
commun. Math. Phys. 147,75-ioo (1992) Communications in
Mathematical

Physics
© Springer-Verlag 1992

Rapidly Decaying Solutions
of the Nonlinear Schrδdinger Equation

Thierry Cazenave1 and Fred B. Weissler2'3

1 Analyse Numerique, Universite Pierre et Marie Curie, 4, place Jussieu, F-75252 Paris Cedex 05,
France
2 Centre de Mathematiques, ENS Cachan, 61, Avenue du President Wilson, F-94235 Cachan
Cedex, France
3 UFR de Sciences, Universite Paris XII, 61, Avenue du General de Gaulle, F-94010 Creteil Cedex,
France

Received April 8, 1991

Abstract. We consider global solutions of the nonlinear Schrδdinger equation

iut + Δu = λ\u\*u, in RN, (NLS)

K j o Λ n 4 r , i 2-^where AeR a n d 0 < α < . I n particular, f o r α > α0 = ,
N-2 2N

we show that for every φeH^R*) such that xφ(x)eL2(RN), the solution of (NLS)
with initial value φ(x)ei(b^2/4) is global and rapidly decaying as ί~> oo if b is large
enough. Furthermore, by applying the pseudo-conformal transformation and study-
ing the resulting nonautonomous nonlinear Schrόdinger equation, we obtain both
new results and simpler proofs of some known results concerning the scattering

4 4
theory. In particular, we construct the wave operators for < α < . Also,

^ ^ N + 2 N-2
we establish a low energy scattering theory for the same range of α and show that,
at least for λ < 0, the lower bound on α is optimal. Finally, if λ > 0, we prove

4
asymptotic completeness for α0 g α < .

N — 2

1. Introduction

In this paper we study solutions in RN of the nonlinear Schrδdinger equation

ίut + Δu = λ\u\*u. (1.1)

Here u = u(t, x) is a complex valued function defined for ί in some subset of the real
4

numbers and all xeRN, λeR, and 0 < α < . We frequently write u(ί) for the
N — 2
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spatial function w(ί, ) One natural point of view in studying solutions of (1.1) is to
study the associated Cauchy problem, where the initial value φ = w(0) is specified.
As is well known (see for example [18, 4]), this Cauchy problem is formally equivalent
to the integral equation

u(t) = S(t)u(0) - iλ\S(t - s)\u\*u(s)ds, (1.2)
o

where

S(t) = eitΔ

is the unitary group determined by the linear Schrόdinger equation, i.e. when λ = 0.
S(t) is given by the well-known complex Gauss kernel,

/2 f ei(lχ-y\2/4t)φ(y)dy. (1.3)
RN

We are primarily concerned with (positively) global solutions to (1.1), that is solutions
which are defined for all t ̂  0; and our goal is to study the decay and scattering
properties of such solutions. In particular, we define below a solution u to be rapidly
decaying if a certain space-time integral of u is finite; and we give (for α in a certain
range) a sufficient condition on the initial data φ for u to have rapid decay. In the
case λ < 0 and α ̂  4/JV, this yields a new global existence result and gives some
insight into finite time blow up. Also, we improve (on the lower side) the range of
α for which certain scattering properties of solutions to (1.1) are known.

Before describing our results in more detail, we recall some basic facts about
4

solutions to (1.1) and (1.2). For 0 < α < - the Cauchy problem corresponding
N — 2

to (1.1) is well posed both in Hi(RN) and in the space

X = {ueH1(RN); \ \u(-)εL2(RN)}.

One first proves local existence and uniqueness of solutions to (1.2), and then shows
that the solution satisfies (1.1) in an appropriate sense. For precise statements see
[10,4]. Moreover, these solutions satisfy the following conservation laws:

II u(t) \\L2 = || w(0) ||L2, (conservation of charge) (1.4)

E(u(t)) = E(w(0)), (conservation of energy) (1.5)

and

^Λ|(x + 2frV)fi(ί)|β^ (1.6)
dt\ α + 2 / α + 2

where E is defined by

E(u(t))=l- f |VW(ί,x)|2Λx + -̂ - j \u(t,x)\*+2dx.
2 R" α + 2 RN

Conservation of charge and energy hold for all H1(RN) solutions, while (1.6), the
"pseudo-conformal conservation law" is valid only for solutions in X. Note that
this law is a true conservation law only if α = 4/N.
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If λ ̂  0, then all solutions of (1.2) are global and bounded in H1(RN). As well, if
λ < 0 but α < 4/N9 all solutions are global and bounded in H1(RN). If λ < 0 and
α ̂  4/N9 then all solutions with small initial data (in H1(RN)) are global and bounded
in H1(RN), but some solutions blow up in finite time [10,15,24,4].

Concerning the scattering theory, several results are available. If α > 4/N and
λ > 0, then a scattering theory can be constructed in H1(RN), provided N^3. If
λ < 0, a similar theory can be constructed, but limited to small solutions [12,13].
If α>α 0, where

2N
(1.7)

and λ > 0, then the scattering theory can be constructed in X [26, 17]. The same
holds for small solutions if λ < 0 [22, 23]. Note that 2/N < α0 < 4/N. On the other
hand, if α > 2/N and λ > 0, then every solution with initial value in X has a scattering
state in L2(R"), that is S( - t)u(t) has a strong limit in L2(R*), as t -» oo [27]. Finally,
if α ̂  2/N9 then no scattering theory can be constructed since for any nontrivial
solution u of (1.1), S( — t)u(t) does not have any strong limit in L2(RN) as ί-> ± oo
[14,21,22, 1,27]. However, there still remains a gap between 2/N and α0 for the
scattering theory in X and between 2/N and 4/N for the scattering theory in H1(RN).

The main result of this paper is the existence of a scattering theory in X, i.e.
asymptotic completeness, for (1.1) in the case λ > 0 and α = α0 (Theorems 4.9 and

4
4.10). Also, we extend the lower limit of α to - for which a low energy scattering

N + 2
theory in X exists (Theorem 4.2 and Corollary 4.3); and we prove that for these new
values of α the wave operators are defined on all of X (Proposition 4.6). Our proofs
make use of the pseudo-conformal transformation for (1.1), which has previously
been used by Yajima [29], Tsutsumi and Yajima [27] and Tsutsumi [26] to study
the scattering properties of Schrόdinger equations.

In connection with the decay properties of solutions to (1.1), we make the
following definition.

4
Definition 1.1. Suppose 0 < α < - (0 < α < oo, if N = 1,2). A positively global

N — 2
solution u of (1.1) has rapid decay (or is rapidly decaying) if

JII«Wlll . + W ί < 0 0

0

where

a= . (1.9)
4 - α(ΛΓ - 2)

In principle, the decay of u(t) could be measured by || u(t) \\Lr(RN) for any r with
2N

2<r< . We choose r = α + 2 since the energy of the solution explicitly
N — 2

involves the LΛ+2(RN) norm, as well as the fact that the nonlinear term in (1.1) is a
mapping from U(RN) into its dual precisely when r = α + 2. The value of a is
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determined by (1.1) in the following manner. If u is a solution of (1.1), then for all
y > 0, uγ is likewise a solution of (1.1), where uy(t,x) = y2/Λu(γ2t,γx). We would like
the parameter a to be chosen so that the space-time integral (1.8) is invariant under
the transformation u^uy. A straightforward calculation shows that the correct
value of a is given by (1.9). 4

One of our principal results (Proposition 2.4) is that if α0 < α < - and if
N-2

φeX is such that J \\S(t)φ\\a

La+2dt is sufficiently small, then the corresponding
o

solution of (1.1) is positively global and has rapid decay. We deduce from this that
if b > 0 is sufficiently large, then the solution of (1.1) with initial value φ(x)eί(b|αc|2/4)

is positively global and has rapid decay (Corollary 2.5). In particular, if λ < 0 and
4 4
— < α < - , finite time blow up of solutions to (1.1) can not be deduced solely
N" N-2
from properties of the modulus of the initial value.

Much of the recent work on (1.1) makes use of space-time estimates for the linear
homogeneous and inhomogeneous Schrόdinger equations. These estimates go back
to Strichartz [25] and were first used systematically to study the nonlinear Schrόdinger
and Klein-Gordon equations by Ginibre and Velo [11-13]. Since then, these in-
equalities have been extended and generalized, for example in [28, 5, 6, 8, 9, 19]. In
this paper we use the following results of this type [11, 5,4].

Definition 1.2. An admissible pair in RN is a pair (q, r) of real numbers such that

2N
(i) 2 ̂  r < - (2 ̂  r < oo, if N = 2; 2 ̂  r ̂  oo, if N = 1);

In particular, the pair (oo,2) is always admissible. Note that, if(q,r) is an admissible
pair, then ge(2, oo](ge[4, oo], if N = 1).

Proposition 1.3. The Schrόdinger group S( ) satisfies the following properties.

(i) IfφeL2(RN), then S(-)φeC(R,L2(RN))nLq(R;Lr(RN)) for every admissible pair
(q, r). Furthermore, there exists a constant C depending only on q such that

l|S( )φl lL. ( R,Lo^C| |φ | | L a , (1.10)

for every φeL2(RN).
(ii) Given 0 < Γ < oo and fe 11(0, Γ; H~ '(R")), let ̂ >eC([0, Γ], H~ ^R")) be defined
by

&f(t) = \S(t-s)f(s)ds, for all ίe[0,Γ]. (1.11)
o

If(q, r) is an admissible pair andfεLq'(0, T; Lr'(RN)\ then

#}eC([0, T], L2(RΛΓ))nLy(0, Γ; Z/(R"))

for every admissible pair (y, p). In addition, there exists a constant C, depending only
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on y and q, such that

H^/llL,(O.Γ;LP)^C||/| |^ (o fΓ;Lr> (1-12)

for every /eZ/(0, Γ; U'(RN))9 where ' denotes the conjugate exponent.

4
Definition 1.4. Suppose 0 < α < (0 < α < oo, if N =1,2). A positively global

N — 2
solution u of (1.1) has linear decay ifuELq(Q, oo;Lr(RN)), where (q,r) is the admissible

4(α + 2)
pair such that r = α + 2. Note ί/iαί q = .

AΓα

Note that linear decay and rapid decay coincide if and only if α = 4/N. Moreover,
for this value of α, Eq. (1.1) has some special invariance properties not shared by
the other powers. In particular, if α = 4/N and u is a solution of (1.1), then v9 defined
by

υ(t9x) = (l+btΓN/2u
l + bt l+bt

is likewise a solution of (1.1). It follows that global and nonglobal solutions can be
transformed into each other. In [7] we used this transformation to study decay and
scattering properties, as well as finite time blow up, of solutions to (1.1) with α = 4/N.
Even though for other values of α, (1.1) is no longer invariant under the transformation
(1.13), this transformation still provides a tool for studying global solutions of (1.1).
As mentioned above, this idea has been effectively exploited in the works of Yajima
[29], Tsutsumi and Yajima [27] and Tsutsumi [26].

If u is a solution of (1.1), then υ defined by (1.13) satisfies a nonautonomous
version of (1.1), namely

iυt + Δv = λ(\ + ftf)(*α~4)/2blαtλ (1.14)

Taking, for example, fe = — 1, one sees that u defined on [0, oo) corresponds to υ
defined on [0,1). The study of the asymptotic behavior of u as ί-> oo is thereby
reduced to studying the Cauchy problem for (1.14) at the (perhaps singular) point
ί = 1. The local study of (1.14) is analogous to the local study of (1.1). The basic idea
is to use the linear estimates in Proposition 1.3 to effect a contraction mapping
argument for the corresponding integral equation. For Eq. (1.1) this theory has been
developed in the papers [11,18,6]. For (1.14), this theory has been developed
by Tsutsumi and Yajima [27] and Tsutsumi [26], and has been constructed for

4
α0 < α < , where α0 is as in (1.7). In the present work, using a function space

N-2 4
motivated by [6], we are able to bring down the local solvability from α0 to .

See Theorem 3.4 for the precise statement, as well as Remark 3.5 (ii) for an explanation
of the choice of function space used in the proof of local existence.

More interesting than the local study of (1.14) is the global study of (1.14), in
other words the existence of solutions to (1.14), with b = — 1, on the closed interval

4
[0,1]. Up until now, it is known that if λ ̂  0 and α0 < α < , then all local

solutions are global. By combining lower bounds for nonglobal solutions obtained
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from the local existence theorem for (1.14) with energy estimates for (1.14), we are
able to prove that all solutions are global if λ > 0 and α = α0 (Proposition 3.12). This
result is equivalent, via transformation (1.13), to asymptotic completeness.

We remark that any fact about solutions to (1.1) proved via the pseudo-conformal
transformation can be proved directly. Such proofs have been given by Ginibre and
Velo [10] and by Hayashi and Tsutsumi [17] for the previously known scattering
results; and in principle the new results presented here could be proved similarly.

The rest of this paper is organized as follows. In Sect. 2 we study rapidly decaying
solutions of (1.1). In Sect. 3, we study the Cauchy problem for the nonautonomous
Equation (1.14) with b < 0, which we can take for convenience to be — 1. In Sect. 4,
we use the results of Sects. 2 and 3 to study the scattering theory for (1.1). In Sects. 3
and 4, we develop the scattering theory in X in its entirety, rather than proving only
our new results. Indeed, our treatment gives the previously known results with no
extra work, and provides a unified exposition of the theory. In Sect. 5, we make some
additional remarks, including a heuristic interpretation of finite time blow up of
solutions to (1.1).

Throughout this paper we use the following conventions. All function spaces
are spaces of complex valued functions. The number α always satisfies

A
0 < α <

JV-2

It is understood that the second inequality means α< oo if N = 1,2. Finally, α0

always denotes the value given in (1.7).

2. Rapidly Decaying Solutions

We begin this section with a space-time inequality for S(t) that involves non-
admissible pairs.

Lemma 2.1. Let (q, r) be an admissible pair with r>2. Fix a>- and define a by

V = 2. (2,)
a a q

If T>0 αnd/eL5'(0,Γ;LΓ'(RN)), then J^eLα(0, T; Lr(R")), where Pf is given by
(1.11). Furthermore, there exists a constant C, depending only on N9 r and a such that

.(0fΓ;Lr'), (2-2)

for every f eLa' '(0, T; Lr'(RN)).

Proof. By density, we only need to prove estimate (2.2) for/eC([0, T\9^(RN)). It
is well known and follows easily from (1.3) by interpolation that

whenever 2 ̂  r ̂  oo. Therefore,

Lr g (4π(ί _

0
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and so (2.2) is an immediate consequence of the Riesz potential inequalities ([20],
Theorem 1, p. 119). Π

Lemma 2.2. Let r = a + 2,let (q, r) be the corresponding admissible pair, and let a be
given by (1.9). Then a > q/2 if and only if α > α0, with α0 defined by (1.7). For such
values of a and a, and for 0 < T ̂  oo, we have the following estimates for 3F defined
by (1.11).

(i) If uELa(Q,T;U(RN)), then J^M,ueLfl(0, Γ; Lr(RN)). Furthermore, there exists C
depending only on N and α such that

II ^\u\*u \\L?(Q,T',Lr) = C || U Hί,o(o,Γ;I/ )' P ^)

for every weLfl(0, T; U(RN)).
(ii) // weLΛ(0, Γ; Lr(R"))nL«(0, T; W^R*)) and if(γ,p) is any admissible pair, then
J*|u|*ueLy(0, Γ; Wlip(RN)). Furthermore, there exists C depending only on N, α and p
such that

II ^\u\*u \\mθ,T;Wl>P) = C II U NL«(0,Γ;LO II U \\Li(0,T;Wl'>V (2-4)

/or every weLα(0, T; Lr(R"))nL«(0, T; W^r(RN)).

Proof. The first part of the lemma is a simple calculation, which we omit. For
assertions (i) and (ii) consider a defined by (2. 1). Since (α + l)r' = r, (α + l)a' — a and

we see that

l l |w | α W|l L α - ' ( 0,Γ;L-) = H M l lL^,Γ;LO

and (applying Holder's inequality twice) that

II I U\ U \\L4'(0,T;Wl'r') = ̂  I ' U llL°(0,Γ;Lr) II U llί/HO.Γ W1-'-)-

The results now follow from (2.2) and (1.12) respectively. Π

4
Proposition 2.3. Assume that α 0 < α < - , where α0 is defined by (1.7). If we

N — 2
C([0, oo ), H \RN)) is a rapidly decaying solution of (1.1), then WEZ7(0, oo; W^P(RN))
for every admissible pair (γ, p). In particular, u has linear decay.

Proof. It is known [18,6] that ueU(Q, T; W1*^)), for every T< oo and every
admissible pair (y, p). For a fixed T ̂  0, we set v(t) = u(t + Γ); and so

v(t) = S(t)u(T)-ίλ^lvl«v.

As before, set r = α + 2, and let q be such that (q, r) is an admissible pair. Let (γ, p)
be any admissible pair, and let a be defined by (1.9). It follows from (1.10) and (2.4)
that

for every τ > 0. Choosing T large enough so that C2 1| u \\Λ

La(T ^.Lr} ^ 1/2 and letting
(γ,p) = (q,r), we see that
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for every τ>0. Hence ueLq(0, oo; W^r(RN)). That weί7(0,oo; W^P(RN)) for any
admissible pair (y, p) now follows from (2.5). Π

4
Proposition 2.4. Assume α0 < α < - , where α0 is defined by (7.7), αnd feί α fee

N — 2
given by (7.9). There exists ε > 0 swcA ί/zαί ι/ φeH1^) and \\ S( )φ \\La(0t00.L*+2) ^ ε,
then the maximal solution u of (1.1) with initial value φ is positively global and has
rapid decay.

Proof. Let ε > 0 and set r = α + 2; let φe/ί^R*) be such that || S(-)φ ||L«(o,oo;ί/ ) ̂  ̂
and let u be the maximal solution of (1.1) with initial value φ, with [0, T*), 0 < T* ̂  oo,
the maximal existence interval of w. Consider q such that (g, r) is an admissible pair.
It follows from (2.3), (1.10) and (2.4) that there exists K independent of φ such that

and

I I u Lw.wi.*) ^K\\φ\\H, + K\\u ||«β(0t Γ;Lr) || u ||L«(0t Γ iΓi.Γ), (2.7)

for every T < Γ*. Assume that ε satisfies

2 α + 1 Xε α <l. (2.8)

Since || u ||L«(O,Γ;LO depends continuously on T, it follows from (2.6) and (2.8) that

Applying (2.7) and (2.9), we get

(2.10)

Applying now (1.10) and (2.4) with (y, p) = (oo, 2), and using (2.9) and (2.10), we see
that

Therefore [18, 5], T* - oo, and the result follows from (2.9) and Proposition 2.3. Π

4
Corollary 2.5. Assume that α 0 < α < - , where α0 is defined by (7.7). Suppose
φeX. N~2

(i) There exists b0 < oo such that for every b ̂  ί>0, the maximal solution of (1.1) with
initial value φb(x) = ei(b^2/4)φ(x) is positively global and has rapid decay.
(ii) There exists s0 < oo such that for every s ̂  s0, the maximal solution of (1.1) with
initial value ψs = S(s)φ is positively global and has rapid decay.

Proof. Since φeX, we have φbeX, for every beR. Let (q,r) be the admissible pair
such that r = α + 2 and let a be defined by (1.9). Using the explicit kernel (1.3), one
verifies that (see for example [7], formulas (3.2) and (3.3))

I/f t

l|S( )Φ6llL-(o.co;Lo= ί (l-bτ)2*-^\\S(τ)φ\\a

Lrdτ.
0

Since || S(τ)φ \\Lr^C \\ S(τ)φ \\Hl^C\\φ ||Hι and ^ ~ ̂  > - 1, it follows that

ft|oo
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By Proposition 2.4, this proves the first assertion. To prove the second assertion, it
suffices to note that, since φeX, \\ S(-)φ \\La(Qf00.Lr) is finite. Π

4 4
Remark 2.6. Suppose that — ̂  α < and that λ < 0. If φ e X is such that E(φ) < 0,

then it is well known [15,24,4] that the maximal solution u of (1.1) with initial value
φ blows up in finite time, for both t > 0 and ί < 0. Corollary 2.5 implies that if ft
is large enough, then the maximal solution ub of (1.1) with initial value φb(x) =
φ(x)ei(b^2/4) is positively global and has rapid decay. Of course, E(φb) ^ 0 for such
ft's, and one may wonder if ub still blows up at a finite negative time. The answer is
yes, as the following argument shows. Changing φb to ~φ~b (which changes ub(t) to

ub( — f)), it suffices to show that if E(φ) < 0, then for all ft > 0 the solution u of (1.1)
with initial value φ(x)e~i(blxl2/4) blows up at a positive finite time. Let T* be the
maximal existence time of u, and let f(t)= \\ | |w(ί, )||J2. It is well known [10,4] that
/eC2([0,Γ*)),

/'(ί) = 4Im J xΰVudx,

and

Λ(\Ί~ Λ\

\u\*+2.
α + 2

Therefore,

— f f f M*+2dxdσds, (2.11)
α -I- 2 o o R"

for all 0 ̂  t < T*. It follows that

/(ί) ̂  /(O) + ί/'(0) + 8£(W(0))ί2, (2.12)

for all 0 ̂  t < T*. Setting P(t) = /(O) + ί/'(0) + 8£(w(0))ί2 for all ί ̂  0, a straight-
forward calculation (see [7], formulas (4.3) through (4.7)) shows that

l] + St2(E(φ) + b^\\Xφ\\l-^F(φ)\
/ \ O 2 /

with

F(φ) = lm J xφVφdx.

In particular,

ft2

and it follows easily from (2.12) that Γ* < I/ft. Hence the result.

4
Proposition 2.7. Assume that 4/N<α< , and set r = α + 2. // ueC([0, oo),

ΛΓ-2
H1(RN)) is a global solution of (1.1) such that ||M(ί)||Lr —>0, then u has linear and

t~* 00

rapid decay. More generally, weL^O, oo; W1'p(RN))for every admissible pair (y,p).
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Proof. Let q be such that (q, r) is an admissible pair and let T ̂  0. We have

u(T + f) = S(t)u(T) - iλ\S(t - s)\u\*u(T + s)ds.
o

It follows from (1.10) and (1.12), applied with (γ,p) = (q,r\ that

W

for every τ > 0. Since α > 4/W we see that (α + \)q' > q. Therefore, if δ = (α + l)qf — q,
then

HL> + C sup { || φ) 1̂ ; 5 ̂

Thus, if T is large enough so that

C sup{ || φ) ||L,; s ̂  T}ΛI*'(C \\ u(0) H^)
it follows easily that

for every τ > 0. Therefore, weL?(0, oo; Lr(RN)), i.e. u has linear decay. Since α > 4/7V
and || u(t) \\Lr -> 0 as £ -> oo, it follows that u has rapid decay. The last assertion follows
from Proposition 2.3. Π

3. The Nonautonomous Equation

We now apply the "pseudo-conformal transformation" (1.13) with ί?<0, and we
suppose for convenience that b = — 1. Moreover, throughout this section we syste-
matically consider the variables (s, y)eR x RN defined by

,
1-ί 1 -ί

or equivalently,

, .
l+s l+s

Given 0 ̂  a < b rg oo and u defined on (α, b) x RN, we set

,
l-ί ί-t

(3.1)

for xeR^ and - < t < - . In particular, if u is defined on (0, oo), then v is
l+a 1 +b

defined on (0, 1). Transformation (3.1) reads as well, using the variables (5, y\

v(t, x) = (1 + s)N/2φ, j,)£Ti(|y|2/4(1 +s)). (3.2)

One verifies easily that, given 0 ̂  a < b < oo, u e C( [α, b], X) n C1 ( [α, b], /ί ~ x (RN))
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. Further-

more, a straightforward calculation shows that u solves (1.1) on (a, b) if, and only if
v solves equation

iυt + Δv = λ(l - t)(N*-*)l2\v\*v, (3.3)

on the interval ( — — , - ). Note that the term (1 - ί)<Nα-4>/2 is regular, except
\ l + α 1 + b/

possibly at ί = 1, where it is singular for α < 4/JV. One verifies easily the following
identities:

|| v(t) ||£+ 2

2 = (1 + s)W2 1| n(5) ||£,V2, β * 0, (3.4)

IIVι>(ί)||ί2 = il|(y + 2i(l + s)V)u(s)\\2

L2, (3.5)

II Vφ) ϋ I = i || (x + 2ί(l - t)V)v(t) \\2

L2. (3 6)

The point of view we take in this section is to consider Eq. (3.3) in its own right,
and study the associated Cauchy problem for any starting time in [0, 1]. Near the
end of this section, we interpret some of the results for solutions of (3.3) in terms of
solutions of (1.1). In Sect. 4, we will use the information gathered in this section
about solutions to (3.3) to deduce information about the scattering properties of
solutions to (1.1). Our proof of local existence of solutions to the Cauchy problem
for Eq. (3.3) is based on the following lemma.

4 4
Lemma 3.1. Assume 0 < α < - . Let θ = - (θ = 1, if N = 1; θ > 1 and

N-2 4-α(N-2)
(2 — α)0 ̂  1, ifN = 2), and consider a real valued function ΛeLfoc(R). Then, for every

ψeHl(RN), there exist T^ < 0 < T* and a unique, maximal solution veC((T^, T*),
Hl(RN))nW™(Tt9 Γ*; H-^R")) of equation

v(t) = S(t)ψ - i\S(t - s)h(s)\O\*v(s)ds. (3.7)
o

The solution v is maximal in the sense that if T* < oo (respectively T^> — oo), then

II u(t) II π1 -* °°» as f ΐ T* (respectively 1 1 7 )̂. In addition, the solution v has the following
properties.

(i) // T* < oo, then limmf { || β(t) ||̂  || h \\Le(t,τ.}} > 0.

(ii) // Tφ > - oo, tΛen lira inf { || v(t) || J, || λ ||Lβ(Γ,,()} > 0.

(iii) MεLf^ίT^, T*; W^^R^)), /or ei erμ admissible pair (q, r).
(iv) Tfcere exisίs (5 > 0, depending only on N, a. and θ such that if

then [ - τ, τ] c (7^, T*) and \\ v ||L4r(_TfT;Wn,0 ̂  X || ̂  || ffi for every admissible pair (q, r\
where K depends only on N, α, θ and q. In addition, if ψ' is another initial value
satisfying the above condition and if v' is the corresponding solution of (3.7), then
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(v) I f ψ e X , then veC((T^ T*), X). In addition,

\\xυ(t)\\l=\\xψ\\2

L2 + 4Im] f ^ϊ)(x Vv(s))dxds9
OR"

for all te(T^ T*).
(vi) \\v(t)\\L2=\\ψ\\L2,forallte(T^T*).

Proof. For technical reasons, we suppose first that N^3. Afterwards, we will indicate
2N

the modifications needed to handle the cases N = 2 and N = 1. Let 2* = - , and
define r by N~2

1-- = -. (3.8)
r 2*

Since (N — 2)α < 4, it follows that 2 < r < 2*. Therefore, there exists q such that (q, r)
is an admissible pair. A simple calculation shows that

-
q' θ q

By Proposition 1.3, there exists K such that

for every ψe &(&."). Given M > 0 and 7\ 5Ξ 0 ̂  T2 such that T2 > Tj, let

I I » IL^r.r^., + II » II W(ri.r«in^ ̂  (K + 1)M}.

Endowed with the metric d(u, v)= \\v-u\\ Lq(Tι T2.L^,(E,d) is a complete metric
space. Given veE, it follows from (3.8), (3.9), Sobolev's and Holder's inequalities
that Λ|t)|βϋeL«'(Γ1, Γ2; W

1 P'(RΛΓ)) and that

,,™ II ϋ UL-(ΓI.Γ«L«) II v Hw(Γ1.rIίιr'. )

^ίK+ir'Aί *1. (3.10)

Furthermore, given u,veE, one has as well

^ C II Λ Lirι.Tύ( II ̂  IlL-ίΓuTϊiH.) + II « llL.(ri.T2;JI«)) » » ~ « II^Γ .Γ,;̂ ; ί3'1 J)

and so,

\\h(\v\ υ-\U\ un^(Tl,T2.^^C2\\h\\L^TltTΛ(K + irM d(u,υ^ (3.12)

Given veE and φeH1(RN) such that || ̂  ||H, ̂  M, set

9v(t) = S(t)^ - i s ( f - s)h(s)\v\"v(s)ds,
0

for ίeίTΊ, T2). It follows from Proposition 1.3 and formula (3.10) that

1, T2; W
l '(RN)),
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and that

I I 9v UL-CΓ^;*') + I I *• I W.r. H^ ^KM + C3(K + iγ+1MΛ+l\\h ||^Γlf Γa).

Therefore, if T2 — 7\ is small enough so that

C3(K + ir+lM*\\h\\L,(TίtT2^l9

then yvεE. Furthermore, Proposition 1.3 and formula (3.12) imply that

d(909 9U) £ C4(K + 1)«M« || h ||L*(Γl,Γ2)Φ, v).

Consequently, if T2 — Tl is small enough so that

^l/2, (3.13)

where K1=(K+ l)α+1max{C3,C4}, then ^ is Lipschitz continuous E-+E with
Lipschitz constant 1/2. Therefore, ^ has a unique fixed point veE, which solves
Eq. (3.7). In addition, the first part of property (iv) follows from (3.13), (3.10) and
Proposition 1.3, and the second part from (3.11) and Proposition 1.3. Uniqueness
in the class C([Tί9 T2]; H^R")) follows from (3.11) and Proposition 1.3. (Note that
uniqueness is a local property and needs only to be established for Γ2 — 7\ small
enough.) Now, by uniqueness, v can be extended to a maximal interval (7^, T*\
and property (iii) follows from property (iv). Suppose that T* < oo. Applying the
above local existence result to υ(t\ t < T* with 7\ = 0, we see from (3.13) that if

then v can be continued up to and beyond Γ*, which is a contradiction. Therefore,
we have

which proves property (i). Property (ii) is proved by the same argument. Finally,
since υ solves the equation

ivt + Δv = h\v\"v,

in Lθ

loc(T^ T^;H~1(RN) and h is real valued, property (v) is proved by standard
arguments. For example, multiply the above equation by \x\2e~ε^2v, take the
imaginary part and integrate over RN, then let ε JO (see Proposition 6.4.2, p. 107 in
[4] for a similar argument). Property (vi) follows by taking the H1 — H~l duality
product of the equation with v.

IfN = 2, the proof is the same as in the case N^3, except that we set r = 2Θ and
r\

use the embedding H^R2) c-»ί/(R2) with p = - .
θ — 1

If N = 1, the argument is slightly simpler. We let

equipped with the metric d ( u 9 v ) = \ \ v — u\\L*>(TiT2.Hi)9 and use the embedding

Corollary 3.2. Under the assumptions of Lemma 3.1, suppose there exists Θ1> θ such
that AeLf^ίR). It follows that for every M > 0, there exists τ > 0 such that ifφEH1(RN)
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verifies \\ ψ ||Hι < M, then [ — τ, τ] c (T^, T*), and such that v has the following continuity
properties.

(i) // I I Ψ l l / f i < M, Ψnn-^ Ψ in tf^R"), and if vn denotes the solution of (3.7) with
initial value ψn, then v^v in C([ - τ, τ], Hl(RN)).
(ii) // || \jι ||Hι < M, \l/n — >ψ in X, and if vn denotes the solution of (3.7) with initial

n ~~* oo

value \l/n, then vn->v in C([ — τ,τ],X).

Proof. We base our proof on arguments of Kato [18] used in the autonomous case.
We only prove the result in the case N ̂  3 (see the proof of Lemma 3.1 for the
necessary modifications in the cases N = 1, 2). Given M > 0, we choose τ so that the
inequality in property (iv) of Lemma 3.1 is met whenever || ψ \\Hι < M. In particular,

1 4-αΛΓ
if II Ψ HHI < M, then [ - τ, τ] c (T#, T*). Next, observe that - > - and so we

I 4 — αN ^ *
may assume without loss of generality that — > - . Therefore, if we define σ by

Θ1 4

2N
then 2 < ασ < - . Let now p be defined by

Λ Γ - 2

Since - < — , it follows that 2< p < - . Finally, let γ be such that (y,p) is an
σ N N — 2

admissible pair. It follows easily from Holder's inequality that for every — oo < a <
b< oo,

/b \ l / 0 ι

II hwz \\LrM;I,Ί ^ J h(s)θ> II w(s) ||ii || z ||Ly(fl>ft;LP). (3.14)
\a /

Consider now ψ such that || ψ ||fll ^ M, and let ι̂ M be as in (i). Let υ, vn be the cor-
responding solutions of (3.7). It follows from Proposition 1.3 that there exists C,
depending only on 7, such that

I I V - V n \ \ - i . » + \ \ V ~ Vn \ \ » - i

On the other hand, a straightforward calculation shows that

v-\vn\
Λvn)\^C\vn\

Λ\Vv-Vvn\ + φ(v,vn)\Vv\9 (3.16)

where C depends on α, and the function φ(x, y) is bounded by C(|x|α + \y\Λ) and
verifies φ(x, y) — > 0. Therefore, applying (3.14), (3.15) and (3.16), we get

II V - Vn \\-Wi.P +\\V-VΛ ||L«(_rit.Hi)

l(_τitJ|f;J|Lβ(_tft;L^||ι;-^

b \ l / β ι

C $h(s)θ>\\φ(v,vn)\\Θ

L>σ \\v\\L^τtΓtWl^. (3.17)
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Note that by property (iv) of Lemma 3.1, vn is bounded in H1(RN), hence in Lασ(RN),
with the bound, for ίe[-τ,τ], depending only on ||^J|Hι» hence (for large values
of n) only on M. As well, the bound on || v \\m-τtΓtw^p) depends only on M. Therefore,
it follows from (3.17) that

I I » - Vn \\m-τ,τ;Wi.*> + || Ό - Όn ||Loo(_t,τ;Hl)

' Ϊh(s)°*\\φ(υ9υn)\\%

where the constant C depends only on M. Therefore, if we consider τ possibly
smaller so that C \\ h | |Lβl(_ t fT) ̂  1/2 (note that τ still depends on M), it follows that

I I V - Vn \\m-τ,τ;W>.P) + H Ό ~ Vn HL°c(-τ,τ;H')

k l / β ι

Therefore, property (i) follows, provided we show that

By the dominated convergence theorem, it suffices to verify that

for all ίe[ — τ, τ]. To see this, we argue by contradiction. We assume that there exists
ί and a subsequence, which we still denote by vn(t\ such that || φ(v(t\ vn(t)) \\L. ̂  μ > 0.
Note that υn(t) -*> υ(t) in L2(RN) and υn(t) is bounded in Hl(RN) by property (iv) of
Lemma 3.1. Therefore, by Sobolev's and Holder's inequalities, vn(t) -> v(t) in LΛσ(RN).
It follows that there exists a subsequence, which we still denote by υn(t\ and a
function feL*σ(RN) such that vn(t)^v(ί) almost everywhere in RN and |ι?Λ(ί)| g/
almost everywhere in R^. Applying the dominated convergence theorem, it follows
that || φ(v(t\ vn(t)) ||Lσ-»0, which is a contradiction. Hence property (i).

Property (ii) follows from property (i) and Lemma 3.1 (v). Briefly, use Holder's
inequality on the formula in Lemma 3.1 (v) to obtain a uniform bound in X on
the solutions υn. The integral term then converges along subsequences where xvn

converges weakly in L2(RN) to xv, and the rest of the proof is standard. Π

Corollary 3.3. Under the assumptions of Corollary 3.2, the solution v of (3.7) given
by Lemma 2.1 depends continuously on ψ in the following way.

(i) The mapping I/Ί— >T* is lower semicontinuous H1(RN)^(Q, oo].
(ii) The mapping ψ^T^. is upper semicontinuous H1(RN) -> [ — oo, 0).
(iii) IfψH -» ψ in H1^) and if[T^ T2] e(7;, T*), then vn -+ v in C([Γ1? T2], H^(RN)\

w-*c»

where vn denotes the solution of (3.7) with initial value ψn. If in addition ψn^>ψ in X,
then vn^v in C([T^ Γ2], A).

Proof. Let φeH1(RN\ let v be the maximal solution of (3.7) given by Lemma 2.1

and let [Ti, T2] c (T*, T*). Set M = - sup || v(t) ||Hι and consider τ > 0 given by

Corollary 3.2. By applying Corollary 3.2 m times, where (m — l)τ < T2 — 7\ ^ mτ,
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we see that if || ψ — ψ \\Hι is small enough, then the solution of (3.7) with initial value
\j/ exists on [7\, T2]. Hence properties (i) and (ii). Property (iii) follows easily from
the same argument. Π

We are now in a position to state our local existence result for Eq. (3.3). In order
to make the statement simpler, we introduce the function

Λ|l-ίΓ ( ( 4~N α ) / 2 ), for ίeR,

and the equation

v(t) = S(t - t0)φ - i J S(t - s)f(s)\v\*v(s)ds, (3.18)
to

where t0εR and ̂ eH^R"). Note that if 0 ̂  ̂  ̂  ί0 ̂  T2 < 1, then v solves (3.18)
on [T!, T2] if and only if v solves (3.3) on [7\, T2] with initial value ι;(ί0) = ψ.

4 4
Theorem 3.4. Assume - < α < - (2 < α < ao,ίfN= 1). Then, for every t0εR

N + 2 N — 2
and \l/eH1(RN\ there exist 7^ < ί0 < T* and a unique, maximal solution veC((T^ T*),
H1(RN)) ofEq. (3.18). The solution v is maximal in the sense that if T* < oo (respectively
T* > - oo ), then \\ u(t) \\H1 -+ao,ast1T* (respectively t\, TJ. In addition, the solution
v has the following properties.

(i) // Γ* - 1, then liminf {(1 - if \\ v(t) \\Hl} > 0 with δ = ̂ -̂  - - if N ̂  3, δ any
*ίi 4 α

number larger than 1 — if N = 2, and δ = --- if N = 1.
α 2 α

(ii) IfψeX, then veC((T^ Γ*),ΛΓ).
(iii) ||t;(ί)||L2 = \\v(t0)\\L2,for all ίe(Γ*, T*).
(iv) The solution v depends continuously on ψ in the following way. The mapping
\l/\-^>T* is lower semicontinuous Hί(RN)-^(Q9 oo], and the mapping \l/\-*T^. is upper
semicontinuous H*(RN) -> [ - oo, 0). In addition, ίfψn^>ψ in H^R") and if [7\, T2] e

n~*ao

(T*9 T*), then vn^v in C([T1? T2],H1(RJV)), where vn denotes the solution of (3.18)
with initial value ψn. If in addition ψn-+ψ in X, then vn-*v in C([T1} Γ2], X).

Proof. The result is a straightforward consequence of Lemma 3.1 and Corollary 3.3
withfc(ί) = /(ί + ί0). D

4
Remark 3.5. (i) Note that even when α < - (α < 2, if N = 1) the nonautonomous

~N + 2 ~
term in (3.3) is singular only at ί = 1. Therefore, by applying Lemma 3.1, one can
still solve Eq. (3.3) away from t = 1. More precisely, since in this case all solutions
of (1.1) with initial values in X are global, it follows that for every ψeX and for every
f0e[0, 1), there exists a unique solution t;eC([0, 1),̂ ) of (3.3) such that v(t0) = ψ.

(ii) It is the choice of r given by (3.8) in the proof of Lemma 3.1 which enables us
4 4

to prove local existence starting from t = 1 for (3.18) if - < α < - . If instead
N+2 N-2

4
one uses r = α + 2, the range of α is restricted to α0 < α < - .

N — 2
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(iii) The lower bound α > 2 in dimension N = 1 corresponds to α > —.
N

4 4
Proposition 3.6. Assume < α < (2 < α < oo, if N =1). Let t0, ̂ [0,1]

JV + 2 N — 2
and let $ be the set ofψeX such that the solution v of (3.18) with initial value v(t0) = ψ
exists on the interval J(ίo>fl) = [min{ί0, ί^maxjίo, ί̂ ]. Then, $ is an open subset of
X containing 0. Moreover, the mapping U: ψ\-^>v is continuous $ -+C(J(tosίl), X).

Proof. The result follows from property (iv) of Theorem 3.4. Π

4 4
Corollary 3.7. Assume < α < (2 < α < oo, if N = I). Let $ be the set of

* N + 2 N-2 V 9j J J

ψeX such that the solution v of (3.18) with initial value v(0) = ψ exists at t = 1, i.e.
Γ* > 1. $ then has the following properties.

(i) $ is an open subset of X containing 0.
(ii) The mapping U: ψ\-^>v(l) is continuous $->X.
(iii) The set 3F = U($) is an open subset ofX containing 0 and U'.tf^^is one to one.
(iv) U ~ * is continuous 3F -> $.

Proof. Properties (i) and (ii) follow by applying Proposition 3.6 with ί0 = 0 and
ίi = 1. The fact that U is one to one follows from the uniqueness property of
Theorem 3.4. The other properties follow by applying Proposition 3.6 with ί0 = 1
and t1 = 0. Π

4
Proposition 3.8. Assume that 0 < α < . Let 0 ̂  ί0 < ίx < 1, and suppose that

t^X) solves Eq. (3.3) on [ί0,ίι] For ίe[ί0,ίι], let

E,(t) = i || Vv(t)\\2

L2 + (1- ί)(*'-4)/2-A- | | Ό (ή l l +Λ,

£2(ί) = (1 - ί)(4-Nα)/2£!(ί) = (1 - i)<4-^)/2 II V»(t) ||2
2 α + 2

- t)V)»(t) ||
α + 2

(3-19)

~£2(ί) = (l -ίp-^^^IIV^)!!^ (3.20)
αί 4

(3.21)
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Proof. Let u be defined by (3.2). It follows from (3.4) and (3.5) that

£ι(0 = l\\(y + 2i(l + s)V)u(s) || 2 + (1 + s)2 -̂ - || ιι(s) ||«ίΛ.
o α + 2

Formula (3.19) now follows from the pseudo-conformal conservation law (1.6)
applied to u( — 1). Formula (3.20) follows immediately from (3.19); and (3.21) follows
from (1.5), (3.4) and (3.6).

Remark 3.9. Consider ψeX, ί0e[0,l ), and let veC((T^9T*)9X) be the maximal
solution of (3.18). The following properties of T* and T^ are analogous to global
existence properties of the corresponding solution u of (1.1) given by (3.1).

(i) If α < 4/ΛΓ, then T^ < 0 and T* ̂  1. This follows rather easily from formulas
(3.19) and (3.20), Gagliardo-Nirenberg's inequality and conservation of charge or,
alternatively, from the fact that all solutions u of (1.1) are global in this case.
(ii) If λ ̂  0 and α ̂  4/ΛΓ, then T^ < 0 and T* > 1. The two inequalities follow from
formulas (3.20) and (3.19), respectively.

4
(iii) Note that if λ < 0, then for any value of α, 0 < α < - there exist initial values

ψ for which T* = 1. Indeed, if u(t, x) = eiωtφ(x) is a standing wave of (1.1) (see [3, 2]),
then one verifies easily that the corresponding solution υ of (3.3) blows up at t = 1.

We will now investigate sufficient conditions for a solution υ of (3.3) to exist at
f =1, i.e. Γ*>1.

4
Proposition 3.10. Assume α 0 < α < - , where α0 is defined by (1.7). Let ve

C([0, 1), X) be a solution of (3.1 8)9 and let T* ^ 1 be the maximal existence time of υ.

(i) If (I - ί)(Nα~4)/2αϋeLfl(0, 1; Lα+2(RN)), with a given by (1.9), then Γ* > 1.
(ii) // || υ(t) ||L«+2 is bounded ast^l, then Γ* > 1.
(iii) Ifλ^Q9thenT*>l.

Proof. Suppose (1 - ί)(JVα~4)/2α^eLα(0, 1; L*+2(RN)). Set r = α + 2, and let (q, r) be the
corresponding admissible pair. Given 0 ̂  ί0 g t < 1, it follows from Eq. (3.18) and
Proposition 1.3 that

II v UL-(to, t ;Hi) + I I » L^w^ ^ c II »(Ό) l lm + C I I (1 - s)<"'-4)/2 1 v\*v \\Lq,(t0tt;Wί.rr

Applying Holder's inequality, we obtain

II Π — ^NΛ~4^2\n\Λn II
I I U S) \V\ V\\L9'(to,t',Wl.r')

< ΠIΠ — «V N α ~ 4 ) / 2 l f ) l α l l II t i l l
^ ^ H V 1 S) \ V \ llLβ/(β-2)(ίo,f;L( a +2)/β ) | |ϋ| |L β ( f θ t f ; Wrl,r ).

Since - = α, it follows that
q-2

I, (1 _ ̂ .-^i^^ \\Lq,(t^wl>r>) ^ c II (1 - sΓ*-4"2*, ||L,(ίoΛL.+2) || i; ll^^t.^;

and so,

ί C I I »(ί0) II fll + C II (1 - sΓ«-*)/2«ι; II Jα(to>ί!t,+ 2) II υ \\L
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Choosing t0 close enough to 1 so that C||(l -5)(ΛΓα"4)/2αt;|||α(ίo 1;Lα+2) 5Ξ 1/2, we get

It follows that v remains bounded in Hi(RN) as f f l , and property (i) follows from
ΛΓα-4

Theorem 3.4. Since α > α0, we have - α > - 1; and so, property (ii) follows
2α

from property (i). Finally, suppose that λ ̂  0. If α < 4/N, it follows from (3.20) that
v is bounded in LΛ+2(RN). Therefore, T* > 1 by property (ii). If α ̂  4/N, it follows
from Remark 3.9 (ii) that Γ* > 1. Hence (iii). This completes the proof. D

Remark 3.11. Note that in the proof of property (i) of Proposition 3.10 above, we
did not make use of the assumption α > α0. The same argument shows indeed that,

4
if -- < α ̂  α0 (2 < α ̂  α0, if N = 1) and if

N + 2

then T*> 1. However, in this case, we have ||t>(f)||L,+2-* || t (l) ||L*+2. If ι^0, it
NoL-4

follows that the above integral is infinite, since a - ̂  — 1. This is absurd; and
2α

4
so, if - < α ̂  α0, then

ΛΓ + 2

f (i -tr((NΛ-4)/2Λ)\\v(t)\\ι+2dt= oo,
0

for every nontrivial solution t;eC([0, l),/f ^R")) of (3.18).

Proposition 3.12. Assume that N ̂  3 and that α = α0, where α0 is defined by (1.7). Let
t;eC([0, 1), X) be a solution of (3. 18), and let T*^\be the maximal existence time ofv.
(i) // lim sup A|log(l - 1)\~ λ || v(t) \\£+

2

2 ^ 0, then Γ* > 1.

(ii) Ifλ^Q,thenT*>l.

Proof. We first prove assertion (i). Suppose to the contrary that T* = 1. It follows
from Theorem 3.4 that there exists μ > 0 such that

Therefore, applying (3.20) we get

d 4 - Na

dt 2 = 4

and so,

4-ΛΓα

This contradicts the hypothesis of (i), proving (i). Property (ii) follows immediately.
D
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Remark 3.13. The above argument does not apply to the cases N = 1 and N = 2,
since the lower estimate at blow up given by Theorem 3.4 is not good enough.

Finally, we will need the following results in the next section.

4
Proposition 3.14. Assume that 0 < α < , let weC([0, oo),X) be a solution of

N -2
Eq. (1.1), and let ι;eC([0, l),X) be the corresponding solution of (3.3) defined by (3.2).
Then, S(— s)u(s) has a strong limit in X (respectively, in L2(RN)) ass-+ao, if, and only
if, v(t) has a strong limit in X (respectively, in L2(RN)) as if 1, in which case
lim S(-s)u(s) = e*

Proof. It follows from [7], formula (3.8) that

5 \ / s
)v\

l+sj V l + s

from which the result follows. D

4 4
Proposition 3.15. Assume that < α < , let weC([0, oo),X) be a solution

N+2 N-2
of Eq. (1.1), and let ι;eC([0, l),X) be the corresponding solution of (3.3) defined by
(3.2). Let T* ^ 1 be the existence time of the maximal extension of v as a solution of
(3.18).

(i) // T* > 1, then s(Nα)/2(α+2)||u(s)||Lα+2 is bounded as s->oo. In particular, u has
4

linear decay, and z/α0 < α < , then u has rapid decay.
N — 2

4
(ii) // < α g α0 (2 < α ̂  α0, if N = I), u can not have rapid decay, except if

Λ/Ή-2
ιι = 0.

4
(iii) //α0 < α < , and ifu has rapid decay, then T* > 1.

N — 2
4

(iv) 7/α0 <α< , and λ^ΰ, then u has both rapid and linear decay.
N — 2

Proof. If T* > 1, then || v(t) || L α + 2 is bounded as t ] 1; and so, property (i) follows from
identity (3.4). Property (ii) is a straightforward consequence of Remark 3.11 and
identity (3.4). Suppose now that α > α0 and that u has rapid decay. Applying (3.4),
we get (l-t)(Na~4}/2avELa(0,l;LΛ+2(RN)), with a given by (1.9); and so, T* > 1
by Proposition 3.10. Hence (iii). Finally, (iv) follows from Proposition 3.10 and
property (i). D

Remark 3.16. In fact, it is already known (see for example [4]) that if / l>0
4

and α< , then s(ΛΓα)/2(α+2) | |w(s)||Ltt+2 is bounded as s->oo for all solutions
N — 2
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4. Applications to Scattering Theory

4
Let 0 < α < - . Given φeX, let uφ denote the maximal solution of (1.1) with

initial value w(0) = φ. Let us set

&+ = {φεX;uφ exists on [0, oo)}, (4.1)

^_ = {φeX;uφ exists on (- oo,0]}, (4.2)

and

St± = {φe&±;S(-s)uφ(s) has a limit in X as s-> ± oo}. (4.3)

U±(φ)= lim S(- s)uφ(s)9 (4.4)
s-* + oo

where the limit holds in X. Finally, let us set

Se± = V±(Λ±). (4.5)

We begin with the following elementary result.

Lemma 4.1. The sets <& + ,$ + , and y + have the following properties.

(i) y_=W^={
(ii) @_=@+ = {φ;

(iii) y_=3\ =

(iv) U_(φ)= U + (φ)9 for every

Proof. Note that u(t,x) solves (1.1) on [0, T) if, and only if w(ί,x) = u(— ί,x) solves

(1.1) on (-T,0]. In other words, ι̂ (s) = uφ(-s). Hence (i). Furthermore, since

S(— s)z = 5(s)z, we have

S( - s)uφ(s) = S(s)uφ(s) = S(s)uφ( - s),

from which properties (ii), (iii) and (iv) follow immediately. D

The following theorem concerning the wave and scattering operators is the main
result of this section.

4 4
Theorem 4.2. // - < α < - (2 < α < oo, ifN = 1), then the following properties
hold. N + 2 N~2

(i) The sets &± and Sf ± are open subsets ofX, containing 0.
(ii) The operators U + :& ±-+έf ± are bίcontinuous bijections for the X norm.
(iii) The wave operators Ω± = U^ are bicontinuous bijections Sf ± -> ̂  ± for the X
norm.
(iv) The sets 0+ = U+(3#+n@_)and(9. = £/_(^+ n^_) = {zeX',ze(9 + } are open
subsets of X containing 0.
(v) The scattering operator S=U + ί2_:0_->0+ is a bίcontinuous bijectionfor the
X norm.

(vi) S-l(z) = S(ί), for every
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Proof. Let us first prove properties (i) and (ii). In view of Lemma 4.1, it is sufficient
to establish these properties for the sets and operators indexed by +. These two
properties now follow from Corollary 3.7 and Proposition 3.14 by interpreting the
results in terms of u given by the transformation (3.2). Property (iii) is a consequence
of (ii). The identity Φ_ = {zeX\ze(9 + } follows from Lemma 4.1, and the open
character of Θ ± follows easily from property (ii). Finally, (v) is an immediate
consequence of (ii) and (iii); and (vi) follows from Lemma 4.1. D

The following result is an immediate consequence of Theorem 4.2.

4 4
Corollary 4.3. // < α < (2 < α < oo, ifN = 1), then the scattering operator

is defined from an X-neighborhood of 0 onto an X-neighborhood of 0. In particular,
a low energy scattering theory exists in X.

Remark 4.4. If λ < 0, then the lower bound on α given in Theorem 4.2 for the
4

existence of scattering states is optimal. Indeed, if α < , there exist initial data
N + 2

φ of arbitrary small X-norm such that the solution u of (1.1) with initial value φ
does not possess a scattering state in X (or even in L2(RN)). To see this, let φεX be
a nontrivial solution of the equation — Δφ + φ = — λ\φ\aφ [3,2]. Given a > 0, set
φa(x) = a2/*φ(ax). It follows that - Δφa + a2φa + λ\φa\*φa = 0. Therefore, ua(t,x) =
eia2tφa(x) solves (1.1), and S(— t)ua(t) = eia2tS(— t)φa does not have any strong limit

4
as ί-> oo, even in L2(RN). On the other hand, one verifies easily that if α < ,

N + 2
then || ua \\x > 0. The same example shows that for α < 4/JV, there exist initial data

α JO

of arbitrary small H1-noτm such that the corresponding solution of (1.1) does not
possess any scattering state (see Strauss [23]).

Remark 4.5. The conclusion of Corollary 4.3 was essentially proved by Strauss
4

[22,23] for α > α0. Since < α0, our result improves the range of α.
N + 2

4 4
Proposition 4.6. Assume that < α < (2 < α < oo, if N = 1). // λ < 0,

N+2 N-2
assume further that α < 4/N. Then, ^ ± = X. Therefore, the wave operators are
defined on all of X.

Proof. By Lemma 4.1, we need only show that ̂  + = X. By transformation (3.2)
and Proposition 3.14, it suffices to show that for every wεX, there exists a solution
v of (3.3) that exists on [0,1) and verifies v(t) > w in X. Now, given w e X , it follows

f ΐ i
from Theorem 3.4 that there exists a unique solution υ of (3.3) on some interval
(1 — τ, 1) such that v(t) >w in X. By Remark 3.9, v exists on [0,1). This proves the
result D f | 1

Remark 4.7. Note that when λ < 0, the upper bound α < 4/N in Proposition 4.6 for
the existence of the wave operators is optimal. Indeed, by Remark 2.6 there exists
φeX such that the maximal solution w of (1.1) with initial value φ has rapid decay
at + oo and blows up at the negative, finite time — τ. Let w+ = lim S(— t)w(t) (see
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Theorem 4J1 2 below), and set u+ = S(-τ)w + and u(t) = w(t - τ). It follows that
u+ = lim S(— f)u(t). Since u(0) is not defined, it follows that Ω+u+ is not defined;

ί-»oo

and so, ̂ + φX.

Remark 4.8. Existence of the wave operators has already been proved by Tsutsumi
4

[26] (see also [17]) for α > α0 in the case λ > 0. Since - < α0, Proposition 4.6
improves the lower bound on α. N + 2

We now study asymptotic completeness, and we begin with the case λ ̂  0.

4
Theorem 4.9. If N ̂  3, λ Ξ> 0, 0m/ α0 ̂  α < - , w/zere α0 is defined by (1.7), then
(% — Y N — 2Z/ί + — Λ .

Proof. By Lemma 4.1, we need only show that &+ = X. Let ψeX. If follows from
Proposition 3.10 (if α > α0) and Proposition 3.12 (if α = α0) that the solution υ of
(3.18) with initial value ι (O) = φ exists beyond ί = 1, i.e. Γ* > 1. The result now
follows from Proposition 3.14. D

4
Theorem 4.10. IfN g: 3, λ ̂  0, and α0 ̂  α < - , where α0 is defined by (7.7), then

N — 2
& + = X. In particular, the scattering operator is a bicontinuous bijection X^>X.

Proof. This follows from Theorem 4.2, Proposition 4.6 and Theorem 4.9. D

Remark 4.11. (i) The previous two results are valid for N = 1,2 if α0 < α.
(ii) The conclusion of Theorem 4.10 was previously proved by Tsutsumi [26]

(see also [17]) for α >α0. However, the case α = α0 is new.

We now characterize the sets ̂  ± in the case λ < 0 in terms of rapidly decaying
solutions.

4
Theorem 4.12. If λ < 0 and α0 < α < - , where α0 is defined by (ί .7), then £%+ =

N — 2
{(pGX;uφ has rapid decay} and &_ = {φeX Uφ has rapid decay}. Moreover, & ± are
unbounded subsets ofL2(RN).

Proof. By Lemma 4.1, we need only show the result for <%+. The first assertion
follows from Propositions 3.15 and 3.14. Consider now φeX. For b g 0, let φb(x) =
eί(b|x|2)/4φ(x). It follows from Corollary 2.5 that φb(x)e3t + , for b large enough. Since
|| φb || L2 = || φ ||L2> it follows that @+ is unbounded in L2(RN). D

5. Remarks

As noted in the introduction, Corollary 2.5 shows that whether or not a solution
to (1.1) blows up in finite time can not be determined solely from the modulus of
the initial value φ. Indeed, appropriately modifying the phase of φ produces a global,
rapidly decaying solution. This suggests that blow up itself is a consequence of
rotational properties of the solution, rather than the size of the modulus of the
solution.
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We can make this idea more precise as follows. Consider weC([0, T], H2(RN))n
CHfl), Γ],L2(R")) with ιι(0) = φ. Set

Realm,,, -Re

M

It follows that

lmΰut = \u\2h(t) (5.2)

and, if we write u = peiθ, then h(t) = θt. In other words, h measures the speed of
rotation of u.

Suppose first that u is a solution of

iut + Δu = 0, (5.3)

i.e. (1.1) with λ = 0. Multiplying (5.3) by ΰ, integrating over RN, and taking the real
part, we get that

f Imutΰdx+\\Vu\\l2 = Q.
RN

In other words, since || Vtι(ί) || 2L2 = \\ Vu(0) \\2

L2 for solutions of (5.3), we see that

J \u(t)\2h(t)dx=-\\Vφ\\2

L2. (5.4)
RJV

Now suppose that u is a solution of

<w,= -Ma", (5.5)

i.e. (1.1) without the dispersion and with λ < 0, which we take to be — 1. Multiplying
(5.5) by ΰ and taking the real part (without integrating) quickly yields that

h(t) = \u(t)\*. (5.6)

The competition between the two parts of (1.1), i.e. Eqs. (5.3) and (5.5), is now
evident. The linear equation (5.3) produces, on the average, a negative rotation,
while the ordinary differential equation (5.5) produces a positive rotation at every
point.

Finally, we suppose that u is a solution of (1.1) with λ = — 1 and α ̂  4/N. Also,
we suppose that φeX. Following the same steps as with Eq. (5.3) above, we arrive
at the formula

J \u(t)\2h(t)dx = -2E(φ) + -?—\\u(t)\\Λ

Lΐ+

2

2. (5.7)
R" α + 2

If u is a global, rapidly decaying solution, then by Proposition 3.15, ||ι/(ί)||JΐΛ-»0,
as ί-»oo. Moreover, since E(φ) < 0 implies finite time blow up (see [11,24,4]) and
since u being a rapidly decaying solution is an open condition on φ (Theorems 4.2
and 4.12 above), we see that E(φ) > 0. Thus,

J I u(t) 1 2h(t)dx -> - 2E(φ) < 0, (5.8)
RN

as f-> oo. In this case, the negative rotation induced by (5.3) wins. If, on the other
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hand, u blows up in finite time T, then || u(t) ||̂ +

2

2 -> oo, as ί| T; and so,

J \u(t)\2h(t)dx^ao, (5.9)
RN

as ί t T. Here, the positive rotation induced by (5.6) wins. Furthermore, we can easily
deduce the following information about h(i) near blow up:

J
0

T

The last identity follows easily from the property J || u || j£Λ = oo (see [5]).
o

Finally, we prove a result about global solutions to (1.1) in X which are not
rapidly decaying. If α < 4/Λf, we know that such solutions are bounded in if1. If
α > 4/N, we can at least show that a certain time average of the solution is bounded.

Proposition 5.1. Assume that α > 4/N. Let weC([0, oo), H ^R^)) be a global solution
of (Ll\ and assume that u(Q)eX. Then,

1 * 4Noί
E,

'"- -jVα-4

where E = £(w(0)).

Proof. With the notation of Remark 2.6, formula (2.11) can be written as

f(t) = f(ty + tf'(ty + 2NaE(u(Ό))t2-2(N(x-4)]] J \Vu\2dxdσds,

from which it follows that

2(Nα - 4) J { J IVu\ 2 dxdσds ^/(O) + ί/'(0) + 2ΛΓα£(w(0))ί2. (5.10)
00 R^

Note that

J.J ί ί/2 ί/2

J J | |Vw(σ)| | 2

2^ J J | |Vw(σ)| |J2^ ί/2 J ||Vtφ)||£2.
00 ί/2 0 0

Inequality (5.10) and the above inequality yield the result. D
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