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Abstract. Following Greenberg and others, we study a space with a collection of
operators a(k) satisfying the "#-mutator relations" a(ΐ)cfi(k) — qcfi(k)a(ΐ) = δkj

(corresponding for q = ± 1 to classical Bose and Fermi statistics). We show that
the nlxnl matrix An(q) representing the scalar products of ^-particle states is
positive definite for all n if q lies between —1 and +1, so that the commutator
relations have a Hubert space representation in this case (this has also been proved
by Fivel and by Bozejko and Speicher). We also give an explicit factorization of
An (q) as a product of matrices of the form (1 — q JT)± 1 with 1 ̂ j^n and T a
permutation matrix. In particular, An(q) is singular if and only if qM = 1 for some
integer M of the form k2 — k, 2 ̂  k ̂  n.

1. Introduction

In this paper we study the following object: a Hubert space H together with a non-
zero distinguished vector |0> (vacuum state) and a collection of operators ak:
H -> H satisfying the commutation relations ("#-mutator relations")

(l) = δttl (V*, /) (1)

and the relations
α(/c)|0> = 0 (V/c). (2)

Here q is a fixed real number and a* (I) denotes the adjoint o f a ( l ) . The statistics
based on the commutation relation (1) generalizes classical Bose and Fermi
statistics, corresponding to q = 1 and q = — 1 , respectively, as well as the
intermediate case q = 0 suggested by Hegstrom and investigated by Greenberg [1].
The study of the general case was inititated by Polyakov and Biedenharn [2].

Our first main result is a realizability theorem saying that the object just
described exists if — 1 < q < 1. In view of (2), we can think of the a(k) as
annihilation operators and the cfl(k) as creation operators. As well as the 0-
particle state |0>, our space must contain the many-particle states obtained by
applying combinations of a(k)'s and cft(k)9s to |0>. To prove the realizability of
our model it is obviously necessary and sufficient to consider the minimal space
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containing these vectors. We therefore define for each q e IR an inner product space
H (q) generated by |0> and its images under polynomials in the operators a(k) and
cf(k), subject to the relations (1) and (2). It has a basis consisting of ^-particle

for each n ̂  0 and each n- tuple of indices k = (kv , . . . , &„), since we can use (1) to
write any monomial in the a (&)'s and cfi (fc)'s as a sum of monomials having all the
a(ky$ on the right and all the at(fc)'s on the left, and the only ones of these which
do not annihilate |0> are those consisting of a^(k)'s only (the linear independence
is clear). By the same argument, we can use (1) and (2) to calculate each scalar
product (x, , xk) as a polynomial in q, for instance, for k φ / we have

(xw, x J = <0 \a(l) a(k) «t(/) Λt (k) \ 0> = q <0 1 a (/) at(/) a (k) tf(k) \ 0>

= ? <0 1 (1 +?αt (/)„(/)) (1 +q(f(k)a (k))\ 0> = <KO|0> = q.

(Here <0 1 denotes the operator ( 1 0>, ) and we have normalized by <0 1 0) = 1 .) In
particular, for each value of q the infinite matrix A(q) = {(*ι,#k)}u *s we^"
defined. The condition for the Hubert space realizability of the ^-imitator relation
(1) is then that A(q) be positive definite, i.e., that (x,x) > 0 for every non-zero
vector xeH(#).

Theorem 1. The matrix A(q) is positive definite for — \<q<\,so that the q-
mutator relation (1) has a Hubert space realization for q in this range.

It is easy to see that (*k, %,) vanishes unless k is a permutation of 1. Thus the
space H (q) [respectively the matrix A (q)] is the direct sum of infinitely many finite-
dimensional spaces (respectively matrices) indexed by all unordered ^-tuples
{k1 , . . . , kn}, and we only have to show the positive defmiteness of these. We will
show in Sect. 2 that the general case of this follows from the case when all of the
indices k{ are distinct. It is not hard to see (Sect. 2) that

~

for each permutation π in the nth symmetric group βw, where 7(π) denotes the
number of inversions of π, i.e., the number of /', y'e[l, n] for which / <j but
π ( i ) > π ( j ) . Thus the problem reduces to showing that the nlxnl matrix
Λ = Λ(ϊ) defined by

An(π9σ) = qllσ-^ (π, σeSJ (4)

is positive definite for q between — 1 and 1 . For this, in turn, it is sufficient by
continuity to show that An(q) is non-singular in this range, since An(G) is the
identity matrix and the eigenvalues of An (q) vary continuously with q and are real
for q real (because An(q) is real and symmetric). We will prove the following
stronger statement.

Theorem 2. The determinant of the matrix An(q) is given by

n-l n\(n-k)

deMn(?)= Π (l-ί*2+V+t (5)
fc=l

In particular, An (q) is non-singular for all complex numbers q except the Nth roots of
unity for N = 2, 6, 12, . . . , n2 — n.
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We will'also describe explicitly the inverse of An(q). Based on calculations for
n ^ 5, we conjecture that

Λ2 + k\ (6)
k=l

For instance, for n = 3 we have

1 9
1

q q'

q q

q q"
q3 q

nlq q
i
q

(7)

where the rows and columns are indexed by the elements of 83 in the order [123],
[213], [132], [231], [312], [321] (we use \j\ . ..jn] to denote the element π of 6n

defined by π(ί) =jι). The determinant of this matrix is (1 - #2)6(1 — q6) and its
inverse is

l+# 2 -q -q -q4

•q4 —q

1

9

+ q2

-q

-q
— q4

A.

-q

-q
ί+q2

-q4

-q
3 S

^q4

ί+q2q3

-q -

-q

-q
-q4

ί+q2

-q

-<f

-q
-q

ί+q2

(8)

Finally, we remark that the matrix An (q) splits as a direct sum of pieces
corresponding to the irreducible representations of SΠ, the piece corresponding to
a representation Π of dimension d being the direct sum of d copies of a d x d matrix
An π(q). For the bosonic and fermionic cases q = 1 and q = — 1 all of these
matrices are identically zero except for the one corresponding to the one-
dimensional trivial or alternating representation, respectively, but for — 1 < q < 1
Theorem 1 says that every representation of every symmetric group occurs in a
non-trivial (indeed, non-degenerate) way. (This is the reason for the term "infinite
statistics" used by the physicists.) It would be of interest to calculate the
determinants of the matrices An^π(q), say in terms of the Young diagram
corresponding to 77. By Theorem 2, each of these determinants is a product of
cyclotomic polynomials Φm(q) for integers m dividing some k2 + k,
\^k^n-\.

The paper is organized as follows. In Sect. 2 we give some generalities on group
determinants and show that Theorem 1 follows from Theorem 2, which is then
proved in Sect. 3. In Sect. 4 we give an explicit description of the inverse matrix of
An(q), while Sect. 5 gives a conjectural formula for the "number operators" in the
Hubert space H(#).

The author would like to thank O. W. Greenberg who told him about the q-
mutator relation and suggested the problem of proving the positive definiteness
for — 1 < q < 1. This positive definiteness has been proved independently by Fivel
and by Bozejko and Speicher [3]. (However, Fivel apparently asserts that the zeros
of An(q) are all roots of q2n = 1, which contradicts Theorem 2 and is false for all
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n ^ 4.) Consequences and related results are discussed in several subsequent
papers by Greenberg [4].

2. Group Determinants and the Reduction to An(q)

Let G be a finite group of order m and ρ: G -» GL(V) a representation of G on a
(finite-dimensional) complex vector space V. We can extend ρ to an algebra
homomorphism from the group algebra

to the matrix algebra End(F) by ρ (£/##) = Σtgρ(g). The determinant of
ρ(Σtgg) is a polynomial Fρ(t) of degree dim(F) in the m variables t = {tg}geG

which is determined by and uniquely determines the isomorphism class of the
representation ρ. Thus the entire representation theory of G can be expressed in
terms of the "group determinants" FQ (t); this is in fact the way that representation
theory was developed in its early years (see for instance Weber's Lehrbuch der
Algebra, Vol. 2, Chap. 7).

If V is reducible, say V= V^®V2, then FQ (t) splits as Fρι (t) FQ2 (t), so the study
of group determinants can be reduced to the case of irreducible representations of
G. At the other extreme, let(F,/?) be the (right) regular representation of G, i.e.
V = (CG is the m-dimensional vector space of functions /: G -> C and ρ = R is
given by

The matrix representation of R with respect to the basis of ^-functions on G is
clearly given by

o otherwise,

so that the group determinant FR (t) is the determinant of the m x m matrix
(to - 1 d2)g ? ̂  e G . It is well known that R contains every irreducible representation Π
of b with positive multiplicity (equal to dim Π). Hence if FR (t) φ 0 for some te(Cm

then Fπ(i) Φ 0 for every irreducible representation π and consequently Fρ(t) φ 0
for every representation ρ of G. —

Now apply this to G = SΠ, m = n\. Formula (4) and the discussion just given
say that An = An(q) is just the matrix representation ^(αn) of the element

«„ = «„(?)= Σ <7/(π)πeC[SJ (9)
πe<5n

acting on the regular representation (CSn, R). Here we are thinking of q as being a
complex number; if q is thought of as a variable, then αn (q) belongs to the group
ring TL [q] [SJ. We will usually consider q as fixed and omit it from the notation. To
prove Theorems 1 and 2, we will forget that αn is acting on (CSn and simply show
that it is invertible in the group algebra if Π?= ί 0 ~~ ̂  +/c) + 0> in which case the
inverse of the matrix An is simply the matrix ^(α"1).

We now use this point of view to show how the positive definiteness of
A(q) = {(x,,xk)} follows from that of the n\ x n\ matrices An(q) for n = 1,2,3, . . . .
Equation (1) gives by induction the formula for any indices /, kl9 . . . , kn (not
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necessarily distinct)

where the sum runs over those indices ί for which kt equals / and the hat over the /th

term of the product indicates that this term is to be omitted. Combining this with
(2) gives

Now induction on m gives a formula for a(lm) - - αC/Oα^i) ' ' ' flt(^«)|0> as a

sum of terms qNa^(kl) - - - tf(k^) - αf(^D ' ' ' βt(^J |0>, where /x , . . . , zm are
distinct indices with kίί9 ... ,kim equal to l± , . . . , lm in some order, the final result
for m = n being

, ... ,
ι'ι, . . . , ιndistinct

kiί=lι, ...,kin = ln

i.e., in the notation of Sect. 1,

(x,,xk) = <0|«(/n) ••• αC/Oαt^J - - - αt^jio) = £ ^w. (10)

This formula includes (4) and also shows that (xι,xk) = 0 unless 1 and k are
permutations of one another, as already mentioned in Sect. 1 , so that A (q) splits
up into the matrices Ak having as entries the numbers (x,, xk) for 1 and k ranging
over all permutations of a given index set k0, e.g. for k0 = (k, k, /) with k Φ /

( (Xkkl -> Xkkl) (Xkkl •> Xklk) (Xkkl -> Xlkk)

(Xklk>Xkkl) (Xklk>Xklk) (Xklk>Xlkk)

(Xlkk •> Xkkl ) (Xlkk -> Xklk) (Xlkk -> Xlkk)

/ ί+q q + q2 q2 + q3"

= q + q2 1+q* q + q2

\q2 + q3 q + q2 ί+q

In each such matrix, the rows and columns are indexed by the permutations
k = πk0 of k0 or equivalently by the left cosets G/H, where G = ®Λ and H is the
subgroup of permutations of SΠ fixing k0. Write k = <jk0,1 = τk0 with σ, τe ®w;
then (10) says that the (l,k) matrix coefficient of Ako is equal to

^/(π)

πe<5n
πσH = τ

But a moment's thought shows that this is simply the (τH, σ7/)-matrix coefficient
(with respect to the basis of ^-functions) of the element
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on the subspace V = <CG/H of (CG consisting of functions /: G -> C which satisfy
f(gh) = f(g] for all g e G, A e //. This subspace is invariant under the action RofG
on CG, so that (F, /?) is a representation of G. Hence if αn is invertible in the group
algebra CC[G], then the matrix Ako is invertible. This completes the reduction of
Theorem 1 to Theorem 2.

3. Factorization of αΛ; Proof of Theorem 2

We first introduce some notations. As in Sect. 1 we denote by [ί1 , z*2, . . . , Q the
permutation in Sn which sends 1 to iί , 2 to /2 , . . . , « to /„ . We identify 2>M_ x with
the subgroup of 6M consisting of permutations fixing n. For 1 <; k ^ π we denote
by T;,,, the element [1, . . . , k- 1, n, k, k+ 1, . . ., n- 1] of ©„, i.e.

1 ^ / < k,

i = n.

Any element πeSM can be represented uniquely as σTk > π with σe® n _ 1 and
\ ^k^n (namely k = π~1(n), σ = πΓ^1), and a short calculation shows that
then 7(π) equals I(σ) + n — k. Hence

«„ = Σ <7/<π)* = Σ ^/(σT

πe®n σeSn-ι

1 ^k^n

In other words,

Proposition 1. Define βn = βn(q) = Σ ?""*7i.»eC[©J. ΓAβ/i αn = an_^n.
fe=l

Here αn _ x is considered as an element of (C [S J via the inclusion Sn _ ! c Sn . In
particular, the representation of α n _ j in /?„, the n\ -dimensional regular represen-
tation of ©„ , consists of n copies of the representation of απ _ i in Rn _ : . Thus in
terms of the matrices An we can rewrite Proposition 1 as An = (An_± (x) 1M) Bn,
where An_v® ln denotes the n\ x n\ block matrix with n copies of ^ M _ x on the
diagonal blocks and zeros elsewhere and Bn = Bn(q) has the matrix coefficients

qn~k if πσ~l = T k n f o r some 1 ̂ k^n,
θ otherwise.

In particular, det(^4n(g)) = det(^4n_1(^))" det (#„(#)), so by induction on n we
have reduced Theorem 2 to the simpler

n-l n!

Theorem 2'. det (£„(?))= Π C1 -^2+fc)fc2+/c .
i = l

We now make a second reduction by expressing Bn in turn as a product of yet
simpler matrices.

Proposition 2. For each n define elements γn, δn in the group algebra C[SJ by
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Proof. Let&,n= £ q -kTkιlt, so that βlt, = βn, /?„,„ = 1 (note that Γπ>π = leSJ.
fc = r

Using the easily checked commutation relation

we find
n

R - (\ nn~TT Λ— V nn~kT 4-/ιn~rT
Pr,n V 1 " ^ 1rtn) — Lt % 1k,n~^~ <1 1r,n

n-l

-qn~rτr,n- X q2n~k~rτk>nτr9n
k = r

r 7- 7-
1r,n-ί1k,n

and hence by induction on r (starting with the trivial case r = 0)

/^(l-^-^J •••(!- 4"-^)

= (l-?π7\.»-ι) (l-?" + 1"Γ7; f l l- 1)/? r + l f l I .

The case r = n — 1 of this identity is the desired identity. D

To complete the proof of Theorem 2 we need to compute the determinants
of the factors in γn and δn-1 under the regular representation Rn of ©„. We use
the inclusions Qb c Sb+1 c c(3n to define elements Γ f l b eS n for all
1 ^ β ̂  Z? ^ n (we actually need only the cases b = n — 1 and π). Its characteristic
polynomial is given by:

Lemma. For 1 ̂  a ̂  b ̂  n the determinant of Rn(\ - tTa>b) is (1 -

Proof. The element Γfl ^e Sπ is a cyclic permutation of the indices α, a + 1, . . . , b
and hence has order b — a + 1 . But if G is an arbitrary finite group of order m and
# e G an element of order d, then the characteristic polynomial det (1 — tR(g)) ofg
under the regular representation is (1 — td)m/d, because the cycle structure of the
permutation of G given by left multiplication by g~ x consists of m/rf disjoint cycles
of length d. The lemma follows. D

The proof of Theorem 2 is now immediate: we have

det (*„(?„)) = Π det(Λn(l -qk ΓB_t>B)) = "π (1 -^(lc+1))^Γ,

det (*„(<$„))=
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and hence

detCδ ) - detίΛ (B}} - <**(*•(*-'»det (*„)-det (*„(//„))-
yj) detGRπ(y«))

«-l H (κ-l)! n!
ΓΊ (\_gk(k+l)\ k k+1

k=l

-lid-

which is Theorem 2r; Theorem 2 then follows by induction from this and
Proposition 1.

4. Formula for An(q)~v

According to Propositions 1 and 2 we have

and hence

Vn1 = ynδn-\yn-l •" Ml"*-

To invert αn, therefore, the first step is to invert δk for each k.

Proposition 3. For π e ®w define W(π)εZ by

W(n) = Σ (1 +(/ι + l -0(ι + l

βn = £ ^^^π" x e ®Π. Then δ~ 1 = — - εn with An+l as in Eq. (6).
πe<5n ^n+1

Proof. Denote by σi— x? the map ®Π_ 1^S n defined by σ(l) = 1,
<τ(/) = σ(/— 1) + 1 for / > ! (this is a homomorphism since σ is just
T^σT^n). Then Ta,b=Ta + ,ίb+v for l ^ f l < f t ^ n - l , so
(?„ = (1 — ^Π+ 1 Tγ „) ^Π_ ! . Hence by induction it suffices to show that
εn(l-^+1Γ1)n) = (l-^ 2 +»)εn_ 1.

For πe® Π , let A: = π *(1) and denote by π' the element J\ nπ of ®Π. Since
π'(fc) = « but π'(/) = π (ί) — 1 for all / φ fc, all the terms in the definition of W(π)
and of W(n') are the same except those with / or j equal to k, so
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W(π') - W(π) = Σ (1 + (« + 1 - fc) („ + 1 -_/)<J.>t+,)

= n - Jt + (n + 1 - k) (n - k) - (k - 1)

ι + \-k)(n + 2-k) if k > 1
^0 i f f c = l

•-«-! i f f c φ l ,

Hence

= d-<7"2+") Σ ί™*"1

σ e @ Λ _ j

as desired. D

We next give a formula expressing γn as a sum rather than a product.

Proposition 4. The element γn e ®M defined in Proposition 2 is given by

yn= Σ y-.». ?„.» = (-i)"-* Σ ί1"^'1,

SΠ>fc w ίAe subset of&n of cardinality (^1 }) consisting of those permutations π
for which π(l) < - < π(k)> ••• > π (n).

Proof. Multiplying out the terms in the product defining γn , we find

The element σ = Ttl nTh n - - Tis n of Sn maps /x to «, i2 to Λ — 1, . . . , and is to
« — ί-+l , and maps the rest of {1,2, ...,«} monotone increasingly to
{1, 2, . . . , ft — 51}. Moreover, it is easy to check that (n — iJ + + fa — is) equals
7(σ). The proposition now follows on setting π = σ"1 and k = n — s. D

The explicit formulas for <J ~ x and yn just given together with the formula
°C x = ynδή-ι α«~-1ι give an inductive method to calculate αΛ for each w. To describe
this a little more explicitly, we define another element of <C[® J by

with εn as in Proposition 3. We conjecture that ζn has coefficients which are
polynomials in q. Propositions 1-3 give α"1 = /I~1γnζn_l9 so this conjecture
implies the conjecture in (6). In fact, the two propositions are equivalent. Indeed,
for each π e <5Λfk we have π(k) = n and hence π = σTn>k for some σe 6n_ j , so 7M>fc
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equals ϊ^yί-i.* with y^^eCtS,,^] (in fact γ*-1,k = γn-ι,k-ι-Yn-ι.k) Jt

follows that if π is any element of ®Π, and π = σTnk(l ^k^n, aeSn_!) its
canonical decomposition as at the beginning of Sect. 3, then the coefficient of π in
z^α"1 equals the coefficient of σ"1 in y * _ l f Λ f » - ι . In particular, taking k = nwe
find that the first (« — !)! coefficients in z/nα~ 1 are exactly the coefficients of £„- 1 ,
so that the integrality of Ana,n implies that of C n _ t for each n.

We illustrate with numerical examples for n^4. For n = 2 we have

We see that (2 is integral and that its coefficients are the first two coefficients of
zf3α3~ *, i.e., the first two coefficients of the matrix in (8). The other coefficients of
α^1 are obtained by multiplying ζ2 by the elements y|>fe for
k = 2 and k = 3, and we find

- <?4[231]

giving the remaining coefficients in the first row of the matrix in (8) (the other rows
are permutations of the first one). Write this as Δ3a.3

 1 = {1 + q2, —q, —q, — q4,
— q4, q3 + q5} in the obvious notation. Using this value of αf 1 and the value
ε3 = {l, q\ q3, q4, qs, q11} we find ζ3= {ί +2q2 + q4 + 2q6 + q8,
— q — q3 — qs — q7, —q — q1, —q4, —q4, q3 + q5}, which is integral as claimed.
Now multiplying this by the various components y4>fc(l ^ k ̂  4), we find

-q-q3-qs-q7, -q-q7

q6, -q4, -q9 - q11, 0,

q9- q11, q10, q10, q7 + q13, q7 + q9 + q11 + q13,

where the 24 components have been listed in the obvious order (namely, the
elements σ 6 S3 in the order above, followed by the elements T3 4σ with the same
σ, then the T2Λσ, then T1Λσ). This gives the 24 elements of the first row of the
matrix A4(q)~ \ the other rows of course being permutations of this one. We have
also checked the ζ4 has integral coefficients and thus that (6) holds for n = 5.

5. Number Operators

For each index fe, the kth number operator is the operator on H having each vector
xk = a^(k^) - - - a^(kn) |0> as an eigenvector with eigenvalue equal to the number of
/with ki = k, so that the eigenspace ofN(k) with eigenvalue r is the space spanned
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by the states containing exactly r particles of type k. It is easy to see that this
definition is equivalent to the requirements

= 0, [N(k)9 αt(/)] = δ k l r f ( l ) for all / (11)

(and hence [N(k)9a(l)] = -δkla(l) for all /).
Consider first the case in which there is only one operator α(l) and its adjoint,

i.e., only one kind of particle. In this case H(#) can be realized explicitly as the
space spanned by vectors e0 = |0>, eί , e2, . . . with

n + 1,

since then

α(l) «'(!)*„ - 9flt(i) α(lK = ̂ -̂  β, - q ί^ en = en,

while the number operator N ( ί ) is given by either of the two formulas [5]

"(i) = Σ (}Ξf «w«(D« = Σ £$> www, w

as one sees either by computing the action of the expressions on the right on
the vectors en or else by verifying the relations (11) using (1) and (2). The first
formula makes sense for all q between —1 and 1, the second (which

1 - QN(I)

can be rewritten 4 * - = cfl(\)α(\)) only for 0 < q < 1. Both reduce to
1 -q

7V(l) = α t(l)α(l)in the limit as q tends to 1 . For q = 0 the first formula reduces to

00

ΛΓ(1)= £ αt(iyχi)" (tf = 0), (13)
M = l

which makes sense since only finitely many of the terms act non-trivially on any
given state.

In [1], Greenberg showed that the generalization of (13) to the case when there
are many indices k is

n = l
Σ *W ' ' *f(*2) <t(k)α(k) α(k2) - α(kn) (q = 0) .

We now give a conjectural generalization of this formula to the case of arbitrary q
between —1 and 1. It is convenient to express the formula for all N(k)
simultaneously by giving a formula for the energy operator $ = ^kEkN(k), where
the Ek (interpreted as the energy of particle k) are scalar coefficients.

Conjecture. The operator <$ is given by

* = Σ Σ Σ Σ ct(q, n)Eki at(£π(π)) - αt(£π(1)) a(kl) - - . a(kn} ,
n= 1 kι,...,kn πe<5n i= 1
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whqre the coefficients ct(q,n) are given by

.zXl -?2ATlt3)

This formula gives the correct result up to terms annihilating all 1-, 2-, and 3-
particle states, viz:

T~2 ΣJ ~tf k,(

((1 + <72)

- q(Ek + ̂  + ^r6^m) a\πί)

- q\Ek + % + EJ tf(k) a

- q\

+ q\\

Note added in proof. The conjecture stated in this section has now been proved by Sonia Stanciu
(see paper following this one).
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