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Abstract. We study further the metastable behavior of Metropolis dynamics for
the two-dimensional nearest neighbor ferromagnetic Ising model, with positive and
small external field, in the limit as the temperature vanishes (see [NS]). We focus on
the typical features of the escape (nucleation) from the (metastable) configuration
with all spins —1, to the (stable) configuration with all spins + 1 . Using the
reversibility of the process as the main tool, we prove (for the discrete time version
of the model) that the first step of a typical escaping path is the time reverse of
a typical time evolution of a shrinking subcritical rectangular droplet, which is one
slice smaller than a critical droplet. This subcritical droplet then evolves in a time of
order 1 to a critical droplet, which finally grows with features described in [NS].

I. The Model

In this paper we consider a discrete time version of Metropolis dynamics for the
two-dimensional nearest neighbor ferromagnetic Ising model. The state space of
the process is the set { — 1, + 1}ΛN, where ΛN = {1, . . . , N}2 is taken with periodic
boundary conditions (meaning that two sites x, y e ΛN will be said to be neighbors if
they have one coordinate in common and the other one differing by 1 or N — 1).
σ(x) = ± 1 is called the spin at the site x. To each configuration σ e { — 1, + 1}ΛN an
energy is assigned by the expression

H(σ) = - \ Σ Φ)Φ) - \ Σ σW .

where 1BN is the set of (unordered) pairs of neighbors in ΛN and h is called the
external field. The discrete time Metropolis dynamics at inverse temperature
β > 0 is the Markov chain defined by taking uniformly at random at each integer
unit of time a site xeΛN and then flipping the spin there with probability
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exp( — β(AxH(σ)) + \ where σ is the present configuration, ΛxH(σ) = H(σx) — //(σ),
with σx(y) = σ(y) for y Φ x and σx(x) = — σ(x), and ( ) + = (•) v 0 is the positive
part function. The corresponding transition probabilities when σ φ η are given by

N 2exp( — β(AxH(σ))+\ if η = σx for some

0, otherwise .

We will denote by (σ?)r = o,i,2,... t n e corresponding Markov chain started at time
0 from the configuration η. Let μ be the Gibbs probability measure on {— 1, + l} Λ v

at inverse temperature β given by

μ(σ) = Z~1Qxp(-βH(σ)) ,

where Z " 1 is a normalization constant. Metropolis dynamics is reversible with
respect to μ, in the sense that for all σ, η e {— 1, + 1}ΛN,

μ(σ)p(σ,η) = μ(η)p(η9σ) . (I.I)

In particular μ is the unique invariant probability measure for this process.
We will denote the configuration with all spins —1 (resp. +1) by — \ (resp.

+ 1).
In [NS] we considered a continuous time version of this process, which can for

instance be obtained from the discrete time version by considering a Poisson
process with rate N2 and then at each occurrence time of this process choosing one
of the N2 sites at random and proceeding as above to decide to flip or not the spin
at this site. The law of large numbers for the Poisson process allows one then to
translate easily results from the continuous time version into the discrete time
version and back. In particular all the results in [NS] can be verified to hold for the
discrete time version (but one can also adapt the proofs from [NS] directly to
discrete time). We switched in this paper to the discrete time version to avoid
technicalities, but one can translate our results back to continuous time if desired.

II. Results

In [NS] we studied the metastable behavior of the continuous time version of this
process with 0 < h < 4 and large arbitrary N started from —1, in the limit in which
β —• oo. Roughly speaking we proved that the system stays close to — \ for a long
time, until it eventually goes to +1 at an unpredictable time. In this paper we will
look in detail to the first excursion from — 1 to +1., i.e., to the way the system
eventually goes from ~ l t o + 1 . For the motivation of this line of research and for
more background the reader is referred to [NS] and to the expository paper [Sch],
as well as to papers quoted therein. The idea of characterizing metastability by
considering the typical paths of the process was introduced in the paper [CGOV],
and further studied in a series of papers quoted in [NS] and [Sch]. The first
passage from — 1. to + 1 may be thought of as the escape from an energy well. In
this sense this problem is related to the Freidlin-Wentzell problem of the escape
from the domain of an attractor in the context of weakly perturbed dynamical
system (see [FW], pp. 115-117). But in our case the abundance of local minima of
the energy (configurations with rectangular droplets of spins + 1 in a sea of spins
— 1) produces an interesting pattern for the typical escape route. Our analysis is
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based on elementary methods and relies mostly on the reversibility of the process;
we do not use the Freidlin-Wentzell machinery. It is even possible that the
methods used here may be also used to provide an alternative derivation of similar
results for weakly perturbed dynamical systems. We observe also that even if we
consider our process with large β as a perturbation of a corresponding reference
process with β = + 00, this reference system is not completely deterministic, as
opposed to what occurs in the Freidlin-Wentzell setting.

Now we recall some of the results proven in [NS] in continuous time, but which
hold also in discrete time, as discussed in the previous section. To concentrate on
the most interesting cases we will always assume

0 < h < 2, 2/h is not an integer, and N > ((2/h) + I) 2 + 1 . (II.l)

Remark. This is essentially what was called the "standard case" in [NS].

& will denote the set of configurations in {— 1, + 1}AN with all spins — 1 except for
those in a rectangle lγ x l2 which are + 1. With lx and l2 less than N — 1. For η e&
define lx(η) and I2(η) as the lx and l2 above and l(η) = minll^η), I2(η)}.

Tη{A) = inf{ί ^ 0: ση

teA}

will denote hitting times. We use the abbreviation Tη(ξ) for Tη({ξ}). Sometimes we
omit η when it is — 1 and ξ when it is +1; so

{ί ^
1- = + 1} .

Theorem 1 in [NS] states that small rectangular droplets of + 1 tend to shrink
while large rectangular droplets tend to grow. Small or large being decided by the
comparison between l(η) and 2/h. Many details about the way the droplet shrinks
or grows can also be obtained from the analysis done in [NS]. We repeat now in
detail the aspects already explicitly stated in [NS], because they will be important
later on. First we define for each ηe$ and ε > 0 the events

Sε(η) = [Tη(- 1) < Tη( + 1); from time 0 up to time Tη{- 1)
all spins which were — 1 at time 0 are still — 1 and
all spins + 1 form a single cluster; also

l)ft - ε)) < Γ"(-1) < exp(j8((/fa) - ί)h + ε))} .

Gε(η) - {Tη(+ 1) < Tη(-l); from time 0 up to time Tη{ + ί)
the number of spins + 1 is at least Ii(η)l2(η) — l{η) + 1

and they form a single cluster with the property that the

smallest rectangle which contains all spins + 1 contains

the rectangle where the original spins + 1 were; also

exp(β((2 - h) - ε)) < T"(+l) < exp(j8((2 - h) + ε)))} .

In [NS] it was proven that for 0 ^ h < 2 and ηe@,

If l(η) < 2/h and ε > 0 then

If l(η) > 2/h and ε > 0 then

Once the typical behavior of rectangular droplets was established in [NS],
these results were used to show the metastable character of the evolution starting

lim P{Sε
0-00

lim P(Gi

:fa)) =

sfa)) -

1 ,

1 .

(II.2)

(II.3)
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from —1 and described in Theorem 2 there (omitted here since it is not used
below). Finally some details of the typical way the system escapes from —1 to +1
were obtained in Theorem 3 in [NS]. Our goal here is to strengthen parts (c) and (d)
of this theorem by describing the law of the first excursion from — 1 to + 1 and in
particular proving the statements in the abstract of this paper.

Next we recall more definitions from [NS] and introduce new ones.
L = I" 2/h ~| = (smallest integer not smaller then 2/h). L is the side of the critical
droplet. For k = 0, 1, . . . , L, ^{k) will denote the set of configurations with all
spins — 1 except for a droplet of spins + 1 with the following shape: the union of
a rectangle of sides L and L — 1 with a disjoint rectangle of sides 1 and k (the empty
set if k = 0) such that all the sites in the latter rectangle are neighbors of a site in the
former one, and in case k φ 0 the smallest rectangle which contains the droplet of
spins + 1 is a square L x L. (Think of the smaller rectangle as a protuberance.) ^ ( 1 )

is the set & of [NS] (protocritical droplets) and &{L) is the set CS of [NS] (critical
droplets).

Let ff be the set of finite sequences of configurations (including 0),

Define the random time

Θ = s u p { ί e [ 0 , Γ ] : σt~
k = - 1 } .

The path of the first excursion from — 1. to + 1. is

c / -l ~i ~I ~i\

ύ = (σΘ -, σΘ + ί, . . . , στ-u στ ) ,
which is a random element of 9>. We are concerned with the law of S, i.e., with
P{SeΨ) for each Ψ° ^ <5Λ To state our result about this law we need more
notation. Given s = (su . . . , sk)ef/ we define K(s) = fc CK(0) = 0), α(s) = sx and
ζ(s) = sk (α(0) and ζ(0) are not defined). JR(S) = (sk, s k _ l 5 . . . , s 2 , s x ) will denote the
time reversal of s (R(φ) = 0). For - T c tf\ R{ir) = {R(s): seir). Given also
u = (uu . . . , ux)e^f we w r i t e s * M = (s 1 ? . . . , s k j w l5 . . . , Uι)ey(s*Φ = 0*s = s).
Given 5 , ϋ e y , we say that "w is part of s" iff there are υ,we£f such that 5 = v * w * w
(observe that i; and w may be 0). Given s , w e y such that C(s) = α(w) we say that ςίw
may follow 5" and define s © w = ( s l 5 s 2 , • , %( S )- i , sX ( s ), w2, . . . , uX ( M )).

Our approach for obtaining information about S will be based in part on the
observation that in its way from —I to + 1 the system is likely to visit ^ ( 0 ) , jump
from there to 0> — ̂ ( 1 ) and from there to ^ ( 2 ) . With this in mind we define

(
Si€0> for i = 2, . . . , K(s) - 1, ζ(s)

f\ α(s) = - 1 , C ( 5 ) G ^ ( 0 ) ,

1 + 1 } for Ϊ = 2, . . . , K(s) - 1, there is no
)

S f ^ { 5 + } or Ϊ , . . .
ue if2 which is a part of 5),

ί φ ) \ ζ{s) = + 1 , 5 ^ { - l , +1}
for i = 2, . . . , K(s) - 1} ,

= {s e f/\ there exists uef/uve ^2

and w e ^ 3 such that v may follow w, w may follo
1; and 5 = M Θ ^ ® w} .
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Observe that the decomposition above of se^0 into s = u® v® w is unique. We
write in this case s = [u, v, w]. Define now the events

{(σ?) starts as s} = {(σ?: ί = 0, . . . , K(s) - 1) = s} ,

{(σ?) starts in TΓ} = [j {(σ?) starts as s} .

We define now various probability measures on Sf\

(\^{0)\~1P((σζ

t

is)) starts as R{s)\(σζ

t

{s)) starts in JR(^i)), if s e ^ 1 }

V ~ | θ , otherwise .

For

For

v|(s)

v(s)

= { o , ( ( ^
fvi(M) -

10,

starts

starts

v 2 (t;)

as

as

s|(σ?)

s|(σ?)

v3 (w),

starts in f ^ 2 ) ,

starts in $fz\

if 5 G ,9̂ o and 5

otherwise .

if se9?

1,

otherwise .

if S G tf-\

otherwise .

= [M, v, w],

As /? -> GO, (II.2) shows that the conditioning in the definition of v1 becomes
irrelevant. So for large /?, vx may be thought of as the distribution of the time
reverse of the path along which a rectangular droplet of sides L and L — \ taken
uniformly from all the possible ones (configurations in ^ ( 0 ) ) shrinks.

To be able to say something similar about v\, we have first to observe that if
2 f {

y
{2) the initial evolution of {σf) is very predictable. Let Aε(ξ) be the event {(σf)

jumps from ^ ( 2 ) to ^ ( 3 ) , then to ^ ( 4 ) , and so on, until it hits ^(L) = & at a time
t < eβε}. Then one easily sees that for all ξe^{2) and ε > 0,

lim P(AE(ξ)) = 1 . (II.4)

From (II.4) and (II.3) we see that as β -> 00 the conditioning in the definition of
v3 becomes irrelevant and for large β this law may be thought of as the distribution
of the path along which a droplet in a configuration ξ of ^ ( 2 ) grows.

In contrast, the conditioning in the definition of v\ becomes crucial as β -> 00.
But the basic asymptotic properties of this measure can be easily obtained; for
instance the fact that it concentrates its mass on paths in 6f2 with lengths which are
bounded above by (for example) exp(βε) as β -> 00.

Our main result in this paper is

Theorem. Under condition (I.I)

l im s u p | P ( S e Ή - v ( Ό | = 0 ,

i.e., the total variation distance between P(SE ) and v vanishes as /? —• 00.
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Remark. As observed in [NS] such a result implies that one can also take a double
limit, with N -> oo as β -> oo but slowly enough so that the same result holds for
this limit.

Before going to the proof of the Theorem, we comment on its meaning and
some of its consequences. Essentially it says that for large β the passage from — 1 to
+ 1 is likely to occur by the formation of a rectangular droplet of sides L and L — 1

via the time reverse of the way such a droplet would shrink (described to some
extent by (Π.2)). This is followed by the growing on such a droplet of a protuber-
ance first of one spin, then of a second neighboring spin, and so on, until a critical
droplet L x L is formed, which then grows to cover the whole system (with features
described in part by (II.3)).

As corollaries to the Theorem, we can prove various statements about the
typical S. For instance (details of the proofs left to the reader)

lim P(In all configurations in S the spins + 1 form a single cluster) = 1 .
0-»oo

Or, say that the first passage from —\ to +1. is ε-regular if "a configuration in
0 is reached in a time between exp(β(h(L - 2) - ε)) and exp(β(h(L - 2) + ε)),

after which a droplet in ^ is reached in a time shorter then exp(βε), after which + \
is reached in a time between exp(/?(2 — h — ε)) and exp(/?(2 — h + ε))." Then

lim P(S is ε-regular) — 1 .

Observe that h(L - 2) < h{(2/h + 1) - 2) = 2 - h, so that the time to form the
critical droplet is much shorter than the time it needs to grow. Recall that in
Theorem 3 (parts (a) and (b)) of [NS] we proved that for the total time T (from
t = 0 until + i is reached) we have as β -• oo

β~1log T^ Γ(h) in probability ,

where Γ(h) = H{η) - H(-1) for ηe0>9 i.e., Γ(h) = AL - (L2 - L + \)h > 2 - h. So
the first excursion from - l t o + 1 takes much less time than the waiting time for it
to happen.

III. Proofs

Let So be the first element of ^0 which is part of (ση

t: t = 0, . . . , t') for some t'. (By
this we mean that So is an element of ^0 which is part of (σ?: t = 0, . . . , t') for
some t\ and such that for any t" < t' there is no element of y 0 which is part of
(σ[7: t = 0, . . . , t")\ with probability one So is well defined.) In this section we will
prove

Proposition 1. The law of So is v, i.e., for all i^ a £f
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Proposition 2. Under condition (II. 1)

lim P(S0 φ S) = 0 .

The two propositions above clearly imply the Theorem, since

\P(Ser) - P(Soer)\ ^ 2P(S0 Φ S) .
Before we prove Proposition 1, we will prove a similar fact in a more general

setting (Proposition 3 below). This will illustrate the main argument that we will
then use to prove Proposition 1. This result will also have applications for
Metropolis dynamics, as discussed after its proof. And will be used in the proof of
Proposition 2.

Let (Xt)t = o,i,... b e a n irreducible reversible Markov chain on a finite state
space 3C, having transition probabilities p ( v ) Single out two states, η,ξe&. Let
ίf be as before the set of finite sequences of elements of 3C and set

<% = {setf: φ) = η, ζ{s) = ξ9 Sίφ{η, ξ} for i = 2, . . . , K(s) - 1} .

Choose an initial state 7 and let U {resp. U) be the first element of °tt (resp. R( t ) )
which is part of (XJ\ t = 0, . . . , t') for some t'. Observe that the laws of U and
U do not depend on the initial state 7. Define the probability measures p and p on
^ b y

f P((X?) starts as s\(X?) starts in °U\ iϊ se<%9o(s) = \Hy ' [0, otherwise .

\ d t ) s t a r t s a s R(s)\(χtξ) starts in R{^ί)\ if s e t ,

jθ, otherwise .

Proposition 3. For all Y a y ,

P(Ueir) = ρ(r) = p[ir) = P(UeR(f)) . (III.l)

The proof of this proposition is simple and possibly known. We present it here
because we did not find it in the literature, and the arguments that we use to prove
it will be also used later to prove Proposition 1.

Proof of Proposition 3. Define the events En = {Xy

n = η, there i s n o u e t which is

part of (X?: t = 0, . . . , n)}. Now for sφ<%9 P(U = s) = 0 and for s e t ,

00

P(U = S)=Σ P(En> Xyn+1 = S2, XUl = S3, • ,
0

= P((Xr

η) starts as s) X P{En) . (III.2)
n = 0

Summing over s e t gives

£ P(En) = (P((X?) starts in %)Yι . (III.3)
« = o

The first equality in (III.l) follows from (III.2) and (III.3). The last equality in (III.l)
is the same as the first one with η and ξ interchanged. Finally to prove the second
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equality let μ be the invariant reversible measure for (Xt) and using (I.I) write
(k = K(s))

P((X?) starts as s)

= p{η,s2)p(s2,s3) . . . p(sk-2,sk-l)p{sk-uξ)

= p{η, s2)p(s2,s3) . . . p(sk-2,sk-ί)p(sk-1,ξ)(μ(ξ))~ίμ(ξ)

= p(η9s2)p(s2,s3) . . . p(sk-2,sk-l)(μ(sk^1))~1p(ξ,sk_1)μ(ξ)

= P(^s2)p(s2,s3) . . . (μ(sk-2))~1p(sk-ί,sk-2)p(ξ9sk-ί)μ(ξ)

= (μ{η)Γίp(s2,η)p{s3,s2) . . . p{sk-l9sk-2)p{ξ9 s^

= (μ(ξ)/μ(η)) P((X,ξ) starts as K(s) . (III.4)

The second equality in (III. 1) follows from (III.4). |

Back to Metropolis dynamics, Proposition 3 tells us that the law of the first
excursion of (σt~-) from — 1 to +1. is the time reverse of the law of the first
excursion (which occurs later) from + 1 to — I. This is not very useful (at this stage)
to extract information about the former, but in combination with the Theorem
proven in this paper, gives us in fact information about the latter. In the proof of
Proposition 2 we will in fact exploit this observation.

Proof of Proposition 1. Define the events Fn = {σ~ - = — 1, there is no u e S^Q which
is part of (σ,"1: ί = 0, . . . , n)}. Now for sφ&Ό, P{S0 = s) = 0 and for
proceeding as in (III.2) and (III.3), with Fn replacing £„, we obtain

(σt - starts

As mentioned after the definition of y 0 , each se^0 can be written in a unique form

ass = M 0 u © w = [u, v, w], with u e ̂ , υ e Sf2 and w e ^ . For the random So, let

So = [C/, V, W]

be the corresponding decomposition. Equation (III.5) may now be rewritten as

P(U = u, V=u, W=w)

P((σt~
ι) starts as u) P((σζ

t

{u)) starts as v) P((σζ

t

(v)) starts as w)

~ Σ P((<?t~l) starts as u') P((σζ

t

(uΊ) starts as vf) P((σζ

t

(vΊ) starts as w') '

wey3

(III.6)

for M G ^ Ί , ^e5^2 and w e ^ . By symmetry X w , 6 ^ P((σ^(y/)) starts as w') does not
depend on v'e£f2>

 a n ^ Σ ϋ e ^ ^ ( ( ^ " Ό s t a r t s a s ^) does not depend on u'
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Therefore'the r.h.s. of (III.6) can be written as the product of the following three
factors:

T, * P((^v)) starts as w) m , λ „ „ „ ,

starts in .5̂ 3) v ' v

^ - = vf'(D) , (IΠ.7b)

To finish the proof now it suffices to show that the r.h.s. of (III.7c) is equal to v1(u).
This follows from a computation analogous to (III.4), using (I.I). The factor
\^P{0)\~1 appears here because the sum in the denominator can be partitioned
according to what ζ(uf) is, and doing so one obtains | .^ ( 0 ) | terms identical to

(μ(ζ(u))/μ(-\))-P((σ?u)) starts in R(^)) . |

Proof of Proposition 2. Theorem 3 in [NS] assures that the system is likely to visit
& before it hits + _1,

lim P{T(0>) < Γ) = 1 . (III.8)

But this does not exclude the possibility that after visiting 2P it returns to — 1. and
eventually goes to +1_ without visiting & again. To strengthen the result we can
make rigorous an idea mentioned at the end of [NS]. Divide the path (σr~-:
t = 0, 1, . . .) into cycles. The nth cycle starts when the (n — l) t h cycle was completed
and it will be completed when the system hits — 1 for the first time after having
visited 0> during this cycle. Say that a cycle is "acceptable" if + i is not hit during
this cycle. Say that a cycle is "good" if + Πs not hit before of 0> in this cycle and the
system after first hitting 0* during this cycle has as first change of state a transition
to ^ ( 2 ) which is followed by a sequence in ^ 3 leading to + 1 . Say that a cycle is
"bad" if it is neither acceptable nor good.

When the system is in a configuration in 0>, it jumps to configurations in ^ ( 0 ) or
&{2) with probabilities which do not vanish as β —• GO, while the probabilities of all
other jumps go to zero as β -> oo (since they cause increase in energy). Consider the
time of the first entrance in 0> in each cycle as a stopping time. The strong Markov
property assures then that the probabilities of first moving to ^ ( 0 ) , or first moving
to ^ ( 2 ) , after this stopping time are both bounded away from 0 as β -> oo, while all
other possibilities have probabilities which vanish as /? —>• oo. Now consider the
time of this first change of state after the first visit to 2? in a cycle also as a stopping
time. From (III.8), (II.2), (II.3) and (II.4) it follows that the probabilities that a cycle
is acceptable or good are both bounded away from 0 as β -> oo while the probabil-
ity that it is bad goes to zero as β -> oo. Therefore

lim P(Ωί)= 1 ,

where

Qχ — | a good cycle occurs before any bad one} .
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Oil Ω1 S has almost all the features required to guaranty that S = So, but we still
have to prove that in the sequence S 0> is likely to be reached coming from ^ ( 0 ) . To
prove this we use Proposition 3. For the process (σt

+-) the law of the first excursion
S from + 1 to — 1 is the time reverse of the law of S. So by now we know that (σt

+ -)
is likely to visit 0> before it hits —1,

lim
/?-»oo

Now we can reproduce the arguments above, decomposing the path (σr

+-:
t = 0, 1, . . . ) into cycles as before, but with — 1 and + 1 interchanged and one
different detail. The cycles of (σt

+-) are completed after a visit to 0> followed by
a return to + 1 . We say that a cycle is "acceptable" if — 1 is not visited during this
cycle. A cycle is "good" if — 1 is not visited before of SP in this cycle and after
visiting 0* the system has as first change of state a transition to ^ ( 0 ) followed by
a sequence which leads to — 1 without returning to ^ or + L Define

Ω2 — {a good cycle occurs for the process (σt

+-) before any bad cycle} .

Then as before

lim P{Ω2) = 1 .

And on Ω2 Sis a sequence which enters in 0> only once, stays there for some time
and then jumps to ^ ( 0 ) .

To complete the proof now write, using the fact that the law of S is the time
reverse of that of 5,

P(S =# So) ^ P((^i) c ) + P(In the sequence S 0> is visited and 9 is first reached
with a jump from a configuration not in

^ P{{Ωιf) + P(In the sequence S 0> is visited and the last visit to 0> is
followed by a transition not to 0

Note. R. Kotecky and E. Olivieri are studying questions similar to those treated in
[NS] and in the present paper for different Hamiltonians. It is a pleasure to thank
Enzo Olivieri for discussions on these projects.
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