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Abstract. Supersymmetric analogues of the Gelfand-Dikii polynomials are de-
rived. An alternative proof of the super-KdV equation is given using identities
obeyed by the polynomials. They also allow the recursive generation of the infinite
number of conserved quantities for the super-KdV flow.

1. Introduction

The Korteweg-de Vries (KdV) equation is a nonlinear differential equation de-
scribing the "time" evolution of a function u(x) of one "spatial" variable,

Btu = -(83u-6udu), (1.1)

where d = dx. This equation is integrable, in that there exist infinitely many
conserved quantities, and it is intimately related to the differential operator
L = — d2 + u. Recently, the KdV hierarchy has been found to be related to matrix
models [1] and to two-dimensional topological gravity [2]. Central to this inter-
pretation are the Gelfand-Dikii polynomials [3] and the recursion relations they
obey. The string equations of matrix models and the correlation functions of
topological gravity are conveniently expressed in terms of these polynomials.

In the supersymmetric version of the KdV equation (the sKdV equation),
the variable x acquires a Grassmann partner θ, so X = (x, θ) are coordinates in
a one dimensional superspace. The sKdV equation is a nonlinear differential
ecμiation describing the "time" evolution of a Grassmann-valued superfield
U(X) = ύ(x) + θu(x\ where u(x) is an ordinary function and ύ(x) is a Grassmann-
valued function (hats denote Grassmann-valued quantities). Defining the operator
D = dθ + θd, the sKdV equation is [4, 5, 6]:

dtU = (B3U- l(dU)DU - 3UdDU). (1.2)
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By decomposing with respect to 0, one obtains the pair of coupled differential
equations

Stu = - (d3u - 6udu + Md2ύ),

dtύ = -(d3ύ — 3udύ — 3ύdu).

These equations are invariant under the infinitesimal supersymmetry transforma-
tion δύ = εu, δu = εdύ (where ε is a constant Grassmann parameter), which is
equivalent to the superspace translation δx = θε, δθ = ε.

It is known [6, 7] that the sKdV equation is related to the differential operator
L = — dD + (7, and the existence of infinitely many conserved quantities for the
sKdV flow has been proved using pseudodifferential operator techniques [4, 7]. In
this paper, we reexamine the integrability of the sKdV equation by developing the
analogues of the Gelfand-Dikii polynomials, which can be related to the coeffi-
cients in the asymptotic expansion of a heat kernel associated with the superspace
operator L. There are in fact two series of polynomials in the superfield U and its
derivatives which are linked by various identities. These allow the conserved
quantities for the sKdV equation to be generated recursively. A more complicated
recursive algorithm has been given by Bilal and Gervais in [6] by using the
super-Riccati equation, and it would be of interest to relate the two approaches.

On the physical side, one might hope that the analogues of the Gelfand-Dikii
polynomials and the recursion relations they obey bear some relation to the
correlation functions of two-dimensional topological supergravity.

2. Review of the Ordinary KdV Equation

The existence of infinitely many conserved quantities for the KdV flow described in
(1.1) can be proved using the language of pseudodifferential operators [8] or in
terms of a set of relations obeyed by the Gelfand-Dikii polynomials [3]. In both
cases, one exploits the relation of the KdV equation to the differential operator
L = — d2 + u. Here we review the second approach before going on to develop its
supersymmetric analogue.

The resolvent R(x, x'; λ) = δ(x, x') of the operator L admits an asymp-
L -j- Λ

totic expansion R(x, x'; λ) = £„% Rn(x, xf)λ~n~1/2 in the limit λ -> oo . The
Gelfand-Dikii polynomials Rn(x\ which are polynomials in the function u(x) and
its derivatives, are the coincidence limits of the coefficients which appear in this
asymptotic expansion, Rn(x) = lim*-^ Rn(x, x'). The resolvent is related by a
Laplace transformation to the heat kernel K(x, x'; ξ) = e~ξL δ(x, x'),

0

(2n- 1)!!

2"
— 3). . . 3 1 for n ̂  1 and 1 for n = 0, and the an(x) are the coefficients in the

From this it follows that Rn(x) = v

 +1 an(x), where (2n - 1)!! = (2n - l) (2n
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asymptotic expansion of the coincidence limit of the heat kernel in the limit of
small ξ,

an(x)ξn .

We choose to work with the an rather than the Rn.
The coefficients an(x) can be generated iteratively via the recursion relation

n + - ]dan+1 = -(d3 — 4ud — 2(du))an (2.1)

with the initial condition α0 = 1. This follows from the identity

dξdK(x9 xι ξ) = l- (d3 - 4ud - 2(du))K(x9 x; ξ) (2.2)

obeyed by the coincidence limit of the heat kernel. The identity is most conve-
niently proved by introducing the representation

K(x, x'i ξ) = Σe~ξλ" Φn(x)Φn(x') > (2-3)
n

where the φn are a complete set of eigenfunctions of the operator L, Lφn = λ2 φn9

with the completeness relation taking the form <5(x, x') = Σn φn(χ}φn(χ'}. The proof
makes use of the identity 0 = φnd

3φn — (dφn)d2φn — (du)φ2 which follows from
(dφn)Lφn — φndLφn = 0. The coefficients an also satisfy the identity

~^L= -αn_! , (2.4)

where -̂  is defined by δ f dx an(x) = f dx δu(x)~—. Equation (2.4) is a conse-
ou ou(x)

quence of the equation

δ J dxK(x, x; ξ) = - ξ J dx dx'δ(x', x)δu(x}K(x, x'; ξ) .

To make contact with the KdV equation again, one introduces the Poisson
bracket

[u(x)9 u(x')]pB = (P - 4ud - 2(du))δ(x9 xf)

and the quantities Hn = (2n - 1)!! J dx an+1(x). Using [u(x\ HM]PB =
— (2n + l)!!δαn + 1, the KdV equation (1.1) can then be written in the Hamiltonian

form

dtu(x) = [M(X),HI]PB

with respect to the Hamiltonian Hl = % § dx u2. With the help of the recursion
relation (2.1) and repeated integration by parts, one finds \_Hm, /fn]PB =
[Hm_ι, HΠ + 1]PB. Iterating this relation, [Hm, HΠ]PB = [jtf0, Hm+M]PB = 0, so the
quantities Hn are in involution with respect to the Poisson bracket. Also,
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dtHn = [//„, #ι]pB = 0, so that the quantities Hn are conserved by the KdV flow
(1.1). This is the usual form of the statement of the integrability of the KdV
equation.

The KdV hierarchy is obtained by introducing additional "time" parameters
ί2, £3 . . (with ί0 = x, tι = t) with the dependence of u on these variables defined
by

dtnu(x) = [u(x)9 tfJpB = - (2n + l)\\dan + 1 .

The consistency condition dtn dtrnu = dtm dtnu follows from the Jacobi identity
obeyed by the Poisson bracket.

In the next sections we carry out a similar programme for the sKdV equation.

3. The Supersymmetric Heat Kernel

As mentioned in the introduction, the sKdV equation is related to the superspace
differential operator L = — dD + U. As this operator maps Grassmann-valued
superfields into commuting superfields and vice versa, it is not suitable for the
construction of a heat kernel. Instead we consider the operator

A = LD = - d2 + UD (3.1)

(we could equally as well have considered the operator A = DL, see below). The
heat kernel K(X, X'; ξ) (with ξ a real parameter) associated with A satisfies the
heat equation

(dξ + A ( X ) ) K ( X 9 X ' ; ξ ) = 0

with the boundary condition K(X, X'\ Q) = δ ( X 9 X f ) 9 where A(X) acts on the
argument X only. Here, δ(X, X'} is the supersymmetric delta function, defined by
I dX Φ(X)δ(X, X'} = Φ(X'\ where J dX = J dx dθ is the supersymmetric integra-
tion measure, $ dθθ = I 9 $ d θ l =0. In variance under supersymmetry dictates
δ(X, X'} = δ(x - x' - θθ') (θ - θ').

The solution to the heat equation with the given boundary conditions is
formally

K(X9X' 9 ξ) = e-*AW δ(X9X') , (3.2)

where the operators act on the delta function rather than through it. By sandwich-
ing A(X) δ(X, X') between two superfields, integrating over X and X' and
integrating by parts repeatedly, one can show that

A (X) δ(X9 X'} = A ( X ' ) δ(X9 X'} , (3.3)

where A = DL = - d2 - UD + (DU) (the superfield U(X) and its derivatives are
assumed to vanish at ± oo so that integration by parts can be carried out without
generating surface terms). Thus the heat kernel can equivalently be represented as

K ( X 9 X ' - 9 ξ) = e-ξ(XΊ δ(X,X') . (3.4)

Note that this heat kernel is to be distinguished from

K(X9X' 9 ξ) = e-ξ2m δ ( X , X f ) . (3.5)
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However, using δ(X, X') = - δ(X'9 X\ we have

lim K(X, X'\ ξ ) = - lim K(X, X'\ ξ) ,
X^X' X-*X'

so the coefficients in the asymptotic expansions of these two kernels are the same
up to sign.

In the limit of small ξ, the coincidence limit of the heat kernel (3.2) possesses the
asymptotic expansion

lim K(X9 X ' ; ξ ) = -= £ An(X) t" - (3.6)
x-+x'

dk
Representing the delta function δ(X, X'} in the form J"^ — e*<*-*'-β«'>(0 _

the heat kernel takes the form

where a rescaling k^ξ~1/2k has been performed. It is now straightforward if
tedious to evaluate the coefficients An, the first few of which are

, = - U ,

A3 = - - [δ4ί/ - 5V(d2DU) - 5(DU) (d2 U)
60

- 5(dU) (dDU) + 1017(Dl7)2] . (3.8)

Also of importance here will be the coefficients An(X) defined by the asymptotic
expansion

lim DK(X9 X ' ; ξ ) = ~= £ An(X)ξ" . (3.9)
x->x'

Again, direct calculation yields

A2 = - - \_d2DU - 3(DU)2

6

A3 = --l
oU

- 5(dDU)2 - l5U(DU)(dU) + 10(Dί/)3]

for the first few coefficients.
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The heat kernel satisfies a number of identities, of which the principal one is

(I) lim

where we adopt the notation K(X) — limx^x> DK(X, X'\ ξ) and
K(X) = \imx^x> K( X, X'\ ξ) (the dependence on ξ is suppressed for notational
convenience). This identity can be checked explicitly to low orders in the expansion
in ξ using the representation (3.7) for the heat kernel, where care must be taken to
include the terms where 9 acts on the factor e

ίkξ~i/2(χ-χ'-ΘΘ'\ The general proof is
given in Appendix A. Secondary identities are

(II) dK(X) = - LK(X) ,

(III) ddξK(X) = OK(X)

with

0 = - (d2D - 3Ud - (DU)D - 2(917)) . (3.10)

We will also need to make use of the result

δU(X)

where the functional derivative δ/δU is defined by

δ f dX K(X) = f dX δU(X)
J J

δU(X)

for an arbitrary variation δU(X). (This means that if P(X) is a polynomial in U(X)
and its derivatives DU(X\ dϋ(X\ . . . , then

δP(X) dP(X) ι dP(X) dP(X)

δU(X) dU(X) d(DU(X)) d(dU(X))

where d denotes derivatives of P with respect to its arguments (to distinguish it
from d = 9X)). These identities are proven in Appendices^ B-D.

Using the asymptotic expansions (3.6) and (3.9) for K(X) and K(X\ (II) and
(III) imply the following relations:

(IΓ) dAn = -LA

(IIΓ)

•n •>

With the initial conditions A0 = 0 and A0 = 1, these can be used to generate the
sequences of coefficients An and An recursively. This is one of the key results in the
paper, as it will allow the recursive generation of conserved quantities for the sKdV
equation. Similarly, identity (IV) yields
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4. Conserved Quantities for the sKdV Flow

In this section, we use the results of the previous section to prove that the quantities

HH = (2n-l)l\SdXAn + i ( X ) n = 0,1,2,... (4.1)

(which are functionals of U and its derivatives) provide an infinite set of conserved
quantities for the sKdV flow (1.2). The proof hinges on the result (proved in
Appendix E) that the Hn are in involution with respect to the super-Poisson bracket

{ U ( X ) , U(X')}PE = - 20δ(X, X') (4.2)

with 0 as defined in (3.10). This is the "classical" version of the super-Virasoro
algebra [5, 6], and as such the super-Poisson bracket is symmetric and fulfills the
super-Jacobi identity (we use the notation { }PB because of the symmetry of the
super-Poisson bracket).

Using the result [U(X\ Hn}PE = - (2n + ί)\\dAn + 1 ( X ) (see Appendix E)
and the expression in (3.8) for A2, the sKdV equation can be expressed in the
Hamiltonian form

The time dependence of the Hn is given by dtHn = {Hn, #ι}PB, which vanishes
since the Hn are in involution with respect to the super-Poisson bracket. Thus the
Hn provide an infinite set of quantities in involution which are preserved by the
sKdV flow, which is the usual statement of the integrability of the sKdV equation.

It should be noted that the above proof can also be carried through using the

heat kernel K(X, X'\ ξ) in (3.5) associated with the operator A = DL. Defining

K(X) = limx^x, K(X, X'\ ξ) and K(X) = limx^x DK(X, X'\ ξ), one finds

K(X) = - K(X),

K(X) = K(X) - DK(X) .

The first relation has already been discussed in Sect. 3, and the second results from

writing DK(X,X'\ ξ) in the form [D, e~ξD^ δ(X, X') + De~ξtD δ(X, X'\ The
identities (II), (III) and (IV) are accordingly modified and follow from

lim dK(X, X'\ ξ) = - dK(X) + - DK(X) ,

which can be proved in a manner similar to (I).

Conclusion

In this paper, we have derived the supersymmetric analogue of the Gelfand-Dikii
polynomials and have given an alternative proof of the integrability of the super-
KdV equation using the various identities obeyed by the polynomials. These
identities also allow the infinite set of quantities conserved by the sKdV flow to be
generated recursively. The situation is more complicated than in the case of the
ordinary KdV equation, as there are two series of polynomials, the An and the An,
and the recursion relation links the two series.
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In the case of the ordinary KdV equation, there exists a bi-Hamiltonian
structure, in that the KdV equation can be expressed in Hamiltonian form with
respect to two different Poisson structures [3, 8]. This can be viewed as arising as
a consequence of the recursion relation (2.1) and the fact that the coefficients an are
the densities from which the conserved quantities for the KdV flow are constructed.
It is known that the sKdV equation does not possess a local1 bi-Hamiltonian
structure [7], and in the present context, this is related to the fact that the recursion
relation (IIΓ) relates An+ί and An, while the conserved quantities are constructed
purely in terms of the An.

Appendix A: Proof of (I)

We begin by noting that in the case of the ordinary KdV equation treated in Sect. 2,
the corresponding identity reads

lim dK(x, x7; ξ) = ^8 lim K(x, x'; ξ) .
x->x' χ-*x'

This is easily proved using the eigenfunction representation (2.3) of the heat kernel
associated with L. As no obvious analogue of this representation exists for the
supersymmetric heat kernel, we are forced to resort to functional methods for the
proof of (I).

As seen in Sect. 3, the heat kernel associated with A = LD is formally given by

By sandwiching de~ξ(LD} δ(X, X') between two superfields, integrating over X and
X' and integrating by parts repeatedly, one finds

de-ξ(iD> δ(X, X'} = - e-ξ(D'LΊd' δ(X,X') ,

where the primes on^ operators indicate that they act on the argument X'. This
allows us to write dK(X, X'\ ξ) in the form

dK(X, X'\ ξ) = - (de-ξ(ί-D) - e-
ξ(D'L'} d') δ(X, X'} .

Now, in the limit X^>X',

e-ξ(D'^df δ(X,Xf)^e-ξ(DL}d δ(X',X} = - e~ξ(DL)d'δ(X, X'} .

Thus

lim dK(X,X';ξ)= lim (3έΓ« l>) + e ~ ξ ( D > d ) δ ( X 9 X'}
X-*X'

= lim ^{D9De-ξ(tD)}δ(X9X').

1 However, equations (IΓ) and (IIΓ) can be rewritten formally as (n + i)dA ( n + 1) = — Od J LAn,
which exhibits a nonlocal bi-Hamiltonian structure for the super-KdV equation. This nonlocal
bi-Hamiltonian structure has been written down by W. Oevel and Z. Popowicz [9]. I thank the
referee for pointing this out
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This is equivalent to ̂  DUm^^ DK(X, X'; ξ) = \ DK(X\ as the anticommutator
means that the operator D on the left does not act through onto the delta function
but acts only on the coefficients of the operators in the power series expansion of

There is actually a slight subtlety here, related to the terms U( X) (θ — θ') in the
plane wave representation (3.7) of the heat kernel. In this representation,

limx->;r {D, De-ξ(iD}} δ(X, X') simplifies to

In principal, to a given order in ξ in the expansion of the exponential, there are
terms where the left-most operator D annihilates the (θ — θ') factor in
U(X) (θ — θ') which would not be present if we first took the limit θ -> θ' and then
acted with the D. However, such terms are precisely cancelled by terms in which the
left-most D acts on the factor ί k ξ ~ ί / 2 ( θ — 0'), which causes the factor
(23 - U(X) (0 - 0')) to be replaced by a factor (d2 - U(X)D) in the expansion of
the exponential to^the given order in ξ. In other words, a term of the form
limθ^ D 01 (- U(X) (θ - θ')) 02 1 (with 01 and 02 operators) is cancelled by
a corresponding term limθ^θ' 01 -(d2 — U(X)D) 02'(Θ — θ') in a given order in
the expansion in ξ.

Appendix B: Proof of (II)

First we need the preliminary results

lim (D + D') K(X, X'; ξ) = DK(X),
X^X'

lim (D - D')K(X, X'\ ξ) = 2K(X) - DK(X),
X->X'

which follow from consideration of the quantity \dX §dXfΦ(X) ((D ± D')
xK(X,X'-9 ξ ) ) δ ( X , X ' ) (with Φ(X) an arbitraryjuperfield) by integration by

parts and use of the identity D δ(X9 X') = — D' δ(X9 X'). In a similar manner,
one finds

lim (3 + d ' ) K ( X , X'; ξ) = d K ( X ) ,
X-+X'

and, using (I),

lim (d - ff)K(X, X'; ξ) = DK(X) - dK(X),

lim (d + d'} (d - d')K(X9 X'; ξ) = dDK(X) - d2K(X) .
X->X'
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The proof of (II) follows from the equation

0 = (A(X) - Δ ( X ' ) ) K ( X , X'', ξ ) , (B.I)

which is proved by integrating against superfields and integrating by parts. Substi-
tuting for A and A,

0 = Γ- (δ + ff) (d - d') + 1 (U(X) + U(X')) (D + D')

+ !(£/(*) - U(X')) (D - D') - ( D f U ( X f ) ) \ K ( X 9 X'; ζ ) .

Taking the limit X -> X' and using the preliminary results, one obtains

Q = Dl-dK + dDK- UK]
from which (II) follows.

Appendix C: Proof of (III)

Identity (III) is the supersymmetric version of the result (2.2) for the ordinary KdV
equation. Again, the absence of a suitable representation for the supersymmetric
heat kernel in terms of eigenfunctions means that the simple proof in the nonsuper-
symmetric case has no analogue and functional methods have to be employed.

Using Eq. (B.I) from Appendix B,

(d + ff)dξK(X, X'; ξ) = - 1(3 + d') (A(X) + Δ ( X ' ) ) K ( X 9 X'; ξ) .

Adding the identity

0 = 1 (d - d') (Δ(X) - Δ ( X ' ) ) K ( X 9 X'; ξ)

which also follows from (B.I), one obtains

(d + ff)dξK(X9 X'; ξ) = ̂ (0, + 02 + 03 + 04 + 05)K(X, X'; ξ ) ,

with
G! = (3 + d')3 ,

02 = - U(X)8D - 3U(X)d'D + 3U(X')dD' + U(X')d'D' ,

03 = - 2(D' U(X')} (d + ff) - (D' V ( X ' ) ) (d - d ' ) ,

04 = - (dU(X))D + (ffU(Xf))Dr ,

o5 = -(d'D'ϋ(xf)).
Rewriting

02 = - (U(X) - U(X')) (d + d') (D + D')

- (ϋ(X) + U(X')) (d + ff) (D - D1)

ϋ(X'))(d - d')(D + D')



Integrability of the Super-KdV Equation 187

and

and using the results of Appendix B, one obtains in the limit X -» X' ,

ddξK(X) = - [d3 + UdD - (DU}d + (dU)D - (dDU)~] K(X)

+ J [- 3173 - (017) D - 2(317)] K(X) ,

which yields the identity (III) upon use of (II).

Appendix D: Proof of (IV)

With \dXK(X) = $dX $dX'δ(X',X)K(X,XΊ ξ), one obtains from (3.2) after
integration by parts

δ$dXK(X)= -ξ$dX$dX'δ(X',X)δU(X)DK(X,X'; ξ)

= -ξ$dXδU(X)K(X),

as required.

Appendix E: Proving {//„,, Hn}PE = 0

One has

{ U(X), Hm}PB = { V(X\ \dX' U(X')}PE -4 ŷ = - 2(2m - 1)!! OAm(X) ,
δU(X )

where use has been made of δHm/δU(X) = — (2n — ί)HAm(X),^-which follows
from (IV). (Using (ΠΓ), this is equivalent to {U(X),Hm}PB =
-(2m+ί)UdAm+1(X))

Then

PB δU(X)

= 2(2m - 1)!! (2n - 1)!! J dXAm(X) OAn(X) .

Using (HI'), integrating by parts and then using (IΓ), one obtains

(2m-W(2n+l)\\ldX(LAm(X))AΛ+ί(X).
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Integrating by parts, using (IF) and integrating by parts again yields

- (2m - 1)!! (2n + 1)!! J dX(dAm(X))An + 1 .

Applying (ΠΓ) and integrating by parts gives

2(2m-3)ll(2n+l)llldXAm-1OAH + 1,

which is {#m-ι,#π + ι}pB. By repeatedly applying this procedure, {Hm,Hn}PB

=^{H0, Hm+n}PB. If we attempt to carry out the above procedure again, we obtain
dA0 in the integrand, which vanishes since A0 = 0, proving the result.
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