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Abstract. Let M be a compact metrizable space, /: M -> M a homeomorphism
satisfying expansiveness and specification, and A: M -> R a function such that

π-l

' ^ K(ε) < oo

whenever n ̂  1 and x9y are (ε, n)-close (i.e. d ( f k x , f k y ) < s for k = 0, . . . , n — 1,
some fixed choice of metric d and expansive constant ε > 0). Under these condi-
tions, Bowen has shown that there is a unique equilibrium state p for A. Assuming
that K(δ) -> 0 when δ -> 0, we show that p is also the unique Gibbs state for A. We
further define quasi-Gibbs states and show that p is the unique /-invariant quasi-
Gibbs state for A.

0. Introduction

The concepts of equilibrium state and of Gibbs state come from the statistical
mechanics of (spatially) infinite systems. States of thermal equilibrium of such
systems can be defined either globally by a variational principle (this gives equilib-
rium states or locally by specifying certain conditional probabilities (this gives
Gibbs states). Under fairly general conditions one can prove that equilibrium states
coincide with translationally invariant Gibbs states (Dobrushin [4, 5], Lanford and
Ruelle [8]). For one-dimensional statistical mechanics (with a natural mixing
condition and short range interactions) Gibbs states are automatically translation-
ally invariant, hence equivalent to equilibrium states; there is in fact one equilib-
rium state (i.e. these systems have no phase transitions).

The invariance under translations for (one-dimensional) statistical mechanics is
a special example of invariance under a homeomorphism / of a compact metriz-
able space M. It is natural to try to extend the theory of equilibrium and Gibbs
states to this more general situation. For equilibrium states, this is relatively easy

* Supported in part by Canada NSERC grant A 9374
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and was done first under the assumption of expansiveness and specification (Ruelle
[9]), then quite generally (Walters [12]).

The extension of the theory of Gibbs states is more difficult, and was first
achieved for Smale homeomorphίsms of spaces with local product structures (gener-
alizing the Axiom A diffeomorphisms of Smale [11]). For the definition of Gibbs
states see Capocaccia [3], Ruelle [10]. The main result of equivalence of Gibbs
states and equilibrium states is due to Haydn [7]. This was later extended by
Baladi [1] to the finitely presented systems of Fried [6].

The present paper establishes the equivalence of equilibrium states and Gibbs
states under the assumption of expansiveness and specification. This assumption is
satisfied by (mixing) Smale homeomorphisms. Interestingly, expansiveness and
specification are topological assumptions, while the definition of Smale homeo-
morphisms involves a metric.

A preliminary version of the present paper by one of us (N.H.) did not have
a proof of the existence of a Gibbs state. Discussion of that problem has led to the
present joint work.

Section 1 reviews some necessary definitions and results of topological dy-
namics. The bulk of the work is in Sect. 2, which contains the main theorem 2.5.

1. Topological Dynamics, Thermodynamic Formalism, and Equilibrium States

Throughout what follows, M is a compact metrizable space, and we choose
arbitrarily a metric d compatible with the topology; /is a homeomorphism of M.

1.1. Expansiveness and Specification. We say that / is expansive with expansive
constant ε > 0 if, for x, y e M,

d(fkx,fky)^ε forallkεZ

implies x = y. By compactness, if δ > 0, one can then choose n such that

implies d(x9 y) ^ δ.
We say that / satisfies specification if for every ε > 0 there is an integer

p = p(ε) ̂  0 such that, given / points x l 9 . . . , xt e M and integers nl9 . . . , nt > 0,
Pi9 9 Pι^p9 there exists z e M such that1

for i = 0, . . . , Π; — 1 and j = 1, . . . , / , where m(0) = 0 and m(j) = n1 +
Pi + ---- + *j + Pj

1.2. Invariant Measures and Entropy. We denote by I the set of /-invariant prob-
ability measures (or /-in variant states) on M. The set I is convex and compact for
the weak ( = vague ) topology of measures. The entropy h(p) of p e I is defined as

1 Usually one assumes that z can be taken periodic: fm(f)z = z, but this will not be needed here
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usual. If ε is an expansive constant, and if j/ = (j/i) is a finite Borel partition of
M into sets of diameter g ε, then

h(p)= lim -,

n
p,

o

where \/n

0 ^ si is the partition generated by stf, f 1j/, . . . , / Π+1J3/, and

(with 0 log 0 = 0 as usual). In particular, when / is expansive, h is upper semi-
continuous on I.

1.3, Pressure and Variational Principle. We denote by Bx(ε) the closed ball of
radius ε centered at x , and we also let

£x(ε, π) = {y εM:d(fky,fkx) ^ ε for k = 0, . . . , n - 1} .

We say that x, y are (ε, n)-close if 3; e J3x(ε, n). We say that the set £ is (ε, n)-separated
if (x, y 6 £ and x Φ 3;) implies y φ Bx(ε, n). Note that if £ is maximal (ε, n)-separated,
then

(J £*(ε, n) = M .
xeE

We introduce also the set Bx(ε, ± n\ and (ε, ± n)-dose pairs, and (ε, ± n)-separated
sets; these are defined as above, but with the interval [0, . . . , n — 1] replaced by
[ - n + 1, . . . , n - 1].

If A: M -> R is continuous, then P(v4) e IR u { + 00} is defined by

i f " " 1 1{P(A)} = lim lim -log< £ exp ^ ,4(/*x): £ is maximal (ε, n)-separated > .
ε^0n-»oo^ lxe£ fc = 0 J

(This means that the set of limits when n -» oo tends to a single point P(A) when
ε -> 0. We use the fact that a maximal (ε, n)-separated set is both (ε, n)-separated and
(ε, rc)-spanning, therefore lim^olimmϊn^^ = limε_^0li

πιsupn^00 by Walter's re-
sults, see [12] or [10].) The function P on #R(M) is called the topological pressure
(or simply pressure); it has various other equivalent definitions. P is either real-
valued or identically +00.

1.4 Theorem (Variational principle [12]).

P(Λ) = sup(Λ(p) + p(A)) .
pel

In particular, P is convex and continuous on #R(M). // p e l and
h(p) + p(A) = P(A), then p is called an equilibrium state for A. When h is finite and
upper semi-continuous (in particular when f is expansive) there is at least one
equilibrium state for each A.

1.5 Proposition. For any A : M -> IR and finite E c= M, we write

Zn(A,E)= "
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We assume that the homeomorphism f is expansive, with expansive constant 2ε, and
that

KA = sup KA(ε9 n) < oo ,
n

where

KA(s, n) = supj "Σ (A(fkx) - A ( f k y ) ) : x and y are (ε, ri)-close > < oo . (1)

Note that KA< oo if A = B — B°f provided B is bounded (not necessarily
continuous).

(a) Ifδ, δ' ^ ε, and if E, E' are maximal (<5, n)- and (δ\ n)-separated sets respec-
tively we have

where Q = Q ( δ , δ f ) is independent ofn. In particular

P(A)=lim -logZn(A,EH),
«->oo ^

where the En are any maximal (ε, n)-separated sets.

(b) If f furthermore satisfies specification and Em,En,Em+n are as above, we have

^ α=e '= Zm(A,Em)Zn(A,En)

where a depends on A, ε but not on m, n. In particular

Qxp(nP(A) -a)^ Zn(A9 En) ^ exp(nP(^) + a) .

Note that we have not assumed that A is continuous. The mild extension on the
variatίonal principle needed to make sense of P(A) is given in Sect. 1.6 below.

We prove (a). Let N be the cardinal of a maximal i<S-separated set. We may
choose q such that

d(fkx,fky) ^δ for k = - q, . . . , n + q - 1

implies that x, y are (%δ'9 rc)-close, and

d(fkxjky) ^2δ for k= - q9. . . 9n + q- I

implies that x, y are (δ, n)-close. Let £* be such that/^Έ* is a maximal (δ, n + 2q)
separated set. If x'e£', choose x*e£* such that/9x',/9x* are (δ, n + 2g)-close.
Then, x', x* are (%δ'9 n)-close, hence x'l— >x* is injective. If x* e £*, choose x e E
such that x*, x are (δ, rc)-close, the map x* i— >x is at most Λf 2g-to-one. [If x*, y*\-+x
and /kx*, /fey* are ^(5-close to the same point of a maximal ^-separated set for
k= - q, . . . , - 1 and k = n, . . . , n + q - 1, then /«**, /V are (2<5, n + 2^f)-
close, hence x*, y* are (δ, n)-close, hence /4x*, /^^* are (δ, n + 2g)-close, hence
x* = y* ] The map X'H->X obtained by composing x't— »x*ι— >x is thus at most
ΛΓ2q-to-one and the pairs (xr, x*), (x*? x) are (ε, n)-close. Therefore

Zn(A9 E'} ^ N2*(exp2KA)Zn(A9 E) .
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i.e., we may take Q(δ, δf) = N2qexp2KA. We have thus limsupπ^00-logZn(yl> E)

^limsupn-.+ oo -logZn(A, E'\ and similarly for liminf. In particular, the limit ε -> 0

may be omitted in the definition of the pressure.
The proof of (b) is of the same sort and left to the reader (see [2] Lemma 2).

1.6. An Extension of the Variational Principle. Given A: M -> 1R we define KA(ε, n)
by (1), and do not assume expansiveness. The space

W = < A: - KA(ε, n) -> 0 when ε ->• 0 and n -> oo

is closed with respect to the uniform norm || || 0; W => #R(M) but W may contain
non-continuous functions. (Note that KA(ε, v) is decreasing in ε and subadditive in
n, therefore the limits ε —> 0, n -> oo can be taken simultaneously in the definition of

Given A e Uf, δ > 0, and n sufficiently large, there is B e #R(M) such that

n tτ=l

Therefore the map(p, A)\-+p(A) extends to Ix^->IR such that p\-*p(A) is
(vaguely) continuous on I. The definition of P(A) extends in a natural manner to
Aei^ and the variational principle then continues to hold. If h is upper semi-
continuous, the set 1A of equilibrium states for a e W is not empty.

2. Gibbs and Quasi-Gibbs States

Throughout this section, the homeomorphism / satisfies expansiveness and speci-
fication with the constants ε and p. (We assume that ε is taken so small that 4ε is
again an expansive constant.)

For any function A: M -> 1R we write as earlier

KA = supKA(n,έ)
n

and define

ΊT = {A: KA < 00}

Note that K is a seminorm on "Γ and that i^ is a Banach space for the norm
|| || o + K. It is easily seen that different choices of expansive constant ε give
equivalent norms. [Bowen [2] was the first to consider the space i^ n C(M) in this
setting.] Write also

VA = mm \\ A + a \\ 0 - - sup A(x) - -wίA(x) ,
αelR ^ x * x

then the quotient f^/R by constant functions is a Banach space for the norm
K+ V.
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We say that two points x, yεM are conjugate if lim^.^ d(fkx,fky) = 0.
Conjugacy is an equivalence relation, and the points conjugate to a given x are
dense in M. We say that x, y are (ε, ± n)-conjugate if

The points x, y are conjugate if and only if they are (ε, + n)-conjugate for some n. If
N is the cardinal of a maximal ^ε-separated set, there are at most N2n~1 points
(ε, ±rc)-conjugate to a given x.

A (continuous ) map φ from C7 c M to M is conjugating if, for some n and all
z E [/, the points z, φz are (ε, ± w)-conjugate. If (17, φ), ([/', φ') are conjugating
maps, with x e (7 n U ' and φx = φ'x9 then there is a neighborhood Kof x such that
φ\U r\U' n F = <p'| 17 n 17' n F, and this restriction is a homeomorphism
(Capocaccia [3]). We shall restrict our attention to conjugating homeomorphisms
(U, φ) with U compact.

In what follows we shall consider sums of the form

Σ LAfx-Af*y],

where x, j; are conjugate, A is a Borel function e i^, and α, b may be infinite. Our
assumptions do not guarantee the convergence of the sum if a or b is infinite (unless
we take Hmδ-*oSupnKA(δ, n) = 0 as in the abstract).

We therefore assume that a value has been attributed to sums with a or
b infinite, such that the sum is a Borel function of x, y and

Σ [•••]+ Σ [•••]= Σ [•••]»
k=a k = b+l k=a

b b b

Σ [Afkx — Afky~] + X \_Afky — Afkz] = ]Γ

6+1 6

fe=α+l k=a

If d(fkx, fky) ^ ε for all fc e [α, fo] we also assume

- Afy]

[We are indebted to Oscar Lanford for pointing out the need of the above
assumptions in the study of Gibbs states. For quasi-Gibbs states they are unneces-
sary, and the assumption that A is Borel is also not needed.]

A probability measure μ on M is called a Gibbs state for Borel A e i^ if, for
every conjugating homeomorphism (V,φ\ the measure φ ( μ \ U ) is absolutely
continuous with respect to μ\φU, with Radon-Nikodym derivative

We say that μ is a quasi-Gibbs state if there is a constant C such that, for all (17, φ),
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2.1 Proposition. Ifμ is a quasi-Gίbbs state for Aei^, one can choose c > 0 such that
for all x e M, n ̂  0,

exp Σ A(fkx)-(2n-l)P(A)-c^μ(Bx(ε,±n))
\k\<n J

A ( f k x ) - (2n - 1}P(A] + c] ,
\k\<n J

where P(A) denotes the pressure. The constant c depends on ε and A; it depends on
μ only through the constant C o/(3).

/. Lower bound. Choose maximal (ε, ± n)- and (ε, ±(n + p))-separated sets £„,
En+p in M. (We may take x e En c En+p.) Fix j; eEn.

Consider any (ε, ±(n + p))-conjugate pair (u9v) with ueBx(ε, ±n\ VE
By(ε, ± n). The set ̂ (ε, ± n) (respectively By(ε, ± n)) is covered by at most N2p sets
BX'(ε, ±(n + p)) with x' e En+p (respectively By.(ε, ±(n + p)) with y' e En+p).

- n - p - n
x e E n

There are therefore at most N4p conjugating homeomorphisms (C7ί5 ψi) such that
all pairs (u9v) may be written (u,φiu). [The set {(u9v): u e Bx>(ε, ±(n + p))
nBx(ε, ±n)9ve By>(ε, ± (n + p)) n By(ε, ± n), u and v are (ε, ±(n + p)) conjugate}
is closed in M x M, hence compact, and (by expansiveness) is the graph of a map.
Therefore the domain Ui of this map is compact and the map φt is continuous.] We
have thus

ε, + n)) ,

and (3) implies that

μι<«

with K = KA, V= VA. Therefore

\k\<n

X lA(fty)-A(fxnμ(B,(ε,±n)).
ι* ι<»
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Summing over y e EM, and using Proposition 1.5(b) we obtain

1 ^ ec ( exp Γ(2n - ί)P(A) - Σ A(fk^\ } ' M5χ(ε, ± "))
\ L |fc|<n J/

with ec = Ce4K + 4pVN4pea; this is the desired lower bound.

//. Upper Bound. Here we choose maximal (2ε, ± π)- and (β, ±(n + p))-separated
sets £*, EH+P (with x e£* c EM+jp). Fixing y e E * we consider as before the
(ε, ± (n + p))-conjugate pairs (M, t;) with M e Bx(ε, ±n\ ve By(ε, ± n). There are
again at most N4p conjugating homeomorphisms (Ui9 (pi) such that all pairs (u, v)
may be written (M, φt u). We have thus

Therefore

μ(Bx(ε,±n)) exp

^ Ce4K + 4pVN4p exp Σ
V | f c | < «

Summing over }^e£*, and using Proposition 1.5(b) and the disjointness of the
By(ε, ± n\ we obtain

μ(Bx(ε, ± n))exp[(2n - 1)P(X)] ^ ec exp Σ A(J*x)
\k\<n

which is the desired upper bound.

2.2 Corollary. If μ, v are quasi-Gibbs states for Aei^, then the measures μ, v are
equivalent, and the Radon-Nikodym derivatives dμ/dv, dv/dμ are essentially bounded.

A measure vn on M is defined by

where

Φn(*)= m / ^ u ί μ(dy)Φ(y)
μ(Bx(ε, ±n))Bχ(ε^±n]

for all Φe^(M). Note that μ(Bx(ε, ±n)) > 0 by Proposition 2.1, and that
e, ±w) -> 0 when n -> oo (by expansiveness). Therefore when n -> oo, we



Equivalence of Gibbs and Equilibrium States for Homeomorphisms 163

have Φπ -> Φ (uniformly), and vn -> v (vaguely). We have then, if Φ ̂  0,

J
By(ε, ±n)

\
1

Γ<n J

— Ί
s '± M ) exp Σ A(fky) - (2n - !)p(^) - c

L | k | < n J

so that vπ ^ eκ + 2cμ (for simplicity we have used the same constant c for μ and v).
When n -» oo, vπ tends vaguely to v, hence v ̂  eκ + 2cμ. Similarly one shows that

2.3 Remark. Let (U, φ) be an (ε, ± n)-conjugating homeomorphism, and suppose
that x e U, y = φx, U c Bx(ε, ±n\ φU c 5y(ε, ±n). By (3) there is a constant C',
independent of n and (17, φ), such that

Conversely, if this inequality is satisfied for all n and all (C7, φ) as above, then (3)
holds and μ is a quasi-Gibbs state.

2.4 Proposition. For every A e i^ there exists a quasi-Gibbs state μ.

We assume that 8ε is an expansive constant. For every integer m > 0, let Em be
a maximal (ε, ± m)-separated set, and define

,£m)]~1 Σ [~eχp Σ

where (5X is the unit mass at x, and Z±m(A9 Em) = Z2m-ι(A,f~m+1Em). We shall
show that if μ is a limit of the sequence (μm\ then (3) holds.

We may restrict our attention (cf. the proof of Proposition 2.1) to the case where
the graph of (U, φ) is the set of all (x, y) such that

,xk)^ε if | f c | < n ,

,yk)ίε if \k\<n,

d(fkx,fky)^ε i f I f c l ^ n ,
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for some choice of n and (Xk)\k\<n> ( j>fc) | fc |<« We s^a^ ta^e neighborhoods
Jft of 17, JV* of φU, and construct maps φ^m : Jf{ n Em -> N* n Em such that

for some arbitrary choice of X e 17, 7 = φAΓ.
We let Λ> = U*eιA(ε> ±*\ Jf* = (JyeφuBy(2ε, ±ί) with n<ί9ί + p<m.

lϊue Jfj n Em, choose x e C7 n Bu(ε, ± /) and let y = φx. We may then by speci-
fication choose w e By(ε, ± {} such that

Therefore there is v e Em n By(2ε, +/) such that

d(fku,fkυ) ^2ε if ^ + p ^ \k\ < m .

We define φ^mu = v. The possible choices of u satisfy conditions

where the xf(fc) are taken in a maximal ^ε-separated subset (xf) of M.
For a given u, we have the following restrictions on u:

if n^\

d(fkujkv) ^2ε if / + p ̂  | m.

If the same conditions are satisfied by u' e Em then expansiveness implies
d(fku,fku') ^ ε if | /c | ^ m — f̂ for some suitable q. If N is the cardinality of (xf),
there are at most N2p choices for the xf(fc), and the mapψvm is thus at most

finally

with X e U, YE φU as announced. If μ is a vague limit of μm for m -> oo we find
therefore, taking first m -> oo then / ̂  oo and using Remark 2.3, that (3) holds. We
have thus shown that μ is a quasi-Gibbs state.

2.5 Theorem. // (M, /) satisfies expansiveness and specification, and Aei^,
A Borel, there is a unique Gibbs state p for A, and p is also the unique f-inυariant
quasi-Gibbs state for A, and the unique equilibrium state for A.

First we shall construct a Gibbs state p, and notice that this is an invariant
quasi-Gibbs state. We shall then see that an /-invariant quasi-Gibbs state is
necessarily an equilibrium state, and then use Bowen's result [2] that there is only
one equilibrium state.
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We know by Proposition 2.4 that there exists a quasi-Gibbs state μ. For each
conjugating homeomorphism (17, φ). Let Fφ: φU -> 1R be defined by

" k = - o o

Define μ to be the smallest real measure such that, for all (17, φ),

Then, since C ~ 1 ̂  F^ ^ C, μ is a bounded positive measure.
If (U',φr) is a conjugating homeomorphism, then φ'μ\φ'U' is the smallest

measure such that for all (17, φ) we have

φ'μ\φ'(U'nφU)^(Fφ<>φ'-l) φ'μ\φ'(U'nφU)

= J^ exp- Σ μo/ f co(φΌφ)-ι _4o/* 0 ( p '- i )
|_ dμ ^=-00 J

= Γexp
L fe=-oo

Therefore φ'μ\φ'Uf is the smallest of the measures μ* on φ'177 such that, for all

nφU) . (4)
fc=-oo

By definition of μ, the condition that a measure μ* on φ'U' satisfies (4) is
equivalent to

(5)
k= -oo J

(one implication because μ — Fφμ ^ 0 on φU9 the other because μ is smallest with
this property). Since φ'μ\φU is the smallest μ* satisfying (5) we have

00

k= -00

Therefore the measure p = μ,\\μ\\ is a Gibbs state.2

For any Gibbs state p, fp is also a Gibbs state. If fp Φ p, one obtains mutually
singular Gibbs states pl9 p2 by normalizing \fp — p \ ± ( f ρ — p), but these are also
quasi-Gibbs states, contradicting Corollary 2.2. Therefore p is an /-invariant quasi-
Gibbs state. Note that such a state is necessarily ergodic, otherwise one could
decompose p into mutually singular quasi-Gibbs states

We now have to show that any /-invariant quasi-Gibbs state p is an equilib-
rium state. For this it suffices (by the variational principle) to prove that

h(p) + p(A) £ P(A) .

This construction was explained to one of us (D.R.) by D. Sullivan
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Choose a a maximal ^ε-separated set E and a Borel partition (^x)xeE of M such
that j/x c Bx(^ε) for x e E. The entropy of p is

n-»oo

where «s/ (M) consists of the sets

k
j t f ξ = {u E M : fku E £#ξ(k) for | f e | < n}

indexed by functions ξ: {k: \k\ < n} -> E. If jtfξ is not empty, say Aξ3y(ξ), then
.fl/ξ c: J8y(0(ε, ±n)9 hence

- (2n - ί)P(A) + c .
| k | < n J

Therefore

h(p) + p(A) ̂  lim

- ̂  - Σ
Λ | < w

(2n - ί)P(A) - c]

For the proof that there is a unique equilibrium state, see Bowen [2] Lemma 8;
Bo wen's proof is based on the fact that we know an ergodic equilibrium state p, and
we have good estimates for p(Bx(ε, ± n}\ it does not use the continuity of A, but
only A e Y .
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