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Abstract. We relate the determinants of differential and difference operators to the
boundary values of solutions of the operators. Previous proofs of related results
have involved considering one-parameter families of such operators, showing the
desired quantities are equal up to a constant, and then calculating the constant. We
take a more direct approach. For a fixed operator, we prove immediately that the
two sides of our formulas are equal by using the following simple observation
(Proposition 1.3): Let UeSU(n,C). Write U in block form

i w 1 2

Vw2i w 2 2

where w n and u22 are square matrices. Then

= detw22

0. Introduction

Motivated by questions in quantum field theory, there has been much recent
interest in the problem of calculating the determinant of differential operators (see,
for example, [Ra] chapter III). Suppose L is a positive elliptic differential operator
acting on sections of a vector bundle over a compact manifold. Then L has
a discrete spectrum

λx g λ2 ^ -> co .

Various methods have been used to make sense of

Perhaps the most common method is the zeta-function regularization of Ray and
Singer [R-S], in which one defines log det L by analytically continuing the function
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from Re (5) large to 5 = 0. There are few general methods for evaluating such
determinants. In [ F o l ] we investigated one method of studying operators on
manifolds with boundary, based on a reduction of calculations to the boundary
ofM.

A precursor to this general theory was the following example. Consider the
operators

acting on functions / on the interval [0,1] which satisfy /(0) = / ( l ) = 0. The
operator L^L^1 is of the form (Identity) + T where T is trace class, and hence
LγL2

γ has a well-defined determinant (that is, without any regularization, see
[G-K]). In fact ([D-D], [L-S])

(0.1)

where, for i = 1,2, y^x) is the unique solution to

Ltyt = 0

satisfying

Note that y^l) "lives" on the boundary of [0, 1].
Once we know that, defining det Lt via zeta-function regularization,

2

([Fol] Corollary 1.2) we can then reformulate (0.1) as

= cy(l),
0}

where y is the unique solution of

l-^2- + R(x))y(x) = O,

and c is a constant independent of R(x).

Another example of the general theory in [Fol], also considered in [B-F-K], is

the example of the above operator L = — —^ + R(x) acting on functions on S1.

This problem can be identified with L acting on functions/on [0, 1] satisfying

We then have
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where y(x) and z(x) satisfy

Ly = Lz = 0 ,

y(0) = 0 /(0) = 1 ,

z(0) = 1 z'(0) = 0 ,

and c is independent of R. (The constant c is studied in [B-F-K]).
What these formulae have in common is that the determinant of L, an operator

acting on an oo dimensional space of functions is equated with the determinant of
a finite dimensional (1 x 1 or 2 x 2) matrix whose entries are constructed from the
boundary values of functions in the kernel of L. This may appear somewhat
mysterious. The existing proofs offer little insight.

One type of proof, seen in [D-D] and [B-F-K], involves varying the operator
analytically in a parameter z and observing that both sides of (0.1) are analytic in
z with the same zeros. Moreover, they have exponential growth order less than 1.
Thus, their ratio must be constant. This method exhibits a few disadvantages. First,
although it is clear that the two sides of (0.1) are zero at the same values of z, the
proof that the zeros have the same order is surprisingly difficult (although a some-
what simpler topological proof is offered in [Fo2] Lemma 1.2). Second, the method
gives no information about the constant of proportionality.

Another method, seen in [L-S] and [Fol] , involves proving that the two sides
of (0.1) have the same logarithmic derivative. This involves using detailed informa-
tion about the resolvents of the differential operators. This method has the
advantage of being better suited to generalization ([Fol]), but again gives no
information about the constant of proportionality.

The goal of this paper is to "demystify" these results by presenting greatly
simplified proofs. The simplifications occur in two ways. First, we "generalize" the
above results to operators on finite dimensional spaces (formula (0.1) is then
derived by replacing the differential operators Lt by suitable finite dimensional
approximations). Second, the proof uses no analysis, neither analytic functions nor
resolvents. Instead, we reduce the theorem to the following simple fact.

Proposition 1.3. Let UeSU(n, C). Write U in block form

γ u12

\u2ί u22

where w n and u22 are square matrices. Then

det M Π = detw22

Note that this proposition does indeed relate the determinant of an operator on
one space to the determinant of an operator on another space. Using Proposition
1.3 we prove directly that the two sides of (0.1) are equal. That is, unlike earlier
proofs, we do not vary the two sides at all. This new proof has the benefit of yielding
immediately, with no extra effort, the precise value of the constant of propor-
tionality.

Our general setting is the following. Suppose V is a finite dimensional vector
space equipped with an inner product, and
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is a linear map. For A cz V satisfying

dim A = dim V — dim (kernel L)

we consider

LA = πALπA:A^A ,

where πA denotes orthogonal projection onto A. Our main object of study is
detL^. In this vein, we factor LA into simpler operators. Suppose C is any space
transverse to kernel L. Then we can write

Pc L πA

LA = A • C > Image(L) • A ,

where p£ is the projection onto C determined by the decomposition

F = k e r n e l L + C . (0.2)

Thus

detLA = (detp£: A -> C)(detL: C -» Image(L))(detπΛ: Image(L) -* A) .

The right-hand side is expressed in terms of determinants of operators taking one
space to another. To make sense of these determinants we must choose volume
forms for these spaces. (This is explained more precisely in Sect. 1). The term

det πA: Image (L) -• A (0.3)

is simple to compute. In addition, we can choose C so that

detL:C->Image(L) (0.4)

can be identified. We then apply Proposition 1.3 to prove

(det A - ^ C) = (det C 1 - ^ kernel L - ^ A1), (0.5)

where p£ denotes the projection onto kernel L induced by (0.2). Combining
(0.3), (0.4) and (0.5), evaluating detZ^ is reduced to calculating the determinant
of a map which factors through kernel L, a space which in our examples has
dimension 1 or 2.

Most of the results in the above mentioned papers follow immediately from this
formula. To indicate how this works, in Sect. 2 we present some examples. We
begin in part I with the simple application of the Laplacian L on a graph G. That is

V= {/: (Nodes of G)-»C}

and

L: V-* V.

Furthermore, L is hermitian and the kernel of L consists of the constant functions.
Since

dim kernel L = 1
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the formula (0.5) is particularly easy to apply. A beautiful theorem of Kirchhoff
[Ki] (see also [B-D], [Fo2] and [Fr]) states

detL ( k e r n e i L ) J = Π λ\= # (Nodes of G)# (Spanning Trees in G) .
L λespec(L) J

(0.6)
L λespec(L) J

λ + 0

If

M ςiN = {Nodes of G}

is any subset, we define

Σ/(») = oj
neM J

(so that AN = (kernel L) 1 ). Then (0.5) easily generalizes (0.6) to yield

detZ^M = # M #(Spanning Trees in G) .

In part II we consider general finite difference operators on an interval. As an
example, let

£ - - — R(x)
dx2

Divide the interval [0, 1] into d equal segments and approximate L by the standard
finite difference approximation

L= - V2 + R: V^ V,

where

and V denotes the finite difference approximation for d/dx. We then restrict L to
various subspaces of V (corresponding to boundary conditions). Three special
cases of the general boundary conditions considered in this section are:

Dirichlet Boundary conditions = Aa0 = {fe V\f(0) = / ( l ) = 0} ,

Neumann Boundary Conditions = Ao = j / e K|/(0) = / Q ) j ( ^ - p ) =/( 1)j »

Periodic Boundary Conditions = B1 = \fe V\f(0) =f(^-J^)j(l) =/( 1 ) |

Formula (0.5) yields

Theorem 2.2. d e t L ^ = <i2d~x jμ(l)9 where y is the unique element in kernelL satisfy-
ing

2̂d-3 fd-\\

Corollary 2.5. detLy4o = — - — Vzi 1, where ze kernel L satisfies

z(0) = 1, Vz(0) = 0 .
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Theorem 2.6.

detLBι =
_ d 2

det
1 0

0 1

d-\

F z l ^ - 1 ] Vy

Note that in each case the left-hand side is the determinant of an operator on
a d — 1 dimensional space, since

dim A^ = o = dim 2?! = dim (kernel L)1 = d — 1 .

As our approximations become finer, that is as d -» oo, this dimension goes to oo.
On the other hand, the right-hand side does not become more complicated as
d -> oo. This is due to the fact that

dim ,4^ = i" = dim kernel L = 2

does not grow with d. Note also that there are no unknown constants.
We investigate the effect of adding a first order term to the operator L in Sect.

2(11), observation 4.
In Sect. 3 we provide the analysis which allows us to deduce formula (0.1) for

differential operators from the corresponding formula for finite difference oper-
ators. Unlike Sects. 1 and 2, this section is very technical. The reader willing to
believe some technical results may skip this section without detriment.

The results in this paper may have relevance for the attempts to study quantum
field theory via finite dimensional approximations.

1. The Main Theorem

Let Fbe a finite dimensional vector space defined over R or C, with a (Euclidean or
Hermitian, respectively) inner product, which we denote by <, >. Let

L: V->V

be any hermitian map (this restriction will be removed later). Then for any
subspace

we define

AcV

= πALπA:A-*A ,

where πA denotes the orthogonal projection onto A. Our goal is to study
As an example, let K denote the kernel of L, and KL the orthogonal com-

plement. Then

λespec(L)
A φ O

where spec(L) denotes the set of eigenvalues of L taken with their appropriate
multiplicity.
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In fact, for any A, LA factors through Lκ±\

Thus, it follows that if dim A = dir

- — - — = detπAπκ±m A -• K1 —• A . (1.1)
det Lκ±

Note that the right-hand side depends only on the metric and the spaces A and K1.
It is convenient at this point to be able to speak of the determinant of a map

between two different spaces. Suppose X and Y are two spaces of the same
dimension, each equipped with an inner product. Then, for any linear map

H:X-> Y

we cannot define det //, but we set

I det/f I = {detH*H:X^>X)* 9 (1.2)

where H* denotes the adjoint of H with respect to the inner products. The
following 2 properties are immediate:

(i) |detff | = | d e t J Ϊ * | , (1.3)

(ii) Suppose X, Y, Z are 3 spaces of the same dimension, each equipped with an
inner product. Then, for any maps

HX:X-+Y

H2: Y->Z

we have

\dQtH2oH1\ = Idet/filldettfil . (1.4)

We note that for any two subspaces X and Y of V, the adjoint of the map

πγ:X-+ Y

is

πx:Y-+X . (1.5)

Thus, if

dim X = dim Y

we have

| d e t π y : X - > Y\ = ( d e t π x π y : X -+ Y^X)± . (1.6)

Together, (1.1) and (1.6) yield

Theorem 1.1. //

dimv4 = dimK1

then

detZ^
: K1 ^ A\2 . (1.7)
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In examples, K = kernel(L) tends to be much smaller than K1. Thus, our next
goal is to restate the right-hand side of (1.7) in terms of K, rather than K1.

Before proceeding, for future reference it will be useful to broaden our perspec-
tive. Suppose

H:X-+ Y

is linear, where X and Y are two spaces of the same dimension, each equipped with
an inner product. Rather than dealing only with

| d e t # | e R + ,

if we have volume forms for X and Y we can define a value for

That is, suppose

= yχ

det

Λ * '

Λ ' '

HeC.

• A yna

An

Λn

X,

Y (1.8)

(n = dimX = dim Y) are unit length volume forms (for example, if {xj and {j J
are orthonormal bases). Then we can define det H with respect to 3C and ®J by

Hxx A Λ Hxn = (detH)W . (1.9)

The forms 3C and <& are determined up to multiplication by complex numbers of
norm 1. Varying our choice of ΘC and <& may vary the phase of det H (although (1.9)
gives a well-defined value for | det if | which, as we will see below, agrees with our
previous definition). Defining all determinants with respect to fixed volume forms
9C and <%f we have the following refinements of (1.3) and (1.4).

(i) d e t # = d e t # * . (1.10)

(Note that this implies that the definition of detiί is compatible with our
previous definition (1.2) of |detiί |).

Proof. If SC and <& have unit length, then 3C and <& are of the form (1.8) for some
orthonormal bases {xj and {yj. Define a n n x n matrix Jf by

Then, it follows immediately from (1.9) that

Furthermore

<H*yi9 xj> =

so that

= detJf* = d e t ^ = det// . D

(ii) Suppose X, Y and Z are three spaces of the same dimension with volume
forms $£, ®J and JΓ, respectively. If

Hi.X^Y, H2:Y->Z
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are linear, then, defining all determinants with respect to 9C9 ®J and 2£9 we have

H1 = d e t f f 2 d e t # 1 .

The main tool in all of our future work is the following lemma, which will
enable us to relate the determinants of operators between different pairs of spaces.

Lemma 1.2. Let

be two orthogonal decompositions satisfying

dim X = dim Y .

Suppose further that X, X1, Y and Y1 are equipped with unit length volume forms 3C9

%L, ®J and (W1, respectively, which satisfy

ΘC A %L = ty A®/1 . (1.11)

Then, defining all determinants with respect to $£> 2£L, ®f and (WL

d e t π y : X ^ 7 = d e t π z χ : Y1 -• XL .

(From (1.5) and (1.10), the right-hand side is equal to

Z 1 - ^ Y1) .

We will reduce this lemma to a statement about special unitary matrices.
Let

{ χ i , . . . , Xfc}, {xi,..., x/1}, { j i , . . •, yk}, {yi,..., yt}

be orthonormal bases of X, X1, Y and Y1, respectively. Then

{ x ! , . . . , χ k , χ f , . . . 9 χ i ~ } 9 { y l 9 . . 9 y k , y i , . , y ί - } (1.12)

are orthonormal bases of V. Let U denote the matrix corresponding to the change
of basis

That is

< V Λ) > 1 ^. Ί ^ C u Ic —I- 1 ' < C 7 ' ^ If -I

Xxt-k, yf-k) k+l^Uj^k + l.

Then, from (1.12), U is unitary. From (1.11), det U = 1, so that

Write U in the block form

" 2 1
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where

« 2 1 = (Uij)i ^k+l,j^k U22 = (Uij)k + 1 ^ i,j ^ k + /

Then

det πγ: X -» 7 = det Wi x

detπyi: X 1 -> 7 1 = detw2 2 .

Thus, the lemma follows from the following proposition

Proposition 1.3. Let UeSU{n, C) be expressed in block form

u =
so that M U and u22 are square matrices. Then

= detw2 2

Proof Since UeSU(n,C)we have

( V (U4)
u2ί u22J\uf2 ui2) \0 1/ V }

Thus, using the second column of (1.14), we find

l "12 V l W*Λ = /Wll

\«21 "22 A 0 W*2/ \"21

Taking determinants yields

detwf2 = detun

as desired. D

Substituting Lemma 1.2 into Theorem 1.1 yields

Corollary 1.4. (i) //

dim ,4 = di

Then

(ϋ) //

dim A = άimB = άimK1

and

then
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where

(This is a matrix version of Theorem 1 o/[Fol].)

The value of formula (1.15) largely rests on our ability to choose a space B for
which we can calculate detLβ. In what follows, it will help us greatly to be able to
consider slightly more general operators for our denominator.

From this point on, we will no longer assume that

L: V-+ V

is hermitian. Let C c K b e any linear subspace such that

dim C = dim V - ά\m{K = kernel(L)) (1.16)

and

C n K = {0}. (1.17)

Then we can write

F = C + K, (1.18)

although this decomposition is not necessarily orthogonal. Let

denote the projection onto C induced by (1.18). The symbol π will be reserved for
orthogonal projections, so that, for example, for any space A

Now, for any veV

for some k e K, so that

π

v =

Lv

A — PA •

-- Pc(v) +

= Lpξ{υ)

This implies that for every A satisfying

LA factors through Lpc.

L

dim A =

Namely

dimF-

k

dimK (1.19)

(where Im(L) = Image (L)). Thus

detL^ = (detp£: A -> C)(detL: C -• Im(L))(detπ^: Im(L) -+ A) . (1.20)

Our last simplification is to note that pc factors through K1. Namely



496 R. Forman

so that

£: A-+C) = (detπκ±:A -> ̂ 1 ) ( d e t ^ : K1 -> C) . (1.21)

From Lemma 1.2, with appropriately chosen volume forms

det πκ± :A-*K1 = det πA±: K -» A1 . (1.22)

Moreover

so that

d e t ^ : X 1 - ^ C = (detπ κ i :C^K- L )- 1 = (detπ<^: K -+ C 1 ) " 1 (1.23)

by Corollary 1.4. Now, using that

we find that (1.23) is equal to

d e t p ^ C 1 ^ ^ . (1.24)

Combining (1.21), (1.22) and (1.24) we see that

det pi: A -> C = det CL -?L> K — ^ A1 .

Substituting into (1.20) we find

Theorem 1.5. Let C be any linear subspace of V satisfying (1.16) and (1.17) and A any
subspace satisfying (1.19). Then, with respect to appropriate volume forms on A, AL,
C,CL and Im(L) we have

άetLA = (det C 1 — K —U A)(detL: C -> Im(L))(detπ^: Im(L)—U A) .

The significance of Theorem 1.5 is demonstrated in Sect. 2(11), in which, for
a large class of finite difference operators L, we find a space C (in the examples
C = Cauchy data) such that

detL: C-»Im(L)

can be readily calculated. The space Im(L) is easily identifiable and hence

can be calculated. Thus, Theorem 1.5 relates detZ^ to det %ALP<k'> C1 -• A1. This
has the primary advantage that dim A1 = dimC1 is much smaller than dim A
Moreover, we identify π^ip^: CL -> A1 with a classical analytic operator.

2. Applications

/. Laplacians on Graphs. Let G be a connected graph consisting of a finite set of
nodes N and a finite set of edges E. We allow multiple edges between vertices. Let
V = N * be the space of maps

f:N-+C.
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Define a taplacian

L: V^ V

by setting, for /e F, n e N

(Lf)(n) = d{n)f(n) - £ f(e)9 (2.1)
eeE(n)

where E(ή) is the set of edges attached to n,

d(n)= φE(n)

and, for eeE(n\ e denotes the other endpoint of e.
There is a canonical basis of Vgiven by {fn}neN, where, for n,meN

l if m = n

θ if m + n .

We define an inner product <, > on Fby declaring {/„} to be an orthonormal basis.
The Laplacian L is hermitian with respect to <, >.

It can be seen directly from (2.1) that the kernel of L is 1-dimensional, consisting
of the constant functions.

The operator L plays a crucial role in electrical network theory. It is in this
context that Krichhoff proved his beautiful theorem [Ki] (see also [B-D, Fr, and
Fo3]) that

detLjcJ = Y\ λ \= #N- #{maximal trees in G} ,
L λespec(L) J

where a tree is a subgraph of G containing no cycles.
For any subset M ^ N we define a space AM c V by

Σ /(«) = o

(2.2)

meM

Then, if M = N we have AM = K1, where K = kernel(L). If M = {n} then

ΛM = {feV\f(n) = 0}.

If G represents an electrical circuit, then AM corresponds to the possible potentials
on the vertices if {n} is grounded.

Applying Corollary 1.4 we learn

Theorem 2.1. For any M c N

detL^M = # M # {maximal trees in G} .

Proo/ From Corollary 1.4 and (2.2)

d e t L ^ = ΦN #{maximal trees in G} |detπ^M: K -> ̂ | 2 . (2.3)

An orthonormal basis for K is given by fκ where

f^ f
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An orthonormal basis for AM is given by fM where

0 nφM

fu(n) = \

Thus

so that

Substituting (2.4) into (2.3) yields Theorem 2.1. D

//. Boundary Value Problems on an Interval We approximate the unit interval by
d + 1 nodes

0 — TΪQ n± 712 ftd—i ftd — 1 >

where nt = ί/d. Let

]V = {n0,. . ., nd} .

We approximate C r valued functions on the interval by

V= AT* = {f:N-*Cr} .

Let L be a linear operator on K of the form
b

Σ cAι)f(ni+j) i f a^i^d-b

(Lf)(nt) = (2.5)

0 i f i < α or i > i - ί )

where a and ft are non-negative integers, not both zero, and each Cj(ί) is an r x r
matrix. L is a finite difference approximation of a differential operator of order
a + b. We require L to be elliptic. This is reflected in the condition

for all a ^ ί ^ d — b. It follows directly from the definition of L that

dim(K = kernel L) = r(a + b) .

In particular, fe K is completely determined by

/(no),/(ni),.

For example,
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implies

f(na+b)=-ίcb(a)r1 Σ cj(a)f(na+j) .
j=~a

The other values of/are determined inductively.
We define a space C a V by

C = { f e V \ f ( n i ) = 0 i<a + b ) .

Then

dim C = r{d + 1 - (α + b)) = dimK1

and

Thus

V=K + C

and we have a corresponding projection

PI .V^C.

Let A be any linear subspace of V with

dim,4 = r(d+l-{a + b)) .

Then, applying Theorem 1.5 we have, with respect to appropriately chosen volume
forms

det LA = (detπ^ip^: C1 -+ ̂ -L)(detL: C -• Image(L))(detπ^: Image(L) -^ A) .

Our goal is to identify the determinants on the right-hand side. We first note that

Image(L) = {/e V\f(ni) = 0 if i < a or i > d - b} .

Thus, once A is given

det π,4: Image(L) -• A

can be explicitly calculated.

Let {el9...9er} denote the standard basis of Cr. Define a basis
{fi,j}i = o>...,dj=ι,...,r of F b y setting for nkeN

ej if i = k

We define volume forms Y, <£ and ^ , for K, Image (L) and C, respectively, by

Λ • • • Λ

= f λ/-.«) Λ (λ/-+!,
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Expressing

L:C ->Image(L)

as a matrix with respect to the above bases, L is a (block) lower triangle matrix

1 cb(a)
cb-i(a+ 1)

cb-2(a + 2)

\ 0

0

cb(a + 1)

cb-Λa + 2)

0 . . .
0 . . .

cb(a + 2 ) . .

0

0

0

cJd —

\

J
This follows by inverting (2.5) to find

min {d — b, k + a} r

L(fk,ι)= Σ Σ <Ck-meι,ejyf
i = max{α, k — b) j=l

Thus, with respect to the volume forms 5£ and #

det(L: C -• Image(L)) = \\ det cb(ί).
i = α

Lastly, we consider the operator

We note that

C1 =

and

is the solution of the initial value problem for the finite difference operator L.
Namely, for fe C1

pCκ(f)=feK,

where fe K is the unique element in the kernel of L such that

f(nί)=f(ni) ϊor i<a + b.

Thus

is the standard identification of an element in the kernel of L with its initial
conditions.

A Special Case: HilVs Operator. We now specialize to the case of finite difference
approximations to Hill's operator:

L = - - ^ + R(x): C°°([0,1], C ) -> C°°([0,1], Cr),
dX

where R is a continuous one-parameter family of r x r matrices. Fiίing d, the
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number of nodes, we place the node n; at the point i/d and approximate the
operators d/dx and d2/dx2 by

v .v^v,
V2: V^V,

where

= d2lf(ni+ι)-2f(tιi)+f(ni-1n.

Set

Then our finite approximation to L is

L= - V2 + R: F-> V.

That is, for feV,

J 2 / ( ^ -i) + L2d2 + R(nt)mni) ~ d2f(ni + 1) if 0 < i < d
(Lf)(nd = . .

0 if i = 0 or i = d

or, in the notation of (2.5), a = b = 1, and for 0 < ί < d,

( -d2 if j = ± 1
c;(i) = J Id2 + R(ni) j = 0

[ 0 j Φ - 1,0, 1 .
In this case

Image(L) = {/e K|/(n0) =/(nd) = 0} ,

and

detL: C^Image(L) = f] detc^z) = Π (- d2)r = ( - rf2r(d-1} . (2.6)

We now consider different "boundary conditions" A.
i) Dirichlet Boundary Conditions. Let

A^ = Image(L) = {f\f(n0) =f(nd) = 0} .

This is the so-called Dirichlet boundary condition. (The notation A^ is chosen to
be consistent with the notation of part (ii).) Then

is the identity, so

(detπ i4oo:Image(L)->^00)=
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as long as we take as our volume form $t«> on A^ the same form ϊ£ that we defined
for Image(L). Thus, from Theorem 1.5 and (2.6),

= ( - ^ ' - " ( d e t π ^ p S : C 1 - Λi) . (2.7)

Now, for simplicity, we set r = 1. Define a basis {/;},- = o,.. .,</ of F by setting

Our volume forms ^ if, s/^, and # of F, Image(L), A^ and C, respectively, reduce
to

= if = Λ /ι.

Let

be a volume form for C1, and

< = ( - i ) d " 7 o Λ / d

a volume form for A^.

The sign is chosen so that

The map

takes/oeC to

(M"o))/o + (*o(^))Λ =/o + (ko(nd))fd ,

where ko = pκfoeK is determined by

fcoM =/o(wo) = 1> feo(wi) =/o(wi) = 0

and/i to

where kι = PκfitK is determined by

fci(wo)=/i(no) = 0, fciίπx) =/i(ni)= 1.

Thus^ 1 = / 0 Λ/i goes to

[/o + /co(nd)/d] Λ /c^na)/, = (- l Γ ^ i W t f - l/'Vo
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Thus

(detπAip
c

κ:C^Ai) = (-l)d-1k1(nd). (2.8)

Recall that

M n o ) = 0, M * o ) = l

so that

Thus

1
kί (2.9)

satisfies

y(n0) = 0, Vy(n0) = 1 .

Combining (2.7) [setting r = 1], (2.8) and (2.9),

Theorem 2.2.

where y is the unique element in the kernel of L satisfying

y(n0) = 0, Vy(n0) = 1 .

For r > 1 the above analysis can be generalized to yield

Theorem 2.3. For general r

where Yis the rxr matrix whose ith column is given by yt(nd\ where yt is the unique
element in K such that

j φ o ) = 0,

Observations. 1) Note that as d -> oo, d e t L ^ -> oo. This is appropriate since, as
d -• oo, L^^ approaches

00 ~ dx2 l D i r i c h l e t

which has oo many eigenvalues which tend to oo.
2) Let

be Hill's Operators associated to two different potentials. For fixed d, let Lγ, L2 be
the corresponding finite difference approximations. The relative version of
Theorem 2.2 is

A (L2 A Γ 1 = ̂ 4 > (2.10)
' °° ' °° y2(nd)

 κ }
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where yt is the unique element in the kernel of L, satisfying

yt(rι0) = 0, Vyt(n0) = 1 .

Taking limits as d -» oo we find

Λ2 \ / A2 \ - 1

d x 2 J \ UX~ J Dirichlet

where yf is the unique solution to

— R(
dx2

p.(0) = 0 y'i(0) = 1 ,

and the left-hand side of (2.11) is a well defined Fredholm ( = perturbation)
determinant. The technical details required to justify this limiting process are
provided in Sect. 3. There is a corresponding formula for general r. The formula
(2.11) was first proved in [L-S].

3) The operator LAoo is hermitian, and hence has real eigenvalues.
Taking the sign of both sides of Theorem 2.2, using the fact that y(nι) is

positive, we find

[ # of negative eigenvalues of LAJ] = [ # of sign changes of y(ni) as i goes from
1 to d~\ (mod 2).

This is a weak version of the Morse index theorem [Mi] which states that in the
smooth case:

[# of negative eigenvalues of LAQO = — —-^ + £|Dirichiet = [ # o f zeros of
"x J

y(x) = the unique solution of L such that j (O) = 0, y'(0) = 1].

4) We can also vary the first order term in L. That is, consider

A complication arises in that there are 3 reasonable ways to approximate d/dx by
a finite difference operator, namely by the left, right or symmetric difference. That is

can be approximated by

and we will label the resulting finite difference operators LL, LR and L s , respec-
tively. In any case, the analysis goes through as before, except possibly for the
formula (2.6).
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In the 'first case the formula is unchanged and we learn (in the case of Dirichlet
boundary conditions)

where yL is the unique solution of

LLyL = 0, yL{0) = 09 VyL(0)

In the case of LR we have

so that (2.6) is replaced by
d-i

and we learn

In the case of Ls we have

so that (2.6) is replaced by

Proceeding as before, we learn

It is fascinating to note that as d -> oo,

In fact, we proved in [Fol] (Corollary 3.5, suitably interpreted) that there is
a c such that
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(where the left-hand side is defined via zeta function regularization). The constant
c is independent of Q and R. Thus, it appears that Ls is the appropriate approxima-
tion. However, it is not at all clear how to deduce the above formula for L from the
finite difference case. For example, if Lx and L2 have different first order terms, then
LίL2~

1 does not have a well-defined Fredholm determinant. (The spectrum of

LίL2

1 looks loosely like 0 Φ n e Z > and thus, the product does not

converge absolutely). Hence, we cannot use det Lγ L2

 1 as we did in Observation 2.
However, it follows from the above that, in fact

det L^s rf-oo

det L{

2% detL 2

A direct proof of this fact would be very interesting, and may shed some light on the
mysterious process of zeta function regularization.

(ii) General Local Boundary Conditions. Fix (S0,c>ieR. In this section we
consider the operator L restricted to functions

which satisfy

Note that <50 = δί = 0 corresponds to the Neumann boundary condition

and, although here we require δo,δ1 < oo the case δ0 — δx = oo corresponds to the
Dirichlet boundary condition considered in (i). As before, after fixing d, the number
of nodes, L is replaced by L, and the boundary condition is replaced by

Vf(n0) + δof(no) =

i.e.

δj{nd) = 0 ,

7

Thus, we define

AδoΛ = {feV\f satisfies (2.12)} .

Note that an orthonormal basis for Λδθiδι is provided by

where

* + l7 + Λ-ι
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We define! a volume from s^bo,δi f ° r J^δ0,δ1 b γ setting

To find the determinant of the map

we note that

πA(fi)=ft 2 ^ i ^

det(πA: Image(L) - ^) = — fe - 1 j f e + 1 ) . (2.13)

Thus

Combining Theorem 1.5, (2.6) and (2.13),

Now

— - ι JJo +Ji u ( τ + M i d -Jd-i

We define a volume form sί^Otδι by

Again, the sign is chosen so that

The map
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t a k e s / Q G C 1 to

where k0 is the unique element in K satisfying

M " o ) = l , M * i ) = 0, (2.15)

and/ieC1 to

' ( 7 +

where fcx GK is the unique element satisfying

M* o) = 0, M " i ) = l (2.16)

Thus/o Λ /x goes to

- (klt(^ - ίjfo +/Λ //co, ̂  + lVi - Λ - Λ l ^ a , (2-17)

Define zeK by

Then z e K is the unique element in K satisfying

z(no)=-l z(nί) =

or, equivalently

z(n0) = - 1, Fz(n0) = δ0

Moreover, from (2.17),

\(δ1

)) . (2.18)

Combining (2.14) and (2.18) yields



Determinants of Differential Operators 509

Theorem ί.4.
2d~3

where

\d ) \d

and zeK is the unique element in the kernel of L satisfying

z(n0) = - 1, Vz(n0) = δ0 .

Recall that AOtO denotes the Neumann boundary conditions. Theorem 2.4
provides the formula

Corollary 2.5.
J2d~3

where zeK satisfies

z(n0) = 1, Vz(n0) = 0 .

Jl d x 2 x

are ίwo operators, then the relative version of Theorem 2.4 yields, upon taking the
limit d^> oo,

^ . ί , = {/: [0, 1] - C|/'(0) + 50/(0) =/'( ! ) + δj(\) = 0}

zt, i = 1,2, is ί/ze unique solution to Li such that

Zi(0) = - 1, z{(0) = (50 .

iii) Periodic Boundary Conditions. In this section we consider the operator
L acting on functions on the circle S1. We associate S1 with [0,1] under the
identification 0 = 1 . Then, C 1 functions on S1 can be identified with functions on
[0, 1] satisfying

We think of a finite approximation of S 1 as given by the interval with d + 1
evenly spaced nodes under the identification

no = nd-u nΐ=nd.

Then, C1 functions on S1 are approximated by functions fe V satisfying

/(wo) =
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or, equivalently,

f(no)=f{nd-i\

Fixing (5eC, we generalize (2.18) to the boundary condition

Bδ = {fe V\f(n0) = δfirid-^fini) = δf(nd)} .

An orthonormal basis for Bδ is provided by

R. Forman

(2.18)

Define a volume form &δ by

l < 5 | 2

h +fd) A f2 A - A fd-2 .

To find the determinant of the map

πBδ: Image(L)->Bδ

we note that

*B,(ft)=ft 2 ^ ί ύ d - 2 ,

1
+fΛ))-f=L=(δfi +fd)

l(δfi

πBδ(fd-l) = ( fd-U

1

1

Thus

goes to

l ^ l 2

l(Vo+Λ-i)

& =/l Λ h A ' * Λ fd-i

f2 A ' ' Λ fd-2 A (δf0

Λδfo+fd-i)

= ( -

Combining Theorem 1.5, (2.6) and (2.19),

-d2d~2δ
detLβ =

Now

l < 5 | 2

- δfd), (f0 -

(2.19)

(2.20)
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We define a volume form St^ by

* = Γ T ^ ( / o ~ δfd-l] Λ ( / l " δ f d )

so that

aϊ Λ aδ = r=f0 Λ -
The map

πBip
c

κ: C1 ^ Bi

takes/o to

where koεK satisfies (2.15), and/ 2 to

where k± eK satisfies (2.16). Thus C6L =f0 A fγ goes to

1 + |^|2 C<fco^/o - Vd-i><fciJi ~<5/d> - <kufo-δfd-

so that

1

f — δf- y(k f —δfy — ̂ k f —

l ^ l 2

Thus, from (2.20) and (2.21), we have

Theorem 2.6.
2 ' 2 Γ/l 0

. , Λ / . (2-22)

Unfortunately, the formula (2.22) is not convenient for taking limits as d -• GO,
but (2.22) is easily seen to be equivalent to

^ i c i ** \ *a — i/ r \' "a — 1/ 1 1 /ΛT5\

where z = k0 + klt y = -kteK satisfy
α

z(«o) = 1, Vz(n0) = 0 ,

y(n0) = 0, Fy(no) = 1 .
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If

are two operators, then the relative version of (2.23) leads, upon letting d -> oo, to

Ί o\
d 2 d e t θ

- <:

where zh yt are the unique solutions to Lt on [0, 1] satisfying

z ( ( 0 ) = l , zί(0) = 0 ,

3. The Convergence as */ -» oo

In this section we prove that as d -> oo the formula (2.10) converges to the formula
(2.11). More generally, we prove that for any boundary condition, the relevant data
from the finite difference operators converges, as the approximation becomes finer,
to the corresponding data for the limiting differential operator. Thus, each formula
in Sect. 2 for the determinant of a finite difference boundary value operator yields,
upon taking limits, a corresponding formula for the determinant of a differential
boundary value operator. Our analysis involves two steps. For the right-hand side
we must prove the convergence of solutions to the initial value problem. This type
of result is standard, but a proof is included for completeness. For the left-hand
side, we must prove the convergence of the ratio of determinants. The author has
been unable to locate the desired results in the literature, and thus we include
a complete proof. Although the results in this section hold for any ordinary
differential operator, for simplicity, we restrict attention to 2 n d order operators of
the type considered in Sect. 2.

Convergence of Solutions of the Initial Value Problem. The right-hand side of (2.10)
is expressed in terms of the boundary values at x = 1 of solutions with prescribed
boundary values at x = 0. Fix α,feeC Let L denote the differential operator

.= - ^ + R(x),

where

is continuous, and let/denote the unique solution to

L / = 0 , /(0) = α, f'(0) = b. (3.1)

Let L{d) denote the finite difference approximation to L corresponding to
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a division1 of [0, 1] into d equal subintervals, and l e t / ( d ) denote the unique solution

to

F/ ( d )(0) = b . (3.2)

Theorem 3.1. As d -» oo

(3.3)

>/'(!) (3-4)
\ a /

: Let

ϊMίMί
Then (3.3) is equivalent to

lim ε<d\l) = 0 . (3.5)
d-> oo

From (3.1) we learn that/is twice continuously difϊerentiable. Thus, in particular,

Since

(3.4) is equivalent to

lim dϊew(ί) - e(d)(^-J^)] = 0 (3-6)

From Taylor's theorem, for any xe(0,1),

f{x - h) =/(x) -f'(x)h + l-f"(x)h2 + o(h2),

f(x + h) =/(x) +f'(x)h + \f"{x)h2 + o(h2) .

Adding these two equations yields

h2f"{x) = - 2/(x) +f(x + h) +f(x -h) + o(h2).

Setting x = i/d and h = ί/d, we find that for 0 < i < d,

(3.7)
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On the other hand

R. Forman

Therefore

W) / L I _ ϊ+
d2η*"Xd)-^\^r)-&^r-\d<

Now we examine ε's initial conditions. From (3.1) and (3.2),

ε(d){0) = 0

and

(3.8)

(3.9)

b = F/(-)(0) = ) -/(0)) = d/<-)Q) - da

so that

Choose M large enough so that

g ^ for all i ,

for all x e [0,1] .

(3.10)

(3-11)

Let a(d)/d2 be an upper bound for the norm of the o(l/d2) term in (3.8), so that
lim ot(d) = 0 .

We will see that for all d9 and all i such that 0 < i: ̂  d,

ε -

M + 1
(3.13)

Setting i = d, and using

lim ( 1 +
M + l V

= eM+1<oo,
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we see that (3.12) implies (3.5), and (3.13) implies (3.6). We will prove (3.12) and
(3.13) by induction. From (3.9) and (3.10) both bounds are true for i = 1. Using (3.8)
we can write

Thus, by induction and (3.11),

Analysing the two terms separately,

Using that - ^ 1 we have
a

M+lY

)

= ϊli+-
d\ d

These inequalities combine to yield a proof of (3.13). The inequality (3.12) easily
follows from (3.8) and the inductive hypothesis. D

Convergence of Determinants. Let Ro and Ri be continuous functions on [0,1],
and

dx2

^ dx2 ' " 1 W

two differential operators acting on functions on [0, 1]. Let A be a boundary
condition given by

c12f'(0) + c 1 3/(l) + c 1 4/'(l) = 0 ,

c22/'(0) + c 2 3/(l) + c 2 4/'(l) = 0 , (3.14)
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where

has rank 2.
Let L{Q] and Lid) denote the finite difference approximations of Lo and

Lx corresponding to the partition of [0, 1] into d equal subintervals. Approximate
A by the finite difference boundary condition

c12 Vf(0)

• c 2 2 F/(0) + c 2 3 / ( l ) + c 2 4 Vf[ —^ = 0 . (3.15)
\ α /

We will also denote the approximation by A. We will prove that

lim j^jfdT = dQtLUA{LOiAy
ι . (3.16)

To describe our method of proof, for μ e C, let

Lμ = - -r-2 + # o M + i"(^iM - #o(

and define

Note that for each d

D(0) = D(d)(0) = 1 . (3.17)

The function D(μ) is holomorphic (see [G-K]), and non-trivial, by (3.17), and thus
has isolated zeros. On the other hand, for each d9 D

(d)(μ) is a polynomial, and hence
is holomorphic. The analysis of Sect. 2 shows that D(d)(μ) can be expressed in terms
of the boundary values of the solutions to the initial value problem for L{d\μ).
Theorem 3.1 implies that as d->oo, the boundary values, and hence D{d\μ\
converge uniformly on compact sets in the μ-plane. Thus

lim D(d){μ) (3.18)
d->ao

is holomorphic, and, by (3.17), is non-trivial. Therefore, the zeros of (3.18) are
discrete. We prove (3.16) by proving that for each μ such that

we have the equality

D(μ) φ 0 Φ lim D(d)(μ)
d-κχ>

4~iogD(μ) = -^-log lim Dw(μ) . (3.19)
dμ dμ ^
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We first examine the left-hand side of (3.19),

j^ogD(μ) = tr(J-L^XL^Γ1 = tτ(Rx(x) - KOMK^MΓ 1 (3 20)

(see [G-K]). The operator (Lμ^4)~1 has a continuous kernel GμM(x, y\ such that
for any continuous function fe A,

0

Equivalently, GμM(x, y) is uniquely determined by the following 4 properties:

(i) Fix ye(0,1). Then, as a function of x,

(ii) For x + y

LμGμM(x,y) = 0

(where Lμ acts on G as a function of x).
(iii) The kernel GμtA(x9 y) is continuous on [0, 1] x [0, 1].
(iv) For all ye(0,1),

lim -j-GμiA(x,y) = lim —Gμ>A(x, y) + 1 .

(Note that the kernel G is Lipschitz, which implies L~x is a nuclear operator
([G-K]) and thus the discussion in [G-K], Chap. IV, applies.)

Therefore,

has the continuous kernel

with trace

](RΛx)-Ro(x))Gμ,A(x,y)dx

Now we consider the right-hand side of (3.19). The uniform convergence of D(d)(μ)
implies

i f lim D^(μ)) = lim f-̂-

The operator (LjJ^)"1 can be expressed as a matrix

O ^ y ^ d . (3.22)
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This matrix is uniquely determined by the conditions:

(i) For every veA,

MveA and L{*}A Mv = v .

(ii) For every veAL,

Now

dμ μ'A dμ'

where R± — Ro is the diagonal matrix with

fo i = 0 or d

Lastly, we consider the matrix representing πA. Let

Vf(0)

Vf

/(I)

d-ί

\ v ' ; /

= span
α 3

^4/

'61 \

denote the solution space to (3.15). Then (3.24) is equivalent to

\

/(i)

'd-l

Λ '

= span

= span

(3.23)

(3.24)

= span
1

o
w

/o\
0 I
1
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as long ak

det α i
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(3.25)

We will now assume this. It is not true, the necessary modifications in the argument
are clear, and, in fact, lead to some simplification.

Thus, from (3.25),

\) 0
\

0

4
(326)

Combining (3.22), (3.23) and (3.26) we see

(3.27)

where

S = {(1, 0), (1, 1), (1, d - 1), (1, d\ (d - 1,0), (d - 1,1), (d-ld- 1), (d - 1, d)} .

Comparing (3.20) to (3.27) we see that the desired equality (3.19) follows from the
two lemmas:

Lemma 3.2. There is a constant c (independent of d) such that for ίje

<c .

Lemma 3.3. a) For j = 1, and d — 1,

\.d'd)~dyJ\d'd - O I . Ϊ

b)

i i

= o\-- Γ l - -
d \d'd

where the above bounds are uniform in i and d.

We will see that Lemmas 3.2 and 3.3 reduce to

Lemma 3.4. IfLA is invertible, then there is a constant c > 0 (independent of ά) such
that for all d large enough

forallveA

ί where \\ v || m = sup
0 < i < d

I

υ\ -



520 R. Forman

We assume Lemma 3.4 for the moment, and prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. F r o m (3.25) there are two vectors in A of the form

VΛ =

0

0

w
υ2 =

0

0

and thus A1 is spanned by two vectors of the form

/ °\

+ 0 -.

I ι\
- 1

0

0

\ 0/

Thus, from the definition of M(d\

ΌXEA,

0

0

Ml v2) = v2 ,

M(d)v3 = 0 ,

Mid)υ4 = 0 .

From (3.28) and Lemma 3.4, there is a c such that

\\Mυ1\\a09\\MΌ2\\a>^c.

Thus we have the following bound (uniformly in i and d)

Mv,i-

MVΛ-d

i

= 0(1)

(3.28)

(3.29)

(3.30)
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From (3.28) and (3.29)

1

0

1

\o

1

0

_ 2

0

0

1

0

1

°\
1

0

- 1 /

/ I
+ °{d

which shows that

M - , 0

M i 1
I ' d = 0(1),

as desired. D

Proof of Lemma 3.3. a) We consider the case j = 1. Let

From (3.28) and (3.29),

so it is enough to prove

From (3.30),

-

We know G [ x9 - ) e A (as a function of x). That is,
a J

x=0 'ιdr v'd'dx <-i V'd

d

(3.31)
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satisfies (3.14). In addition

d_

dx

d_

dx

(where the subscript 1 denotes the difference is taken with respect to the first
variable). Thus

Moreover, as in (3.7), for 2 ^ i ^ d - 1,

From Taylor series

f2 1 A 1 d_ ί A J_
d'd) + d T+dx yΰ) + ϊd2

x~* d

1

for some Zιe[-9-\d d
Thus

Similarly

for some z2 e ( 0, -

Thus

-1= lim
dx

- lim -J-G(x^
l- dx \ d

(The error is o(l/d) since both R and G are continuous.)

1

...-•u'
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Therefore,

523

w
+0{-d

This implies, using (3.27),

0

\ o /
Let

Then, from (3.31) and (3.33),

and

ε(0), Vε(O), ε(l),

(3.32)

(3.33)

(3.34)

satisfies (3.15).

Let ε(ί/d) denote the unique function which has boundary values equal to the
0(1 Id2) term in (3.34) and is linear in ί for 1 ^ i ^ d - 1. Then

4
Thus,

and

ε — εeA
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From Lemma 3.4

so that

as desired.

b) The case 2 ^ j ^ d - 2 is easier than j = 1, d - 1. Following as above to
(3.32) we learn that

satisfies

0

1

w
0 1 -

so that

W
(where the 1 is in the j t h spot). Continuing as in (a) we learn

as desired. D
We now complete this section with a proof of Lemma 3.4.

Proof of Lemma 3.4. Suppose the lemma is false. That is, suppose there is a
sequence

d x ; - • o o

and
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such that

II υt II00= sup ΌiU) = 1 , (3.35)

I l ^ ^ . l l o o - O . (3.36)

Extend L(di)Vi linearly between the nodes <- > to a continuous function on [0,1].

Then define a sequence of C2 functions vt by

LB, = L«>υt,

0,(0) = ι>,(0),

ΰ't(0) = Vυ,(0).

Then a very slight modification of the proof of Theorem 3.1 yields

° (3 37)

uniformly in i and j . (For this conclusion, we need to know that ι>f(0) and 7^(0) are
bounded uniformly in i. The bound on ι;f(0), as well as a bound on t ̂ l), follows
from (3.35). The bound on Pfy(0) follows from the bounds on ι>f(0) and ^(1), the fact
that ^ e ^ , and our assumption (3.25).)

We note that, by definition,

Lidihi(0) = L(di)Vi(l) = 0 .

Thus, as can be seen from the form of πA in (3.26), (3.36) implies

so that, in fact,

IIMJ o o - O . (3.38)

Since ^(0) and v (0) are bounded, we can find an α, b and a subsequence of the
ϋi such that

^ ( 0 ) ^ α , 0/(0)-> ft.

Then (3.38) implies that these vt approach ϋ9 uniformly in C 1 [0, 1], where v is the
unique solution to

Lv = 0, ΰ(0) = a, v'(0) = b .

The uniformity of the convergence implies

0,(1) — 0(1), 0i(l)->0 ; (l).

Comparing with (3.37) we learn
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Since each v^eA, we must have veA.

Lastly, we note that the uniform bound

l̂ illoo ^
j

= sup
j

= 1 + 0(1)

implies

ί φ O .

Thus ye A is a non-trivial solution to Lv = 0, which contradicts the hypothesis of

the lemma. D
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