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Abstract. The p™* Gel’fand-Dickey equation and the string equation [L, P] = 1
have a common solution t expressible in terms of an integral over » x n Hermitean
matrices (for large »), the integrand being a perturbation of a Gaussian, general-
izing Kontsevich’s integral beyond the KdV-case; it is equivalent to showing that
7 is a vacuum vector for a ¥, +-algebra generated from the coefficients of the
vertex operator. This connectlon is established via a quadratic identity involving
the wave function and the vertex operator, which is a disguised differential ver-
sion of the Fay identity. The latter is also the key to the spectral theory for the
two compatible symplectic structures of KdV in terms of the stress-energy tensor
associated with the Virasoro algebra.

Given a differential operator

. 0
L=D"+q,(t)D? 2+ -+ + q,(t), with D=—,1=(l;,t5,13,...), X =11,

dx
consider the deformation equations !
L
g—t—[(L”/")+,L] n=1,2,...,n+ 0(mod p) 0.1)

(p-reduced KP-equation)

of L, for which there exists a differential operator P (possibly of infinite order)

such that
[L,P]=1 (string equation). 0.2)

In this note, we give a complete solution to this problem. In section 1 we give a
brief survey of useful facts about the I-function 7 (¢), the wave function ¥ (z, z),
solution of 8 ¥/dt, = (L"?), ¥ and L'? ¥ = z¥, and the corresponding infinite-
dimensional plane V° of formal power series in z (for large z)

VO = span{¥ (t,z) for all teC®}

© 0 -1
! <Z biDi) =2bD;, (X biDi)— =2 b D, (ZbiDi)j=bj'
- + 0 -
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in Sato’s Grassmannian. The three theorems below form the core of the paper;
their proof will be given in subseugent sections, each of which lives on its own
right.

Theorem 1. After an appropriate time shift t — t + ¢ (choice of time origin), the
solution to 0L/0t, = [(L"?), , L] constrained to [L, P] = 1 with L and P differen-
tial operators is given by *

L=S@)D?St)"!, S=S@)=73 ’L;(‘?)Tﬁp-" (0.3)
n=0

and, moduls a Taylor series in L with coefficients depending on (t,,1t5,...),

p-1

1 -5 .
=;ML T ~<;— ciL’/P’ lps bap = 0,
e 0.4)
¢; constants,

where t satisfies the KP hierarchy and
MES(Zkkak_1> S~ 0.5)
1

After an appropriate rescaling ©(t) ~t(t) e 4%, which alters S and M, but not
L, we have

P =%<MLJ% —p—glL“>, (0.6)
with the requirement
(MLJ%) = 1%1 L. 0.7
In general we have
(Mij+j/p)_=j]:_[:<‘%—r>L‘l k=—-1, j=12,...
:’0“ k=0,1,2,...,j=1,2,.... (0.7)

Corollary 1.1. [Kae-Schwarz), [Schw], [FKN2]. The plane V° € Gr associated with
the wave function ¥ (t,z) of L (in Theorem 1) is invariant under the action of the
differential operators L and P; they act on V° as z-operators, to wit

Lzl PosA,=z 5z ;
dz?
hence

22VOcV® and A,V°cV° with [A4,,z°]=1

© ow N o 10 10
2 i n _ — - -z 2
exXp 2 12 =2 7'pu(1), (= 0) ”"( o, 201, 30:;“')'
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Corollary 1.2. For L and P as above, the relation [L, P] = 1 is equivalent to

_1 Z ktk aL

P21 O0hy

=1 0.8)

In particular for p = 2 (KdV equation), this is equivalent to

> kt—a—+£i =0 0.9
k=33 Fot_, 2) :

So Theorem 1, inspired by work of Goeree [G], Krichever [K], T. Shiota [Sh]
and Fukuma, Kawai and Nakayama [FKN 3], proves that if L and P are to satisfy
(0.1) and (0.2), then L must satisfy [0.7'], which imposes strong constraints on ,
as will appear in Theorem 2.

Introduce the algebra #7 ,,, with generators W), defined by the vertex
operator (as explained in Sect. 3 in the context of the Bécklung transforma-
tion): . .

X i_ )ui /1—1' P |
X(t,l,u)=e;t'(ﬂ )e;( B

19
i ot

(=4 0"
0 e Xehe)|

Il
oMs8

(# ——).) § ATnTv I/I/;l(\’); (010)

vl =

Il
oMs

for explizit formulae, see (3.7) and the appendix. Also introduce the p-reduced
algebra ¥,

W, = {algebra generated by W), 1 <v <p, jeZ, with t,=1,,=... =0}
and the truncated sub-algebra

i M 1<y<p j= —
W closure underbracketing of W;3”, 1 < v'= D> J 1,0,1,... (0.11)
P with t,=t,,=...=0

note that # , , and #', have a central term, whereas #'," does not; it implies that
every element of #7,* can be expressed as a bracket of two elements in #/," (see
[FKN2)).

Theorem 2. Consider the differential operator

L=D?+---+q,(t)=St)D?S(t)""' with S(t)= i MD‘"'

n=0 T(t) ’
then
solutions 7 of
{solutions L of (0.1) and (0.2)} < { Wt = 0 for all 0.12)
WeW,*

and the solution t is unique.

The proof of this statement given in Sect. 4 hinges on the differential Fay
identity (see Sect. 3), which plays an important role in this paper:
1 X, 4, 1) (t)

PE(1, 1) (1, 1) =Py
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and so by Taylor’s theorem and (0.10)

d (v—1) 1 0
(L, A) | == t,A)=D|~- Y1) ).
wean () wen=o(t T ameo)
In the context of the p-reduced KP equation (Felfand-Dickey hierarchy), it is
natural to define so-called #, stress-energy tensors (see Sect. 3 for more details);
namely setting y = A%,

() = pH JQy i 1<j<p with 1, =0 all i21,
for an appropriate choice of generators J,% of #,. The p-reduced KP equation is

known to have two (or more) symplectic structures and the ¥, stress-energy

tensors relate intimately to their spectral theory. For instance, T3 (y) relates to
the spectrum of the two symplectic structures D and K = (D> + 2(¢D + Dq))/4
in the following simple way (Proposition 3.4)

(2)
(K—yD)DTi—TCm - 2.

We now state Theorem 3, which is proved and discussed in Sects. 5 and 6:

Theorem 3. The unique solution to (0.1) and (0.2) is given by the limit ( for
large N) of

AM(©
T30(1) = 73:‘:”{@;’ (0.13)
where AN and B are the following integrals :
~ _ p+1
A,(0) = [dZ exp Tr (non-linear terms in %) (0.14)
and
- Z - @)r+!
B,(0)={dZ exp Tr <quadratic terms in g——(p_@:T)> 0.15)

over the space of N x N skew-hermitian matrices, dZ being its invariant mea-
sure, @ =diag(d,, ..., 0y) and

1 (A
z‘.=7§<—5j> i=1,2,....

Corollary 3.1. After a time shift t,, ~t,4; + 1,

01, p 1
2=t~ [dZetrZ.
oty p+1 B,,j eu

Ed. Witten [W1] conjectured that the partition function for 2d-gravity is a
specific generating function for the intersection theory of moduli space and
that its second derivative satisfies the string equation and the KdV equation.
M. Kontsevich [K1] conjectured, also in the KdV-context, that the exponential
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of the same partition function has the matrix integral representation (0.13) for
P = 2, based on the fundamental work on D. Bessis, Cl. Itzykson and J. B. Zuber
[BIZ]; Kontsevich [K3] and Witten [W2] then showed that 2(logt)” is a solu-
tion of KdV, using quite different methods: Kontsevich shows that the matrix
integral representation is a t-function, by a direct calculation, viewing t as the
determinant of a projection, whereas Witten shows that it is a vacuum vector for
the Virasoro algebra (i.e. L;7 =0 for i = — 1,0, 1,2, ...); he then uses the inde-
pendent observations of R. Dijkgraaf and E. and H. Verlinde [D-V-V] and
M. Fukuma, H. Kawai and R. Nakayama [F-K-N1] that KdV and string equa-
tions are equivalent to being a vacuum vector for the Virasoro algebra. For
general p, [D-V-V] and [F-K-N1] also conjectured the equivalence of the follow-
ing sets

{r a solution of the p-reduced KP and string equation}
and {r vacuum vector of a #,-algebra}
and Goeree [G] developed some of the mathematical machinery to show that
this is true for p = 3 and indicated a possible approach in general.

Guided by Witten’s computations in [W2] and by V. Kac and A. Schwarz’s
[K-S] observation that the wave functions (at some appropriate initial condi-
tion) is related to a generalization of the Airy function, we conjectured a matrix
model for arbitrary p. This note contains a complete proof for p < 3; a general
proof hinges on the observation that a certain partial differential equation ap-
plied to the ratio (0.13) above produces at once the stress-energy tensor for
W,-gravity. It shows this algebra is naturally associated to these solutions and
this should have a “physical” interpretation. Concurrently Kontsevich [K3]
came up with the same model and the method, which he employs for p = 2,
should work as well in general.

A link should also be made with the question discussed by J.J. Duistermaat
and F. A. Griinbaum [D-G] to find an x-operator L and a A-operator A such that
LY (t,2)=A¥(t,A) and A¥Y((x,0,...,0),1) =f(x) ¥Y((x,0,...,0),1), where
f(x) is a function of x. For second order L, there exists a solution L with
unbounded potential g(x), asymptotically linear, leading to the classical Airy
equation.

1. Facts about

When the set of deformation equations

0
atQ=[(Q”)+’Q] n=1,2,... (1.1)
for the pseudo-differential operator
[ X a
Q=D+3Xa(t) D7 D=5, t=(x,1p,..)
1 0x

has a solution, then Q conjugates to D, by means of S(¢) =1 + pseudo-dif-
ferential

0=S@t)DS(t)"!, with g—f = —(Q")_S; 1.2)
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then S(¢) admits the representation

S@) :20 P————#”(_TZ))T(’) D

in terms of a tau-function 7 satisfying the KP hierarchy.
Remark. The operator S(¢) is unique up to multiplication by S,,
S(E)~S()Sy, So=1+3b;D"', b, constants, (1.3)
1

since
OS(t)So DS tS(t) 1=S(t)DS() ' =0Q.

Also a well-known fact is that the wave functions?

°°i,» iili —[z71
tp(t,z)zgegtz _ =]

()
-‘i ii _mtxi -1
PR = (T e T —e T IUTETD (1.4)
(1)
are solutions of
k4 , ov* N
and
z¥ =QV, z¥*=QTy* (1.6)

In view of the Heisenberg relation [0/0z, z] = 1, it is natural to compute, using
(1.9

0 0
—w_ ztz
aqu azse
d Elizi
= SZE

@©

o >z
— Sy ke, D let
1

:<SZktkD"‘lSl>‘PEMW. 1.7
1
Therefore, since [0/0z, z] = 1 and more generally
1 0 0
u BEA7 ) o ISR 2 | I1p= .
|:pz 6Z’Z:| [62"’2:\ , all p=1 (1.8)
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we have

[Q”,lMQ‘P“]zl, all p= 1. (1.9)
p
We now prove the following identity, due to Goeree [G]

(M"Q™P™")_;i_y = Res, <sz+" P*(t,2) D <;—Z)n v, Z)>

n=012,...,
m=—1,0,1,.... (1.10)

Proof. The proof is based on an identity of Date, Jimbo, Kashiwara, Miwa
[DJKM] for general pseudo-differential operators U(x, d/0x) and V(x, d/0x),
depending on x:

2mi <U<x, %) yT <x, a%))_ o(x—y)

:fU(x,%)e” V( ,%)e‘”dz H(x —y), (1.11)

-1
where H(x) = <£) 0(x) is the Heavyside function; the integral can be

evaluated by the residue theorem.

Setting
t=(ty,t,...) and ' =(1,t3,...)

we evaluate (M" Q™P*"(¢))_ in two different ways: on the one hand
(M"Q™? (1))~ d(ty — 1) =; (M"Qm?* (1)) DT (t — 1)

_Sarmgrerray oW g
=X (MMM @) S Hin = ),

and on the other hand, using (1.11) in the third equality
(M"Q™P M (t))- 0 (ty — t1)
= (S (Za: oty D"‘_1>'l S™1spmptn S‘l) o(ty—ty)
= <S(t) (; at, D“‘1>n Dmrtn S“(z)) 0ty — 1))
=Res, S(X at, D*~H)reZt2(DmPr S N e~ 42 H(t, — t})
= Res, (d%)n V(t,z) 2"Prry* (¢, 2) H(t, — 1), using (1.7).

Comparing these two expressions, when ¢, > t1, dividing by H(¢; — t1), taking
derivatives on both sides and letting ¢, \ ¢1, leads to (1.10).
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When
L=QP=D"+q,(t)D? 2+ --- +q,(t) =S@t)D? S(1)~!

is a differential operator, then (1.1) becomes the p-reduced Gel’fand-Dickey
hierarchy (p-reduced KP hierarchy)

Ly, =12,

=0, n=p2p3p,.... (1.12)

Conversely, if the differential operator L of order p satisfies (1.12), then
Q = L7 satisfies (1.1).
Incidentally, relation (1.9) amounts to

1 —1+%
[L,;ML :I=1, (1.13)

where the second operator in the bracket is pseudo-differential.

The wave function ¥ leads naturally to the consideration of an infinite-
dimensional plane ¥° in Gr, that is Sato’s Grassmannian of linear spaces, con-
taining formal power series in z ([Sa] or [SW]). It is defined as follows:

0x?

=span{¥(t,z) all te C™}, using Taylor’s theorem; (1.14)

0 0
VO = span {W(la Z)It=09 a T(Ia2)|t=09 A2 ql(tsz)lt‘—‘O’ . '}

then it is well known that
V'=exp <—Z t,-zi) Ve,
1

Observe also that since V' is a linear space, it is closed under differentiation
0/0t; up to any order.

2. Proof of Theorem 1

Since the flow must preserve [L, P] = 1, differentiating this relation with re-
spect to ¢, and using 0L/0t, = [(L"?),, L], we have

0= 1.7 - [L, oF _ [(L"/P)+,P]]

ot, ot,
If [L, P] = 1 for some differential operator P, then L has the following property
(see Shiota [Sh, Remark 3])

{differential Q such that [L,Q] =0} = { i o LF, cke(l:}
and so k=0
oP

o=y, Pl= X o IF,
n k=0
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The most general solution for this equation in P has the form
[ee} [ee} A
P=X1t X cMIF+ P
n=1 k=0

with

()}
o

= [(Ln/p)+ > p] >

|

D

In

and so, modulo a Taylor series in L, the operator P is a solution of

opP
— =[("" =
atn [( )+3P] n 1527 s
=0 n=p,2p,3p,.... 2.9
Both L and P are independent of 7,,7,,,..., i.e. we may set £,,=0

(r =1,2,...) whenever it appears.
Since L = SD?S™ !, the constraint [L, P] = 1 amounts to

0=[D?,S"'PS]—1= [D”,S"PS—%DI‘P]

implying
S“PS—I)—ED“Pz S oDl ci= ity tss .. 2.2)

i=—o0

we now specify the t-dependence of ¢;; taking the derivative d/0t, for n > 1,

® d¢ ... 0
—Di=—S"'PS
i=z-—ooatn at,,
oS 0P oS
—_§s 1P ¢1p -1 -1pY»
S 6tnS S+ S 8[,,S+S Pat,,

=S Y (LP)_PS + ST'[(L"?),,P]S — ST P(L''?)_S, using (1.2)
=[S 1L["PS, STIPS]

= [D”, > D! +§D1“”}, using (2.2)

—

1 .
=;[D”,x]D1_p, since ¢; = ¢;(t5, t3, ...)

=EDn—1 Dl—p=’_1Dn—p
p p
leads to
8Ci n
(—37"—[—)5”_1, for n> 1, n % 0(mod p)

= for n=p,2p,....
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Therefore "
c,,_p=1;t,,+c,,_p(0) for n> 1, n £ 0(mod p)
=¢,-,(0) for n=p,2p,...
=¢,—,(0) for n <1 (2.3)
and
SlPS——ZntD" Py — D1P+Zc D?+ ¥ ¢ DY,
p,,"¢,2,, p i<i-p

with constants c;. Since P is defined modulo C[L] and since SD"?S~'= L',
we may remove, without harm, the terms Y. ¢,, D"? from S~ ' PSS, leading to

1 .
STIpS=-3 nz,,D"*ufDl—u > oD

Pn=2 i<l-p
1 .

== 2 nt,D" *+ Y ¢D', (2.4)
Pn=1. i<1l-p

and thus, since P = P, and since L7 (i <1 — p) is strictly pseudo-differential,

1 = .
P=-S8S>nt,D"?S '+ > L

P 1 i<l1-p

1 = .
=-SYnt,D"iSTispl-rs L4 % L

P 1 i<li-p

(I .
=-ML" + Y L (2.5)

p i<1l-p

As pointed out in (1.3), there remains the freedom to change S(¢) ~S(¢)S,
without modifying P, and L; in the expression (2 4), this will only affect the

term ’ Ypt-e, Indeed, setting So=1+y¢y =1+ Z b; D~" pseudo-differential,
1
with constant coefficients, notice that
Sol=1—-y+y?+... and SonSo'=n+,n 1 +y)"",

and so

gbl-mebl-H [l//,;—le"’] 1+y)!

"ulk SR "GIX T xR

Dl‘”+§bi[D‘i,ﬂD1‘”(1 +y)7!

N R

Il

Dl"’—iﬁ “imp(] 4y

+Z<_?+F(bbbz,-'-,bi—l))D—i_p’ (2.6)
1
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for some polynomial expression F;. Therefore

STIPSA(SS,) PSS,

100
2
= [ ib, e
+'Zl _;"'E(bla"‘sbi—l)"'c—i-p D
1 =
=[—)Znt,,D”“’+ c_,D77 2.7
1

upon picking the b;’s such that

ib;

? —F(by,....,bi-1) = C—i-p-
The map S v SS, has the following effect on ¥ and t:

Y= SeltZ§SyeXt? = S<1 +Zbizi> eX
1

:<1+§b,-2_1>?
1

t(t)r~t(t) eXtids,

where b; = pi(- dy, —%, >, i=1,2,....Finally it will be shown at the end

of the proof of Corollary 1.1 that c_, = 12;]71); so by (2.5)

=1<MLT—p—"1L'1>.
D 2

Therefore P is a differential operator if and only if

(ML 1+1p)_ — ’%—1 Lt 2.8)

proving (0.7) and thus (0.7) for j =1 and k = — 1.

To prove (0.7) in general we proceed by induction on j: assume that (0.7)
holds up to j, then for £ =0,1,2, ...

(Mij+j/p)_ — (MJ'L—1+j/p+<k+ 1))_
— ((MjL_1+j/p)Lk+1)__
= (ML) _ [¥*1)_ since [¥*! is a differential operator

= (cL™'I**')_,using the inductive step
— c(I¥_=0.
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From the commutation relation

(L7, M) = S[D""”, > ktka_l] s
1

= S[DP"I x]S! =
=(pn+j)SDP"H7IS ' =(pn+ )L ",

it follows that
(MjLn+j/P) (MLm+l/p) — Mj(MLn+j/P + [Ln+j/p,M]) [m+1i/p

+1

= M LT (o ) ML,

Then, setting m = — 1 and n = 0 into this relation, using the fact that M’ L/?
is a differential operator and the precise expression (2.8) for M7 L™ %P (both
by the inductive step)

(Mj+1 L—HT) _=((MIL"?y (ML~ **'Py)_ — j(MI L™ *ilp)_
= ((Mij/p) (ML_H”")_)_ —j(MjL_“'j/")_

Zl%l(Mij/pL—l)_ — j (M L Y*ipy

- <__.__1 —j) (M7 L1 ilpy_

concluding the proof of Theorem 1.

Proof of Corollary 1.1. This proof, inspired by Kac and Schwarz [K-S], seems
more direct than theirs. Since the plane V°=span{¥(s,z), all teC*}eGr is
closed under differentiation D* and, in particular, under the action of the
differential operators L (¢) and P (¢) (see (1.14)), we have

LV°<V® and PVOc V°, with [L,P]=1. 2.9)
Then
L)Y (t,2)=zP¥(t,z)eV°, forall teC®
and .
® n >4z
P(O)¥(1,2) = S<2;t,,D"“D‘“’+c_pD“’>el
1
=S<zl_"zgt,,D""1 + c_pz_")e;tiz
1p
_1 Zl"’i+c 2P|\ =A4,P(t eV (2.10)
P oz °F LA ’

for all ¢, using (1.7).
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Therefore, since V'° = span {¥ (¢, z) all te €}, the conditions (2.9) translate into

t-independent conditions,

VO V® and A,V°c V°, with [4,,27] =1. @.11)

We now prove a point, left open in the proof of Theorem 1, namely that
c-, = (1 —p)/2p. The proof given below is based on calculations of [A] and

[Schw], but is more straightforward. Consider the related pair of maps

. iqi
do: Diet

=1)J‘G > nt,,D"—p+§Dl_p+C_pD_p>€‘
2

n¥kp

- 1 i nt,,D"_”+j+ED“””—}-iD_””+c_pD_”+j>e‘
2 p

n¥kp

and

~DI(S1PS)e

©
>tz
1

b :
>tz

p

b n
>tz

using D’ - x = xD’ + jDi™1

. E . g a linear combination of
=Gz_p+c_p2_p>l)j€‘ l + E:ti

Dke’ z,k=#=j

with holomorphic coefficients in ¢

a linear combination of

@©

42
+ ] DFe T 0<k<p—1, k4,

with holomorphic coefficients in ¢

which are Laurent in z?

A =DI¥~DPY=DIAY¥
=A4,D'¥

a linear combination of
¥, DY, D2V, ..., with
holomorphic coefficients in ¢

a linear combination of

Y, DY, DY, ..., DP7 'Y
Z?Y, zP DV, ..., DP 1Y
2Py, ..., with
holomorphic coefficients in ¢

a linear combination of

Y, DY, ..., DP"' P, with
coefficients polynomial in z?
and holomorphic in ¢

,since AV® < VO

, since z2 V0 < V°
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Therefore &, is represented by a matrix of the form

z~ P

0, * c_ 0

and &/ by a matrix holomorphic in ¢ and polynomial in z?. These two maps
intertwine; the following diagram commutes:

) itiz" igp-i D 3 -4 .
Dief — 250", pise T _piy
o, o

. Eti" iep-i Et,i .
Di(s-tpS)er ' —2SPY , pipseT' = 4, Diw

and thus
Ao=U'o4U and Trody=Tro.

Setting y = z?, we have

Res, - wTrﬂ’o—p(p_ D)

2p +pc_p

and
Res,— o, Trof =0;

by the equality of the above traces, we have

confirming that c_, = (1 — p)/2p.
Proof of Corollary 1.2. To prove (0.8), compute

oL (5(Freo)s7) |
=(s{g 1))

1=[L,P]=

ST *GIH *EIH "%I




W,-Gravity 39
For p = 2, setting

L=S@t)D?S(t) '=D?*+ 2(logt)”
in the previous expression, one finds

—1= kt 1 "
k=3,25:,... katk—z(ogt)

ot 1\
= kt -
<k=3,25,... oty ‘c)

leading to (0.9) upon integration.

3. Vertex Operators, the Fay Identity, #-Algebras and the Spectral Theory
for the Second Symplectic Structure

Given an arbitrary, but fixed parameter p, the Bdcklund-Darboux transfor-

maton® ) (P (,2), ¥ (1, )
Tt —[z” _{YP(t,2), P, u
Y(t,2) =eXtid ————— Y (t,z) =z"" .
(b= Ty e = T Y
_ =27
741(2)
transforms a wave function ¥ into a new wave function ¥, and a t-function into
a new one 3
t o _
Xt w @) =1() =" @t —[u]. (3.1)

In the Grassmannian picture (1.14), the transformation ¥ ~v ¥ induces a
transformation in Gr: (for precise statements and generalizations, see for in-
stance [A-vM])

Ve Gr~y Ve Gr such that zV/ < V', (3.2
It is natural to consider the “inverse” X (z, 1),
_ Y
Xt A)ti=e T 1t +[A71); (3.3)
in the Grassmannian picture
VieGrnV'eGr suchthat zVic V. (3.4)

It is not quite an inverse, since the following expression has a singularity, when

A — u; indeed, using (0.10) R

A > (= A)
e 1

e+ A7 =)

using exp(—i%(%)): 1 —%

s P gy e g-i 10
A T =) TR - S
et et

X, 2) X(t, p)t =

T o
X e
= X
I _ k ©
ﬂfMZo(uk.l) <I=Z_ ”'_kW"”(T))’ 3.3)
da ob
flaby=gb—agz
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where the expressions W,™ form the generators of a so-called ¥, -algebra,
i.e. the commutators of two such generators is a (non-linear) polynomial of
the generators. Here are a few generators:

0
W, = g = 5t (-n)t_,, t_,=0 for n>0,
w® = 5? - (nn+ 1) JD,

3
W, = J® — 2 +2) JP+m+1)(n+2) ",

WA =J® - 2m+3)JP+2n* +9n+11)JP -+ 1) +2)(n+3)JD, ...

(3.6)
with® (see also the appendix for explizit formulae)
J,,(Z)E. Z :Ji(l)ij: , Jn(3) = Z :Ji(l)Jj(l)Jk(l):
it+j=n i+j+k=n
JO= Y JOIWIO Oy @) GIY):, ete. ... (3U)

i+j+k+l=n i+j=n

In the Grassmannian picture, we have the following inclusions, using (3.2) and
(3.4

ViozVic vt
o ! 54— 2 o
vt =Xt T=X({thpr=e! T+ A1 =[D).
Consider now the generating functions (the stress-energy tensors)
W= 3 A"W® and JM= Y ATV, (3.8)

We now have the following relations, essentially a reformulation of the Fay
identity.

Lemma 3.1 (Fay identity). In the general KP-context, the wave function ¥ (¢, 1)
and the adjoint wave function Y*(t, u) satisfy

" 1 X(t, A, 1) t(t)
D) () = DA,

3.9
and thus
Vll/*([,j,) (%) [/](L,{):D(il_ i l—n—v W/r‘v(T)):D(ZATE_) )

n= — oo

(3.10)
Proof. Differentiating the Fay identity for z-functions

cyczlric (50— 51) (52— 53) T(t + [so] + [s1]) T(t + [s2] + [53]) =0
permutationsof 1,2, 3

5 :: means normal ordering, i.e., pull the differentiation to the right
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with regard to s,, then setting s, = 53 = 0, dividing by s,5,, and shifting ¢ by
t~vt —[s,], lead to the differential Fay identity

{1 @), 1t + [s1] = [s2]} + (57" = 53D (¢ (¢ + [s1] = [52]) 7 (2)
—t(t+ )t —[s2]) = 0; (3.11)

see Mumford [Mu] and [A-vM]. This relation (3.11) with A = s; ! and u = s5 ¢,
multiplied with exp X" #;(u' — A') leads to equality (*) below; we thus have
1

(1, 2) P(t, p) = e~ 26 2t :([t/;—l]) etk i _r([;;_l])
! S TGl Ve Bl V)

émD<eEf(u 2 0 >
_ v XA @)
o —lD (1)

- (:u _)')jul 1 2 -n—j J
=j§1 j—!D<;n=Z_:ooﬂ W )(r)>
_ i (u —./I)f‘l b I’V,{(‘i)(‘[).

j=1 J! T

Differentiating this relation with regard to p and setting u = 4 leads to (3.10),
ending the proof of Lemma 3.1.

Remark. It was pointed out to us by A. Radul that the Fay trisecant identity has
already appeared in the context of quantum field theory; see for instance
A.K. Raina [Rai].

Lemma 3.2. For the p-reduced Gel’fand-Dickey equations

(M"Lm*"Py_,_, = Res; (i’”"*” Y*(t,4) D' (6) Y’(t,l))

04
n=0,1,2,3,...
m=—1,0,1,... (3.13)
i=0,12,...,
and in particular
j+ 1 W
(Mv—le+ )_1_ (T)
v T
v=1,2,...,
j=-10,1,.... (3.14)

Proof. Equation (1.10) applied to Q = L'/? leads to (3.13); in particular
Lot v—1
<M” 1t ) . = Res, <W+v—1 P (1, ) <a_ax> P, 1)),

which by Lemma 3.1 leads to (3.14), ending the proof of Lemma 3.2.
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For p = 2, the Gelfand-Dickey equations reduce to the KdV equation

aq 1 " / ’
E—Kq—z(q +6g9q (=0(dx)

where
L=Q*=D?+gq, gq=2(log1)’

1
K=Z(D3 +2(¢gD + Dg)).

As is well-known, it has two compatible symplectic structures K and D (see
[MM]). We now have

Lemma 3.3. (Spectral theory for K — z> D). In the KdV case (p = 2), the wave
Sfunctions V¥ (¢, z) and W * (¢, z) defined in (1.4) satisfy the following formulas
(@) {¥* ¥} = -2z,
(i) (K—z*D)P*¥ =0,
oY

(iii) (K—z*D)yP* 3, = —z2 4+ zDYP*VY.

Proof. Substituting
trvt—[sq], sy —z7' and s,~zTl,
into the differential Fay identity (3.11) leads to (3.15)
{t@¢=[=z""D, t(t = [z7'D}
~2z2(t =[P [-z7 D -1 = [~z 1~ [z7']))=0.
Sincein the KAV (p =2)case t(¢t) =7 (ty,t3,15,...)doesnotdependon t,, #,,...,
wehavet(t — [~z -z D=7 +[z -z D=t@)andt(t —[-2z"1))

=1(t+[z7!]). Using {e " **a, e¥* b} = {a,b} — 2zab and {a/e,bje} = {a,b}/e?,
one computes

Gl A VS { (e L)
() t(2)

e+ 27D, t@ = 7D} = 2ze(t+ 27Dt = [271])

{(P*, ¥} = {e“"z
1

7(2)?

= —2z using (3.15),

which establishes (i).
Using the eigenrelations

(L—-)P*t,)=0 and (L—p>)P(tp) =0
we compute
AR(P*(1, ) P (1, 1) = (A2 + 3u2) T* (1, 1) P (1, 1)
F(E 3D PR )P () (3.16)
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Setting A = u = z leads at once to (ii). Then taking the u-derivative of (3.16) and
setting A = u = z yield

(K — zZD)‘P*(t,z)a—aZT(t,z) =

= %Z(‘I’* t,2)P(,2) —z(P*(t,2) P (t,2))

= %z(w* (t,2) ¥ (t,2)) — z <z + % (P*(t,2) 'P(t,z))’) using (i)

= —22 + Z(T*(ts Z) T(I,Z))/,

which establishes (iii), ending the proof of Lemma 3.3.
Having considered the generators of the ¥ , ,-algebra, recall from the intro-
duction the definition of

W= (WP 1<jspnel ty=t,=...=0}; (3.17)
correspondingly define the #,-stress energy tensors (in terms of y = z?)

TOG) =3 JPy ™1 1<j<p, with ,=0,all i=1  (3.18)

neZ
and the (truncated) ¥, *-stress energy tensors (meromorphic part of 7,9 (z))

TOW = ¥ JPy™" I 1<j<p, with 1;,=0, all ix1. (3.19)

nz—j+1

Then T,(y) can also be expressed in terms of so-called p — 1 free bosons ¢{?
(I=1,2,...,p—1), defined by

dot? 1 © __(—t%p)_l
f;’; =, e , (3.20)
as illustrated in the examples below.
Example 1. For each p, the operators
L,= 1J,,‘ﬁ’ (with #;,=0, i21) (3.21)

2

are the generators of the Virasoro algebra, namely

L3 =)o, (3.22)

[LnaLm] = (I’l - m) Ln+m + E

In particular (see F-K-N1)

(3.23)

p—1 a(p§P) 6(p(p_)l p2_1 1
@ () — . p-1, 2
and

0@y, 09y, 09,
TP ) = 6p3? i S - T £ 3.24
P (y) ? léll,lzgsép—l ay 6.)} ay ( )

11 +13+13=0(mod p)
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J2 and W, = J§3 are the generators of the

N =

Example 2. For p =3, the L, =
W3-algebra with relations

1
[LmLm] = (n - m) Ln+m + 1—2'(’13 - }’l) 5n+m’

BLn, W,n] —Qn—m) Wm,

[W,, W,,] = quadratic functions of L, and W,. (3.29)

As pointed out in the introduction, stress-energy tensors seem to also arise
naturally in the context of the two (or more) compatible symplectic structures of
the Gel’fand-Dickey equations, as we illustrate here for the KdV equation
(p = 2), where
gq_ = Kg = 1 (
o, 94741

1

649'),
with two symplectic structures D and K, where
L=Q?*=D*+q, q=2(ogr)
E%(Ds +2(¢gD + Dg)).
Proposition 3.4. In the KdV case (p = 2), we have the following relations

0 (1)
O &k-2p)p 3 ZE0 m_g
k=—-o

© (2)
ii) (K—z2D)D ']2"—(122_2"_2= -2z
T
k=—w
or what is the same @
(K—yD)D%y)—T: 2 (y=2).
(iii) recurrence relation
(1) (1)
(@@ KD ‘L—TI—(Q - D? J_21+T1_(T) =0 n=0,1,2,... (Lenard relation)
J@2) )
®) KDZ”—TZ(Q—DZJ“T(T) =0 forallneZ, n+ —1

=-2 for®n=—1.

Corollary. If t satisfies the KdV equation and J% (1) = 0 (i.e., L_; 1 = 0), then
J2(t)=0forallnz —1 (€., L,t =0 foralln> —1).

¢ for n = —1, it can also be written

TG _ 5 UG =¥
T T

KD
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Proof of Proposition 3.4. From Lemma 3.3 (ii), we have (K — A?D)¥P*¥ =0

with
W(”(r) J(l)(‘t)
* — n—1 n—1
yry § ATV D——2= %Y "D ———= -

n=-o T nodd

(3.26)

since 1 is independent of #,, 14, f, ...,
leading to (i) and (iii, a) by identifying powers of A. Then using again (3.10) for
v = 2, relation (3.6), and the fact that J® (1) identically vanishes for odd n
@) (1)
LA SR G ISR/ s U) I(T)

6/1 neven T n odd

using (i), (iii, a) and (3.26), one computes

(1) (1)
(K=12D) = —(n+1)i™"" 2p @ t(’) 2y anp2 i@ T(T) 2D PP,
nod nodd
Using this information, we have
—2)2=(K—A*D)2y* %—f —2\D¥P*Y

_ w2y I (D)
=(K—-1*D) T A" EDT 2

establishing (ii) and thus also (iii, b).

Proof of Corollary By relation (iii, a) for n = 0, we have that J3 (t) = 0 implies
inductively D2 J§# (1))t = 0 and so J{? (z) = 0.

Remark 0. [DVV] have considered relations of the type (ii) for solutions 7 of the
KdV and string equations. Proposition 3.4 shows that such relations hold for
general solutions of KdV, regardless of the string equation.

Remark 1. Recurrence relation (iii, a) is nothing but the by now classic Lenard

relation dlogt o dlogt

KD n=1).
atln 1 612n+1 ( - )
Remark 2. Relations (iii, b) for » £ —1 turn out to be reducible to (iii, a). For
instance for n = —1, relation (iii, b) can be written
XD JE @) D2 JE - x)1
T T

logr+6t3> 2(2 > ktkaa logr>
k 2

k=3,5,...

k=5,17,... ak 4

= Z kt, 9 2D? logr+3z3—6~2Dzlogr
ak 2 6 1

k=5,7,...

using KDt; = ¢’ t3/2 and (iii, a).
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Remark 3. In Magri’s theory (see [MM] and [McK)), integrability implies double
eigenvalues for the Nyenhuis tensor D ~' K. How is the observation related to
Proposition 3.4? Along a different vein, in a beautiful computation, Kirillov [Ki]
has shown that changing variable x in D? + ¢ (x) by means of a diffeomorphism
x v s(x), leads to a new operator D? + §(x) (after an appropriate “‘conjuga-
tion”), where § (x) contains a Schwarzian derivative:

" MmN\ 2
10 = ¢ a6 +3 (5 -5 (5))

N

The infinitesimal deformation of this operation, thus belonging to the Virasoro
algebra, leads at once to the second symplectic structure of KdV; this has been
generalized for arbitrary p by [FIZ]. Another connection between #-<algebras and
symplectic structures comes up as follows: the two symplectic structures yield two
different Poisson brackets between the various functions ¢, (7),...,q,(f) of
the differential operator L (fact first observed in the KdV case by Gervais [Ge)).
Then expanding these functions into Fourier series and expressing the second
Hamiltonian structure in terms of its Fourier coefficients lead to brackets between
these Fourier coefficients; they exactly generate the#,-algebra. Consult for in-
stance A.O. Radul [R]. The connection between these different points of view
remains obscure.

4. Proof of Theorem 2

Step 1. If 7 satisfies the p-reduced Gel’fand-Dickey and the string equations,
then t is a null-vector (vacuum-vector) for #, *, which upon bracketing reads

=Y 1SvEp,n=—v+1, —v+2,...}. 4.1)

Indeed if 7 is a solution of dL/dt, = [(L¥?),, L] and [L, P] = 1, then accord-
ing to Theorem 1 and Lemma 3.2 (in that order),

Lo vt (v)
0=<Mv11f+")_1=v Wip m for v=1,2,... and j=-1,0,1,...,

implyin
pyme W (x)=ct, ceC.
Since #, * has no central term, every element of #, * can be written as a commu-
tator (see Lemma 4.2 of [FKN2]) of two elements of #, *, implying the constant
¢ = 0, and thus by (3.6),
JPr)=0 forv=12...,j=-101,...,

which for v = 1, implies d1/0¢,, = 0; so we may set 4, = 0fork=1,2,.

That #, * is spanned by the generators in (4.1) is obtained by repeatedly
bracketlng J) with J@), yielding J, . ,,,; for instance, from (3.23) we have

[ Je) J(3)]—(_2*m)=l(g)f1)pa

@,
and so J¥ , can be generated from the higher ones but not J©} ,,
[6 J2), I3 =—JC),, whereas [:J3), I3 ]=0.

-ps

This ends the proof of Step 1.
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Step 2. The solution 7 to the p-reduced Gel’fand-Dickey and the string equation
[L, P] =1 exists.

According to (2.9) and (2.10), the linear space ¥ °eGr is invariant under the
action of the operators L (¢) and P (¢), which act as (multiplication by) z? and 4,
respectively, with [4,, zP] = 1. By modifying the time-origin with the shift
ty41 ¥ty + 1, the new operators L(¢) and P (¢) thus obtained still satisfy

Ly =zry
and
PY =A4,Y,
where
N -2 p+1
A,=z @z + » z,

and [4,, zP] = 1; indeed the shift 7,,, "~ 7,,; + 1 produces the linear termin 4,
as appears from (2.10). Since 4% ¥ (0, z) blows up like z* for z # oo and since in
the big stratum, it is possible to find a basis whose functions blow up as z*
(k=0,1,2,...), we have

VO =span{¥(0,z), 4,¥(0,z), A2¥(0,2), 4;¥0,z),...};
but since z?V° < V°, the function ¥ (0, z) must satisfy

2290,2) ¥ oA P (0,2, 0,40, (4.4)
i=0

for some constants o«;. Therefore the existence of a z-function solution to
p-reduced Gel’fand-Dickey and string reduces to the existence of a formal plane

V%e Gr containing a function ¥ (0,z) =1 4+ Y ¢;z "¢ satisfying (4.4) for some
1

constants «;. The above differential Eq.(4.4) for ¥(0,z) with o; =0
(1 £i £ p — 1) reduces by means of elementary transformations to an equation
(in @) for which a solution exists, namely the higher Airy function

ks ith o d 4.5
e =V wit <p(y)=§eXp<—p+1+xy> x. 4.5)

This ends the proof of Step 2.

Step 3. The vacuum vector t of #, is unique.
The generators J\ of

%={‘,(v_+vl+r)p’ 0§V§P—1, r:051729"‘}
have the form

1 . 1 1 1).
D MO R OF

i1+ ...+ =m

+ 2 Y g DI (4.6)

k<l iy+...+ix=m
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for some constants ¢;, . ;. Making the substitution ¢, ~#,.; + 1,

B 0
X YT =1+ ) 16—_+"'
it Fa=m Imva-1)(p+1)

0
= l—
Olmsq-1)(p+1)
non-linear terms

+ o

of the form¢, ,...,t, ———————

" Oty ... 0t
( higher order linear )

differential operators

and similarly for the second half of (4.6). Hence

non-linear terms
J(v—+v1+r)p = (V + 1) >

+ Yy +
Otyerp v<v | Olysrp—(v-v)p < as above

< higher order linear > @.7)

differential operators

Thus possibly after taking linear combinations we find new generators of #, *
of the form

0 .
H; = — + (non-linear terms) + (

higher order linear )
a1,

differential operators
i=1,2,... and =*p,2p,...

To prove uniqueness we must show 7 (0) = 0 implies © = 0; that is, by Taylor,
all partial derivatives of t vanish at ¢ = 0. Indeed, one shows inductively that all
derivatives of t with respect to ¢,, ¢,, ..., t; (at ¢ = 0) vanish as a consequence of
Hit=0for1LiLk.

Step 4. To prove Theorem 2, we now proceed as follows: letting 7 and I be
the two sets in (0.12). Step 1 implies at once the inclusion 7 < ITin (0.12). Accord-
ing to Step 2, the space I of solutions is non-empty and according to Step 3, the
space II contains exactly one function. Therefore I = I, ending the proof of
Theorem 2.

5. An Explicit Solution of Gel’fand-Dickey and String (Theorem 3)
In showing V() of (0.13) is a #,-vacuum vector, a first step consists of

making the following substitution X=Z— @ and 4 = (— 0)?, yielding (remember
it;i=Tr(-= @) =TrA™"P),
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4,0)
T(N)(t) —Zp \7J
! BM(6)
_ p+1
j dZ exp Tr <non-linear terms in — &)
p+1
- _ pt+1
| dZ exp Tr <quadratic terms in — (ZT_?%—>

fdz expTr—[%((Z— O L (1) ((p+1)ZOP - OPTY))

Z4, 2307 0P>>
dz exp( —x 22l = %)
I p( & 20— 6)

[ dX exp Tr—ﬁ()(”“ +(= )P ((p+ 1) (X + ©) @7 — @P* 1))

- N /9P _ P\~ 1/2
constant [ | (H)

ij —Uj

p+1

X
X exp Tr( — _ @y
| dX exp r( p+1+( o) X>

= ot IIXI 9!,_0}) -1/2 T P o bt
constan — €X T —
160, P erl( )
p+1

X
dX exp Tr| — XA
J P < pri’ >

pt+1

= constant alp _ j1p\1/2 N
i A IT exp P At
1sijsN A= 4 =1 p+i
AM (A
M (A) (5.1)

= constant .
BM(A)

In a second step, we exhibit a PDE for 4,(4). To do this consider first
A= A,(Y) with all entries of ¥ = YT non-zero ’.

Then, since by integration by parts

dx 9 T XP+1 XY
o o { 5 m0)
we have
pt1
[dX (= (X7)ji+ Y;) exp Tr<—p T +XY> 0,
and thus
0P A
Y. A — - 0. '
jid ,z,g,,pax,zazz,s..,axpj 0 (5.2)

7 Y’[’E YT
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But since 4(Y) is invariant under conjugation of ¥, we have
A(Y)=AUYUT) = A(4),
where
Y=UtAU, UtU=1 1=diag(i,...,y).

Then, differentiating the latter by ¥;;, leads to

04
kd = -T
5y, = U Ui (53)

We shall need quantities like

04
Fl(aﬁ) Z(]lﬂaY '_501/3’

022, 1
PoY,;07; Un=7, — g

-- ¥

y*ﬂ/l —).ﬂ

B@f)= 3 U} it B+

if B=a,

03 Ay

— e _ 2 i
F3(a’ﬂ)—i,j2 l]lﬂaY aYkanlU FZ(aﬁﬁ) +2F2((x7a)F2(a?ﬁ) lfﬂ*(x

=—2X KB iff=a
v¥#p
B 0?2,
B@M) = 3 UhUL 537 UyUn=FR@p) ifa=y f+o
WO~ Ry ifa=py+a
= (0 otherwise. 5.4

Then multiplying (5.2) to the left and to the right by U} and U; ;, summing over
i, j and using the chain rule

0A 04 04,
Y, <02,0Y;

4 0k, 9y %4 +Z§£ 024,
aYijank_a,paYijankalaalﬁ a@/laaYij(?Y;

jk

, etc....,

one finds the partial differential equations

2
%‘2’(A)—a—é+ZFz( l)( a—A>+A,A=0, (I=1,...,N)

0 (5.5)
034 0 0 0
PNA) = 5 Y +a2 B (a, 1)( a_z,)(az +26—/11>A

+ s B (L asaa=0, (=1, N
- o4, 0 56)
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etc. ..., with F,(a, /), F5(«, 1), ... given by (5.4).
We now define

1 X ;
==Y A7 i=1,2,...
1 j=1

which become independent time-variables when N ~oo. In Sect. 6 we show
that t,'(¢) is indeed a function of ¢ only. Now set 4,(4) = 1™ () B,(4) in the
partial differential equations above (5.5) and (5.6) and take the following
derivatives (set ' = 0/04,):

! 4

A A
—E=1:’+1:(logB)’, 3 =1"+217'(logB)’ + t((log B)" — (log B)'?), ...,

and, using a symmetrization procedure,

ot 0%t 0t
‘C’: —t/, T”= tltl _t”,
;ata : a3 01,05 ”+§ata
03t 3 0%t
T = —— it + = tatp) + .
%y ot 0t50t, = P 3 01, atﬁ( »
Letting N ~ o0, we find by means of a not straightforward calculation that

L a0y =L 20@,0 = 12001, . forp=2 ()
B, B

1 \/— op® 6q0(3)
P Ic) - _ 3) @)
B, 1(43) T 01— < dy + 0y TP ()1,

+ R (y)13|y=).p fOI' P = 3a (58)
where

’ (p = 3)’

y=u

1 .
R*(») =35 Z VX faw+j+a g5y
9
jz0 nz -1

where V()= X J‘” “"(t,=0, all i=1) is the truncated stress-

nz—j+
energy tensor ass001ated with #, * and introduced in (3.18) and ¢{? the bosons
introduced in (3.20).

Case. p =2. When N ~ o, the 4; move independently for fixed ¢; and are thus
indeterminates; therefore
TP~ W)= X (=) " 2J(@) =0 implies Ji(c,) =
nz -1
and so, 7, is a vacuum vector for the truncated Virasoro algebra (p = 2). This
is a reinterpretation of an argument of Kontsevich [K2].

Case. p = 3. As before, for large N, 4, plays the role of an indeterminate and
all the coefficient of the various power in (5.8) must vanish. Since R* (y) 73
contains the only positive y-powers of (5.8), we have

;1 Lym+j+3) S5 (13) =0  for j=0.
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Since t3; does not appear in J{¥(t3), they are also indeterminates, and so all
J¥(t3)=0forn = —1,i.e. T ()13 = 0. Therefore again from (5.8)

0= 7_}.(3)@) 3= Y y—n—3 J:g)(‘fs)
nz-—-2

yielding J§3(z3) = 0 for n > — 2. This shows 75 is a vacuum vector for the
truncated algebra #5 * . Therefore also from Theorem 2, the function 73 iS a so-
lution of the Boussinesq and string equations. The proof for general p pro-
ceeds along similar lines.

Proof of Corollary 3.1. Defining with Witten [W2] the operator

An=20155 ae

one checks that
A1+rptk=(_ 1)rp(k_rp)tk—rp (k=1,2,)
and, using the explicit expression (5.1) for ﬁp, that

5 (=Pt .
A4, _,B,= > B, 1+§: itjjt;.
lj>1

On the one hand, we have using the two formulas above
~ (=Pt . . 0
4,-,(,B)=~—F—8, > itjy+2 Y itz (5.9)
2 —i—j=-p —itj=—-p 6l-

and on the other hand, using the exphclt representation (5.1) for B in terms
of the integral (letting A ={dze")

or
Ay A, =[dZ " Tr<@1 pae)

N NEIa
jazon{or(2+2)
(p+1)2%*(-06)"" ‘)

2 p+1
=(-1)?"'pldzZe' Tr Z. (5.10)

—[dZe Tro'" paz(p

Equality (*) follows from the observation that by integration by parts
a I

Since 7, B, = 4,, comparing (5.9) and (5.10) leads to
B, P, =2p(dZe TrZ.
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By means of the (often used) time shift #,,,~v7,,;+ 1 (see for instance
Sect. 4, Step 2),
JANTA 4+ 2(p + I)a—é;‘;
1

then, since /@), = 0 by Theorem 3, the result of Corollary 3.1 follows.

6. An Explicit Evaluation of 7,(¢)

We shall evaluate 7,(t) = 4,(4)/B,(4), the ratio of determinants, in the style of
the classical formula for Schur polynomials, using an integration formula of
Mehta [Me], following Kontsevich [K3] in the KdV case. This will immedi-

. . . 1 .
ately prove 7,(¢) is a formal sum in the variables #; =~ A; "%, a fact taken
L

for granted in Sect. 5. Indeed, Mehta observed if @ is a conjugacy invariant
function on the space of hermitian N x N matrices, then for any diagonal her-
mitian matrix Y

{ P(X)e—/~-1uXy gy

(Hermitian matrices)

= (=2 /= DHNE-V2(p (7))~ ! f ®(D) e~/ ~1uDY (D) dD

(diagonal matrices)
with

V(diag(Xy, X3, ..., Xy)) = H X;— X)) = det[Xuj—l]lgi.jgN-
i<j

From this it follows that (c is a constant)

d il )
et| —a,(4;
< 0y 2 >1§i,j§1v

Ao ' 6.1
() =c det(A/ ™)< jen o

with
a,(y) = fe<_m+xy> dx; 6.2)

here we have made use of

X j—1
ij—l e< prit y)dx:<%> a,(y).

Substituting into (6.1) the specific expression (6.2) of a,(y) with the following
asymptotic expansion for large y (see [K-S]):

_EZ‘T‘ p PHI\ oo _pT“
a,(y)=y exp <p? y > % a,y n,
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and using

Vo -er F sl 215 F)ol07)
<-> a,(y)=c'y "CXP(ULW’)gjy ,

dy +1
where
gi&)=s7A +als+aPs*+ ..)=s"Thi(s), s small;

yields

_p+pl pt1 det(g(,i_F)) e
A (L) =c” A ex <p—p_*/1 P ) J A\ 1<i,jEN )
W= T4 7 exo(- L4, s

i<j
Thus (see (5.1) for B,(4))

o~ - i ) el

i<j

i i<j

= (H l}/’" 1—[ (,{illp _ /1}/"))_1 detgj(/li—l/p))
i i<j

3 detgj<)“i E) 150N
det (A7), <; j<n

_det [P h; (A7 V)] <i i
B det[A{"7] < j<n

_det[(A4 )N T Ay (AT D)<

after multiplying the i'®
row of both matrices

det[(A7"")N 7] <y i< ’ by A7 Ne
_ det(Hj(l«‘i))lgi,jgN - H(py, oy - hy)

H.(/Ji — W) H (i — 1)

i<j i<j

with
N . © - .
pi= At Hi(s) = sV h(s) = SN_J<1 +21: aimsl>'

Therefore H(uy, ..., 1y) is a formal power series in the u;, skew-symmetric
in its arguments, and so divisible in the ring of formal power series by
[T (#: — p;). Then, the ratio H(W/IT (#i — p;) 1s a symmetric function in the

i<j i<j
> and hence (as in the polynomial case) a formal series in the elementary
symmetric variables 7; =3 p/, j=1,2,...; therefore 7,(f) is a formal series

in the t;=n;/j,j=1,2,..., as claimed.
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7. Appendix

J,f”:%—nt_,, with 1,=0 if n <0,

n

02 0
o T TR S R GOV}
PO 0* ; o 0

L.+ ity — —
i+j+k=nalialj5t,, —i+jtk=n l@tj oty

i3y <ia-)(iz,-)—£k+ S 1) Gn) (k).

—i—jtk=n —i—j—k=n
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