4a) the correspondence between the holonomy

hΊ = cos ΘΊI + τ 3 sin ΘΊ + n+τ+ (9.14)

and the connection is unique. Suppose again that (A, σ) and (Af, σ1) have the same
(T 0,? 1 1). As in the case (9.4c) cos<97 and sin<97 are determined by Γ°.

In order to connect σla~ with σα~, select a loop 7 such that

u — 1 _μ ri+r, (Q ] * )

(such 7 exists). Then via T7 = T^ = 2,

hr

Ί = l+ri+τ+. (9.16)

From T^ == (T')^ we have

n ; V α - = n + σ α - . (9.18)

It follows that

σ'a~ = kσa~ , (9.19)

fc being a function on £\ Now, let us choose another loop β such that

sin 6^0. (9.20)

Then T 1 equivalence follows:

(σα3 - σ'a3)ύnθβ + 2σa~(nf^k - np = 0. (9.21)

Note that since Re σα~ and Im σa~ are linearly independent vectors, it has to be

σ'ai = σa\ n'+ = ^n+ (9.22)

for σα 3 is real. As in the case (9.4b) we claim that such a change of holonomy group
is obtained by

1 / i \
A' = 7 A+τ+ + A3 + - din k r 3 , (9.23)

k being a real function on Σ (we make it real by gauge transformations). Note that
here, unlike in the case (9.4b, c), we have no freedom to change connection when
/ι7's are fixed.

To summarize our considerations we have

Statement 9.1. If vectors σι satisfy reality condition (9.2) and are linearly independent
at each point of 5, then for each type of the holonomy algebra J$(A) = ^ ( + , 3),
^ ( + ) or ̂ ( 3 ) Deg^A, σ] consists of all [(Af, σ')] with the following restrictions:
(a)

A! = - A+r+ + ( A3 + - dink ) r3 σ = k(σ+τ+ + σ"r_) + σ 3 r 3 ,
k \ 2 )

k being a real function;
(b) 3&(A) = Λ(+) (A = e~2^aτ+ + iάφτ3):

e~2φ ( 1 λ
— — (α + dλ)τ+ + iί d<p + - din A; I T3 , σ ; = A:(σ+r+ + σ r_) + σ/3r3 ,* V 2 /
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k and λ being a real and a complex function respectively, and σ'3 being a real vector
field;

(c) 3β(A) = ^ (3) (A = A3τ3(φ) + dφτ+ [see (9.3)]:

A! = (A3 + idφ)τ3(φ') + d0V+ , Trσfτ3(φ') = Ύrστ3(φ),

φ' and 99 being real functions, σ1 being real [see (9.2)].

(b) Degeneracy Restricted by the 3-Metric Reality Condition
and the Evolution Reality Condition

Thus far we restricted (T°, T 1) to (A, σ) which satisfy only the first reality condition
(8.10). The next step is to impose on (A, σ) and on (A',σf) the evolution reality
condition (8.11). Suppose that σ is real in the sense of (9.2) and (σ+,σ 3,σ~) are
linearly independent vectors in each point of Σ. Then the condition (8.11) imposed
on A = A+τ++A3τ3 and σ reads (below A1- := Aι

aσ
aj, i, j = +, 3, - and σ̂  denotes

the dual cobasis to σι)

Re(At) =

-AT = U

A+ =

τ-([σ+,σ-])

h(k + ,σ 3 ])-

- iσ3([σ+

• ) ] ,

4

,σ3i),

,<7 3 ]) .

(9.25a)

(9.25b)

(9.25c)

(9.25d)

Hence, the set DegM[τ4,σ] consists of those points of Degx[A,σ] given - according
to the holonomy type of A - by Statement 9.1, which satisfy Eqs. (9.25). (T°,Tι)
become degenerate in [(A, σ)] if DegR[A, σ] has more than one element.

We will find now a local expression for [(v4,σ)] at which the real degeneracy
appears provided that neither A+ nor A3 can be gauged to zero, that is in the case
when HC(A) is 4-dimensional. Then Degj[A, σ] is given by Statement 9.1 (a). Suppose
that [(A, σ)], [{A', σ')] G Όεgι [A, σ] and that both of them satisfy (9.25). Then (A', σ')
are given by Statement 9.1 (a) with k being a real function in Σ which is not identically
equal to 1 (provided that [(A', σ')] φ V(A, σ)]). In that region of Σ on which

kφ\, (9.26)

Equation (9.25a) applied for (A, σ) and for (Af, σ') is equivalent to

Re(Λί) = 0 = σ 3 ( [ < τ + , O ] . (9.27)

The substitution of {A, σ) and {A1, σ') into (9.25b) implies

A ^ έ σ α + έ l n ( f c 2 - 1 } (9-28)

On the other hand Eqs. (9.25c, d) are satisfied automatically by those (A', σ') if (A, σ)
is their solution. A local expression for (A, σ) which satisfies Eqs. (9.25), (9.27), and
(9.28) with some k can be found in an explicit form. Given k Eq. (9.28) determines
A^. Then any other admissible k' is given by

k'1 = (k2 - 1 ) 6 + 1 , (9.29)
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where b is a real function such that

σ - A 6 = 0 . (9.30)

The geometrical interpretation of the right equation in (9.27) is that the vector fields
Reσ + , I m σ + are surface forming. Let u = const label leaves of the foliation. By
the same reason for which each 2-dim metric tensor can be written in the form
ds2 = H2(d2x + d2y) we can find such coordinates (x, y, u) on Σ that with respect
to them

σ+ = a — , σ~=a —, (9.31)
oz oz

where a is a function (by an SU(2) gauge transformation a has been made real) and

z := x + iy . (9.32)

To complete this construction, given σ+ and σ~ as in (9.31), an arbitrary real σ3

and a real function fc, we find A+ by (9.28), Re At by (9.27), A% by (9.25c) ReA3

3

from (9.25d) and A3

+ -f A3_ from (9.25b) while the remaining components of A are
arbitrary. Summarizing, given [(.A,σ)] G ΓR there exists [(Ar,σ')] € / R of the same
form as in Statement 9.1 (a) if and only if there exists an open region Ω c Σ and a
real function k (globally defined in Σ and smooth) such that

fc = 1 on Σ\Ω (9.33)

and A,σ agree on Ω with the above construction, where z,u are defined in some
neighbourhood of each y G Ω. If

Ω = Σ

above and the functions z, u are defined globally, then it is clear that points [(A', σ')] G
DegR[A, σ] are labeled by functions k' of the form

with an arbitrary real function 6 of it.

10. (T°, T 1 ) Coordinates Restricted to the Real Slice of the Constraint Surface

In this section we try to answer the question posed by Rovelli and Smolin whether
(T°,Tι) parametrize the slice of the constraint surface which corresponds to real
solutions of the vacuum Einstein equations. The points of this slice at which (T°, T 1)
become degenerate, while considered as coordinates in the whole phase space Γ for
complex gravity, correspond to the Goldberg-Kerr metric tensors (8.17-8.20). Sets of
a constant value of (T°,Tι) restricted to the real constraint surface are denoted by
DegRcon[A,σ];i.e.

DegRcon[v4, σ] = DegR[A, σ] Π constraint surface.

Our first step will be to write the explicit expressions for (A, σ) associated to these
solutions. Each 3-dimensional and not null surface Σ in a space-time (8.17) can be
described (locally) by an equation

r = φ(z,z,u), (10.1)
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φ being a real function independent of r. The determinant of qab(a, b = x, y, u) - the
induced metric on Σ - is proportional to

a2 := -{W + φz)(W + φ2) - H(z,z,u,r = φ)-φu. (10.2)

Thus we consider functions φ(z,z,u) in (10.1) such that

α 2 > 0 . (10.3)

We provide Σ with (A, σ) constructed from the metric tensor g and from the Rie-
mannian connection as described in [3]. We obtain with

Z:=W + φz, (10.4a)

A+ = %- a2σ3 + %- Z,σ+ + ^(ZZ + Z2)σ- , (10.4c)

A3 = - l- W2σ3 + ^ d(ln a), (10.4d)

where
2

σ3 := - 2du, σ + := - (dz - Zdu) =: σΓ, (10.4e)

and W(z, u), H(z, z, u, r) are the same as in (8.17-8.20). It follows from (10.4d) that
the complexified holonomy algebra of A is of the type ^ ( + , 3) if and only if

W22φO. (10.5)

If conversely,

then 3@Q is of the type ^ ( + ) and by a suitable choice of coordinates (z, z, u, r) in
(8.17) one can make

1^ = 0. (10.6)

As before, let us discuss these cases separately.

a)

Referring to the results of the previous section, our first observation is that all (A, σ)
defined by (10.4) satisfy the local conditions for the existence of the real degeneracy.
In fact, Eqs. (9.27), (9.28), and (9.31) with

k ^ l + M (10.7)
a1

and for an arbitrary real function b(u) are satisfied not only in an open set but on
the whole of Σ. Moreover, it turns out that the whole real degeneracy in [(A, σ)] is
automatically contained in the constraint surface. Namely, let us express [(A' ,σ')] G
DegR[^4,σ] given by (9.24) in terms of (10.4). We obtain

Hf = H + b(u), W' = W, φ' = φ. (10.8)

In fact, one can easily check that Hf, W satisfy (8.17-8.20) hence the me,tric tensor
4g is again a vacuum solution to Einstein's equations. What is not completely clear
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is whether a function k of the form (10.7) can be defined globally - by a suitable
choice of b - on Σ even when z, u and consequently W, Z, H, a are defined only
locally. We can claim for certain that in a case when z, u are defined globally, then
DegRcon[A, σ] consists of [{A!, σ')] as in Statement 9.1(a) with k of the form (10.7).

An important question is whether the degeneracy DegRcon[A, σ] is transversal
to orbits of the group generated by diffeomorphisms and scalar constraints. Can
[(A',σ')] € DegRcon[A, σ] be reached from (A, σ) by using diffeomoφhism, and
time evolution? The simplest way to find an answer is to go to the 4-dim space-time.
Then (A', σ1) and (A, σ) correspond to

g' = Idzdz - 2du[dr + Wdz + Wdz + (H + b(u)) du\ (10.9)

and to

g = Idzdz - 2du(dr + Wdz + Wdz + Hdu) (10.90

respectively, where b(u) is an arbitrary real function and W,H are as in (8.17-8.20).
Suppose

P; = Φ*P, (10.10)

φ being a space-time diffeomoφhism. Then φ* — and — are both triple directions
or or

of the Weyl tensor. Thus

Φ*ΊΓ~i- (10.Ha)
or or

φ*du~du. (10.11b)

[The equation for φ*du follows also from the particular form of φ*g (10.10).] Con-
sider now the infinitesimal diffeomoφhism

(10.12)

From terms dzdz, dzdz, dudr we find restrictions for a vector field X,

r\ r\ r\

X = A(u) — + [iBι(u)z + B0(u)] — + [-iBi(!t)z + B0(u)] —
du dz az

+ [~Au(u)r + E(z, z, u)] — , (10.13)
or

where B\ is a real function of u. From other terms we get the set of equations,
involving X, W, H which can be satisfied only for very special cases of W, H, and
b(u). Therefore, almost all the transformations (10.8) are transversal to the fibers
defined on the constrained surface by the constraints.

b)

These solutions are among the special cases for which there exists a 4-dimensional
diffeomoφhism which carries (10.9) into (10.9'). But now there appear new transfor-
mations (A,σ) •-> (A',σ') leaving (T°,Tι).
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Expressions (10.4) for A and σ can be written now in the following form:

A+ = —(hzdu + dφz), A — -dlna, (10.14a)
2a 2

Oί = — φzφz — h — h — φu

with respect to the coordinates (Re z,Im^,w),/ι and φ being a holomorphic and a real
function respectively. The set DegRcon|7L, σ] consists of those [(A*, σ')] G D e g ^ , σ]
given by Statement 9.1(b) which satisfy both the reality conditions and the constraints.
One can find that a general form of such A' and σ' is given by substitution of

7

f — — ?/ — V(v) V — V
V du

h! = —r— + f(u)z + f(u)z + e(w)

and φ' being arbitrary real function, into (10.14) where c G C is a constant, / is a
complex function of u and e, V are real functions of u. Arbitrariness of φ' means that
in this case observables (T°, Γ 1) (A, σ) don't depend on Hamiltonian evolution given
by the change of the function φ in (10.1) which defines a surface Σ in the space-time
(8.14). Transformations of h! are transversal to orbits of the transformation group
generated by constraints. For example

σ' = k(σ+τ+ + σ~τ_) + k2σ3r3 ,

Af = ±A+τ+ + A\3,

k — const,

correspond up to a certain diffeomorphism to the rescaling

and leads to a non-equivalent g' except when g admits a homothetical Killing vector
field.

11. Concluding Remarks

In our work "degeneracy" means that there are inequivalent initial data which corre-
spond to the same value of the loop variables. The main result of our paper is the
finding of all the points in the space of initial data for classical gravity (as well as in
the whole phase space for complex gravity) at which the loop variables become de-
generate and characterizing their degeneracy. We found that those points correspond
to vacuum space-times admitting a covariantly constant null direction. There are two
classes of such points: (i) when the holonomy group is the 4-dimensional group of
the null rotations, (ii) when the holonomy group consists of some null rotations but
is 2-dimensional. In the second case space-time admits a covariantly constant vec-
tor field and is known as a p.p. wave [15]. The surfaces of degeneracy o^ the loop
functionals are different for each of those cases.
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It turns out that the degeneracy cannot be removed by the factoring of the phase
space by the constraint transformations group. It seems to suggest that the loop vari-
ables may not give a sufficiently good parametrization of the phase space for gravity.
However, the problem arises with regard to the physical meaning of the resulting
gravitational fields. Although it is not proven in our work or in the literature it seems
that such space-times cannot be asymptotically flat and that they do not admit a com-
pact surface of initial data. This conjecture should be examined better. In any case,
the degenerate solutions are probably of "measure" zero in the space of solutions.
Their importance rests in the possibility that they may separate the solutions space
into regions with different physical properties.

As our results concerning the Γ-variables on the extended phase space Γ for
complexified gravity (on a real 4-manifold) show the essential feature of (A, σ) is the
holonomy algebra of A, more specifically, the complexification ^ c of the holonomy
algebra. Another and independent result of our work is the theorem which states that

is preserved under Hamiltonian evolution if the triad is linearly independent. The
may be interpreted now as the first known observable in general relativity theory.

On the other hand, we have given an example that when the triad is linearly dependent,
time evolution changes ^ c This shows that a generalization of our results to the (also
interesting) case of linearly dependent triads is not direct. It is remarkable, however,
that even in the example presented, the degeneracy class of (A, σ) (according to the
classification in Theorem 6.1) is the same.

Another important issue is the examination of the derivatives of the loop variables.
One may ask for which points (A, σ) there exist directions (δA, δσ) tangent to Γ such
that the variation of (T°,Tι) is identically zero for all the loops in the 3-manifold?
What may occur at such a point can be illustrated by the following example. Suppose
A = A+τ+ and δA = δA3τ3. One can check that the variation of T° is zero for any
given loop. One may be surprised, however, for T° distinguishes between connections
of the holonomy algebra spanned by (τ3,τ+) and those of the holonomy algebra given
by multiples of τ+. But the difference turns out to be of the second order in δA3.
This question will be treated in a following paper [16].

There are situations (e.g., in 2 + 1 gravity and in coupled harmonic oscillators
[3]) in which degeneracy imply the existence of super selected sectors in the Hubert
space. That situation may also occur with respect to the degeneracies discussed in
this paper.
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