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Abstract. We study the large time behavior in L2 of solutions to a model for the
motion of an unbounded, homogeneous, viscoelastic bar with fading memory.
Decay rates for the solutions are obtained under the assumption that the initial data
and histories are smooth and small. Moreover, convergence of the solutions to
diffusion waves, which are solutions of Burgers equations, is proved and rates are
obtained. Our method is based on the study of properties of the solutions to the
linearized system in the Fourier space.

1. Introduction

Consider the following model for the motion of an unbounded, homogeneous, visco-
elastic bar with fading memory:

.
ί>0,

where u, v, and σ are the strain deformation, velocity, and stress; the stress σ is a
given function of the strain u and its past history,

σ(x,ί) = /(κ(x,ί)) + } a'(t-τ)g(u(x9τ))dτ 9 (1.1)2
— oo

here a(s) is a given kernel on 0 ̂  s < oo with derivative a', and f(u\ g(u) are given
smooth material functions. The history and initial data are given by

tι(x,ί) = if(x,f), f g O , ι>(x,0) = ι>0(x). (1.2)

We are interested in the large-time behavior of solutions whose initial data and
histories are smooth and specifically, in the convergence of small perturbations (in
the integral sense) to a constant state 0 = (ΰ,v) as ί-> + oo, and particularly in
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determining decay rates. Although asymptotic expansions have been proposed to
derive a viscous approximation by the hyperbolic-parabolic system

'- (1.3)
v, ~ P(U)X = (μ(u)vx)x,

where

μ(u) = g'(u) ] sa'(-s)ds, (1.4)
— QO

cf. T.-P. Liu [1], there has been no justification of the validity of such an approxi-
mation.

In this paper we show that the solution of (1.1), (1.2) has the same large-time
behavior as the solution of (1.3), (1.4) with initial data

Under appropriate restrictions on /, g and α, we show that the solution U = (u, v)
of (1.1), (1.2) decays to ϋ in L2 at rate (1 + ί)~ 1/4, and in L°° at rate (1 + f)~ 1/2; more-
over, U is asymptotically approximated in L2 at rate (1 + ί)~1/2 by a combination
of U and of diffusion waves, which are solutions of Burgers equations. We also
obtain corresponding rates for derivatives of the solution. Here our rates are
optimal.

First of all, we need to assume that

0'(κ)>0, p'(κ)>0, p"(u)<0. (1.5)

For the kernel α, we assume that

a,a'9a" eL^oo),
00

Jί |α(ί) |Λ<oo, (16)ι

L(α')(z)/0, VzeTI,
a is strongly positive definite,

where L(α') denotes the Laplace transform of a', Π = (ze^ Rez ̂  0}, and the defini-
tion of strong positivity will be given below. These assumptions include the situation
of physical interest. Global existence and uniqueness of a classical solution has been
established by Hrusa and Nohel [5] under (1.5), (1.6)i and suitable regularity and
smallness_assumptions on the initial data and past history. They showed the decay
of U to U in L°°. However, they don't provide decay rates since their proof was
based on energy estimates. To obtain the decay rates here we further assume that

L(ά) is a rational fraction', (1 6)2

it is not clear whether (1.6)2 is necessary for obtaining decay rates or not. However,
it is satisfied in the most important physical application where a is a finite sum of
decaying exponential functions with positive coefficients.

Let's explain the conditions on a. First we have
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Definition. A function αeLj^O, oo) is said to be positive definite if

0 0

for every yeC[0, oo); a is called strongly positive definite if there exists a constant
c> 0 such that the function defined by a(t) — ce~', f ^ 0, is positive definite.

The definition is generally not easy to check directly. For our purposes here, it is
useful to know the following

Lemma. If aeLl(Q, oo), then a is strongly positive definite if and only if there exists
a constant c> 0 such that

(1.7)— ,
ωz + 1

Using (1.7) and the regularity on a one can check that (1.6)! implies

α(0)>0, α'(0)<0. (1.8)

See [5] and the references therein; (1.6) implies that a decays exponentially, i.e., there
is a constant C > 0 such that

\a(t)\^Ce~t/c, V ί ^ O . (1.9)!

This can be seen from the inverse Laplace transform

a(t) = ̂  'f L(a)(s)estds,
2πι -ioo

(1.6) and the residue theorem. Similarly, we have

|amK(OI^-ί/c, Vί^o. (i.9)2

Conditions (1.6)! and (1.6)2 are satisfied by kernels of the form

a(t)= £ α^-"*, f£0,
/=!

with a,-, /f/>0, j— 1,. . .,JV, which are commonly used in applications of visco-
elasticity theory. Moreover, they are also satisfied by oscillatory kernels of the form
e~μtcosβt,μ>0.

Set

0), (1.10)

ii||,(τ), (1.11)
τ ^ O

where || \\LP denotes the Lp-norm on ̂ , || || = || ||L2, and || \\s is the Sobolev norm:

( s ) l / 2

\\h\\, = { Σ l l^^l l 2 ^ , Dl = dl/dxl.
U'=o J

Our first result is about the L2 decay of the solution.
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Theorem 1.1. Assume that (1.5) and (1.6) hold, η and VQ satisfy

η - ϋeL°°((- oo,0]; #s(^))nC((- oo,0];

where s ̂  3. //Es is sufficiently small, then (1.1), (1.2) has a unique solution U defined
on @x [0, oo), with U - t/eC([0, oo); H*(Λ))nCl(\Q, oo); Hs~l(^}\ C/xeL2([0, oo);

ί£0, (1.12)

where 0 ̂  /c ̂  s/2 — 1 am/ C is a constant.

Clearly, the L°° decay rate (1 + ί)~1/2 of U - U is a consequence of the estimate
(1.12) and the Sobolev inequality.

Before stating our second result, let's introduce the parabolic system

(1.13)
I ~\ μ ~
I v'~p(μ>x~2Vχx

and the hyperbolic system

{ Γ - p W = 0 (1'14)

corresponding to (1.1), where μ = μ(ΰ), μ(u) and p(u) are defined by (1.4). By (1.5) and
(1.7),

μ = g'(ΰ) ] a(t)dt = 0'(ϋ)L(α)(0) > 0. (1.15)
0

We are going to discuss the large-time behavior of the solution to (1.13) with initial
data

C/(x,0)=t/0(x), (1.16)

where U = (u, v), and show that it is the same as the large-time behavior of the
solution to (1.1), (1.2). We choose (1.13) instead of (1.3) for technical reasons. They
have the same asymptotic behavior in L2 if they have the same initial data (cf. S.
Kawashima [2]); however, (1.13) is more convenient to handle since it is uniformly
parabolic.

The hyperbolic system (1.14) has eigenvalues

right eigenvectors
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and left eigenvectors

satisfying li-rj = δίj9 ij =1,2, and VΛ f -r,- = 1, / = 1, 2. We define the diffusion waves
for (1.13), (1.16) as

where rt are the right eigenvectors of (1.14), and 0f is the solution of the initial value
problem

Set

Ψ(x,t)=U + ψ1(x,t) + ψ2(x,t). (1.17)

Our second result concerns the approximation of U by Ψ.

Theorem 1.2. Assume that the hypotheses of Theorem 1.1 are in force with s ̂  4 and
x(υ0-ϋ}€l}(βt}. Set

£s* = £s+ f \x(U0(x)-U)\dx.
— co

If E* is sufficiently small, then the solution U for (LI), (1.2) satisfies

\\D\U- f)||s-4-2*(f)^C£s*(l + tΓ1/2<*+1) (1.18)

for t ̂  0, where 0 ̂  /c ̂  s/2 — 2, and C is a constant.

Theorem 1.2 gives us a complete picture for the asymptotic behavior of the solution
U to the viscoelastic model (1.1), (1.2) inj he L2 sense. It tells us U converges to Ψ
at the same optimal rate as the solution U of the parabolic system (1.13), (1.1 6) does,
cf. Theorem 1.3 below. Our strategy for proving it is to show that U —U decays
faster than U - Ψ.

Diffusion waves were constructed by T.-P. Liu [6] (Also see [3 and 4]). Asymp-
totic behavior of solutions to parabolic systems has been studied in Lp, 1 ̂  p ̂  oo,
by I.-L. Chern and T.-P. Liu [4], T.-P. Liu [3], where optimal rates were obtained
in [3]. Asymptotic behavior of solutions to hyperbolic-parabolic systems like (1.3),
(1.16) has been studied in L2 by Kawashima [2]. However, his rate for the conver-
gence to Ψ is not optimal. For our purpose here we cite some facts from [2, 3 and 4]
concerning the solution for (1.13), (1.16) as the following

Theorem 1.3. Consider the initial value problem (1.13), (1.16).
i) Assume U0 -

Es=\\U0-U\\8+\\UQ-U\\Ll (1.19)

is small, then (1.13), (1.16) has a unique global solution U(x,t) satisfying U — Uε
C([0,oo);/fs(^))(nC1([0,oo);/fs"2(^)) if s^2) and DUεL2([Q,ao)',Hs(&)). The
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solution satisfies the decay estimate

|| Dk(U - U) \\s_k ^ CEs(l + ;)- ι/2(* + u/2))? t ̂  o, (1.20)

where 0 g k ̂  s and C is a constant.
ii) Assume that U0 has the property that

is small Then the solution U for (1.13), (1.16) exists with U - ί7eC((0, oo);
L2((0, oo ); Hk+1(@)) and satisfies

\\Dk(U- Ψ)\\LP(t)^CδΓ1/2(k + (2/2}-(l/p)\ f >0, (1.21)

where 1 rg p ̂  oo, C is α constant.

We will show that the solution of the viscoelastic model is approximated by the
solution of the uniformly parabolic system (1.13), (1.16) at least at the same rate as
in (1.21) by proving the following result.

Theorem 1.4. Assume that the hypotheses of Theorem 1.1 are in force with s^4.
Moreover, assume that η - ΰeL°°((- oo,0];Lr(^))nC((- oo,0];Lr(^)), where
l<r^2.Set

Es,r = Es + sup||^-ΰ||L,(τ). (1.22)

If Esr is sufficiently small, then the solution U for (1.1), (1.2) and the solution U for
(1.13), (1.1 6) satisfy

| |D f e(t/-(7)|| s_4_2 f c(ί)^C£ s, r(l + ί)"1/2(/c + (1/r) + (1/2)), (1.23)

where 0 ̂  k ̂  s/2 — 2, C is a constant.

Remark. Theorem 1.2 is a consequence of Theorem 1.4 with r = 2, Theorem 1.3,
and Theorem 1.1.

Remark. I f η - ΰeL°°((- oo,0]; l}(®))nC((- oo,0]; L1^)) and EsΛ is sufficiently
small, then we obtain the decay rate (1 + r)- ι/2<* + <3/2)) + α in Theorem 1.4, with α > 0
arbitrarily small. This is the same decay rate as hyperbolic-parabolic systems are
approximated by uniformly parabolic systems. See [2] Theorem 6.3.

To prove Theorems 1.1 and 1.4, the key step is to obtain appropriate decay
estimates for the linearized systems (2.1)-(2.3) and (2.41), (2.42) below; these are
linearizations of systems (1.1) and (1.13) respectively about the constant state U.
This is a serious difficulty for the viscoelastic model problem since an explicit for-
mula for solutions of the linearized systems is not available, even for quite special
kernels like a sum of exponential functions; by contrast, in the case of parabolic and
hyperbolic-parabolic systems of PDE's, explicit formulas are available and estimates
for the linearized systems are straightforward.

The plan of this paper is as follows: In Sect. 2, we discuss solutions of relevant
linearized systems in detail. In Sect. 3, we generalize the energy estimate of Hrusa
and Nohel [5] to higher derivatives (Also see Dafermos and Nohel [8].) Finally in
Sect. 4, we prove Theorems 1.1 and 1.4.

For the general theory of (1.1) the reader is referred to the book of Renardy,
Hrusa, and Nohel [7].
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2. Solutions for Linear Equations

To obtain the decay^estimate for the system (1.1), we are going to linearize it about
the constant state (7, and to prove that the solution for (1.1) has the same decay
rate as the solution for the linearization. Therefore it is crucial to obtain the decay
estimate for the linearization, which is our purpose in this section.

After linearizing (1.1), we consider the following initial value problem:

{"'-- = 0 , (2.1)
\vt~ f'uχ = 9 ί a'(t - Φ*(*> τ)dτ + Φ, χe3#> *> 0,

o

l/(x,0)=l/o(x), xe^, (2.2)

where U = (u9 v)9 U0 = (w0, f0), /' = f ' ( ΰ ) and g' = g'(u) are constants satisfying

g'>09 p' = /'-fl(0)0'>0, (2.3)

a is a given kernel satisfying.(l.o), φ is a given smooth function of x and ί, and U0(x)
is a small perturbation of zero in the integral sense.

In this section, Fourier transform and Laplace transform are used to explore
properties of the solution to (2.1), (2.2). Let's assume U^l}ψ(]c\H&ψ] and
</>eC([0, oo ); H\$)\ s ̂  2. First we take Fourier transform with respect to x denoted
by « Λ " to (2.1), (2.2):

K-«"A=° t (2.4)

\vΐ-f'iξu*=g'\a'(t-τ}iξu*(ξ,τ)dτ + φ\
o

l/Λ(ξ,0) = l/0

Λ(ξ). (2.5)

Then take Laplace transform formally to (2.4),

sL(vΛ)-v* - fiξL(uΛ) = g'iξL(a')L(uA) + L((/>Λ). (2.6)

This is an algebraic system. It can be solved easily to get

ί*-)-^^

Taking the inverse transform and using the convolution theorem, we arrive at the
following formula,

(2-7)
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whqre

1 σ+ίo° $βst

s2 + g'ξ2sL(a)(s)

^3l 2πί Jioo s2 + 0'£2sL(α)(s) + p'ξ2 '

σ is a real number sufficiently large.
To obtain estimates on U A , we need a more specific form of f/'s. By assumption

(1.6), we can write

L(a) = qjq2, (2.9)

where q1 and q2 are polynomials that are relatively prime and are of degree m± and
m2 respectively and the coefficient of the highest power in q2 is 1. Clearly we must
have ml < m2 since αeL^O, oo); moreover, q1 and q2 have real coefficients since a is
real. Using (2.9),

1 σ + ioo

where

φ; {) = s2<?2(s) + 0'ξ2s<h(s) + P'ξ2q2(s) (2.1 1)

is a polynomial in 5 having degree n = m2+2.

Lemma 2.1. Assume that (23) and (1.6) hold. Denote the n zeros of d(s\ ξ) on s-plane
as λk(ξ)9 k = 1, . . . , n. Then λk(ξ), fc = 1, . . . , n, has the following properties:

i) I f ξ ϊ £ 0, λk(ξ) is not a zero of q2. .
ii) λk(ξ) is a simple zero of d(s; f ) except at a finite number of values ξ.

Proof, i) If λk(ξ) is a zero of g2> substituting it into (2.11) we get g'ξ2λkqι(λk) = 0.
Here g' > 0 by (2.3), ξ2 φ 0 by the assumption, and qι(λk) Φ 0 since ql and ̂ 2

 are

relatively prime. Therefore λk = 0. But then q2(λk) = 0 is a contradiction to αeL^O, oo).
ii) If λk(ξ) is a double zero, then

d(λk; ξ) = λ2

kq2(λk) + £2[0'4<h(4) + P^2(4)] - 0, (2.12)

d'(λk ξ) = 2λ^2(Ak) + λkV2(λk) + ̂ [^^^4) + g'λkq\(λk) + p'q'2(λk}-} = 0, (2.13)

where "'" denotes the derivative with respect to 5.
The quantity in the bracket in (2.12) can't be zero. In fact, if it is zero and ξ ^ 0,

then (2.12) gives us λkq2(λk) = 0. By i) q2(λk) φ 0. Therefore λk = 0. Substituting back
to the bracket we get p'q2(λk) = 0. It is impossible since p' > 0. If ξ = 0, either
Afc(0) = 0 or q2(λk) = 0 by (2.1 1). Clearly the bracket in (2.12) can't be zero. We solve
for ξ2 in terms of λk from (2.12),

- (214)
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The bracket in (2.13) is a polynomial of λk. It is not zero except of a finite number
of Ak, or by (2.14), except of a finite number of ξ. Therefore

+ λ ) (2'15)

except of a finite number of ξ.
Set the right-hand sides of (2.14) and (2.15) equal. λk can take at most a finite

number of values. So does ξ. Q.E.D

Fix ξ and take σ > Re λk(ξ), k = 1,..., n in (2.10). Then use residue theorem and
note that λk(ξ)9 k =!,...,«, are simple poles except at a finite number of £'s. We
arrive at

* V * 2
>t) = L ι,n ...

k=l <t(λk,ξ)

except of a finite number of ξ's. We have similar expressions for η2 and η3 in (2.8).
Substituting them in (2.7) we have

Lemma 2.2. Assume that the hypotheses of Lemma 2.1 are in force. Then except at
a finite number of <fs, the solution for (2.4), (2.5) is

«Λ«,0 = «ί(0 Σ 7̂ 7̂ ' + ̂ ) Σ jgf^'
fc=ι d(λk,ζ) k = ι d(λk,ζ)

o t = ι d(λk;ξ)

(2-16)

are defined by (2.9), rf(s; ξ) by (2.11), and λk = λk(ξ), k = 1, . . . , n, are
zeros of d.

Remark. We have derived (2.16) by taking Laplace transform formally to (2.4).
Actually at that point we didn't know if the transform exists or not. However, once
we get (2.16), it can be checked by direct substitution that it is a solution to (2.4),
(2.5). Therefore the inverse Fourier transform of (2.16) gives us a C([0, oo); Hs(&))n
CHCO, oo ); Hs~ l(&)) solution to (2.1), (2.2), which is unique, cf. [5] or Theorem 3.2
below.

Set

μ = gf]a(t)dt. (2.17)
o

Then μ - g'L(a)(Q) > 0 by (2.3) and (1.7).

Lemma 2.3. Assume that the hypotheses of Lemma 2.1 are in force and ξ is real Then

we have the following properties:
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i) For small δ > 0,

\ζ\£δ9 (2.18)

and there exists a constant α = α((5) > 0, such that

(2.19)2

ii) λ^ξ) and λ2(ξ) are complex conjugates with

(2.20)

while the limits of the other zeros exist,

lim λk(ξ) = λ°, fc = 3,...,n, (2.21)
ξ->QO

where λ°9 k — 3, . . . , n, are f/ιe w2 = ft — 2 zeros o/

(2.22)

Proof, i) First λk(ξ), /c = 1, . . . , n, are continuous functions of ξ since the coefficients
in d(s\ ξ) are continuous on ξ. Note that

Therefore λ^O) = A2(0) = 0, while λk(Q\ fc = 3, . . . , n, are zeros of ̂ 2- Since αeL^O, oo),

ReA fc(0)<0, fc = 3,. . . ,w. (2.23)

Regard ξ as a complex variable for a moment. Then in a small neighborhood
of zero we have

ξ = λ1hl(λ1), ξ = λ2h2(λ2)

via (2.14), where hί and h2 are analytic functions with

MO) = =' MO) =--"=. (2.24)

Since ξ is an analytic function of λl and of A2,

dl*
dλkλk = o~

the inverse functions λ±(ξ) and Λ,2(£) are analytic around zero. Set

(2.25)

Substitute them in d(Λ,1>2; ζ) — 0. We have

v 2

1 = 0

1 = 0
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Expanding the right-hand side in ξ and setting the coefficients of ξ2 and £3 to be
zeros, we arrive at

O1^] V2(0) + g'c^qι(Q) + p'q'2(0)c^ = 0.

Solve them to get

where the signs for c(

0

1} and c(^ are chosen by (2.24). Substitute them into (2.25) and
we have (2. 18).

Next we claim that

Re λk(ξ)ϊQ, fe=l,...,w, if £^0 is real. (2.26)

If this is not true, set λk(ξ) = iω, with ω real. Substituting into d(λk\ ξ) = 0 we have

(iώ)2q2(iώ) + gfξ2iωqι(iω) + p'ξ2q2(iω) = 0. (2.27)

Divided by q2(io)) and taking the imaginary part gives

0'ξ2ωRe[L(α)(ΐω)]=0.

Since g', £2 > 0 and (1.7), ω = 0. Then (2.27) becomes p'ξ2q2(Q) = 0. This is impossible.
Equations (2.18), (2.23), (2.26) and the continuity of λk(ξ) give us

Reλ l t 2(ξ)<0,

As long as we can prove that there exist constants ξθ9 α > 0, such that

Reλ kK)^-α, fc=l,...,n, for ξ £ £0 and ξ^-£ 0, (2.28)

then (2.19)! and (2.19)2 follow easily.
If (2.28) is not true for some 1 ̂  k ̂  n, then we can find a sequence ξn -> oo, such

that Re λk(ξn) -> 0. Set λk(ξn) = rn + iωn, where rn -> 0. Substitute it into έ/(λfc(ξn); ξπ) = 0.
We have

(rn + iωπ)
2 + g f ξ 2 ( r n + iωn)L(a)(rn + iωj + p'ξB

2 = 0, (2.29)

since q2(λk(ξn)) φ 0 by Lemma 2.1. Separate the real and imaginary parts,

*l - ωn + ϊtfcn Re L(ά) - ωn Im L(α)]Γn + ίωn + p f ξ 2 = 0, (2.30)!

lrnωn + ̂ ^[ΓΛ im L(α) + ωn Re L(α)]Γn + ί-Wn - 0. (2.30)2

If ωn is bounded, then there is a subsequence, denoted again by ωn, such that
ωn^ω0. Divide (2.30)2 by ξ2, and let n^oo. We get ^ω0ReL(α)(/ω0) = 0. Then
ω0 = 0 since α is strongly positive definite. Divide (2.30)! by ξ2, let n— > oo, and note
that rn9 ωn^0. We have p' = 0. This contradicts assumption (2.3).

Therefore ωn is unbounded. There exists a subsequence, again denoted by ωw,
such that ωw-> oo. Divide (2.29) by ξ2, let n-> oo, and note that lim sL(α)(s) = α(0)
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by properties of Laplace transform. We have

r)2 = /'. (2.31)

Solve (2.30) for ReL(α) and ImL(α). Especially,

ReL(α)(rn + to,) = - -̂  - ̂ y^

Using (2.31) and rw-»0, ωπ-> oo, we get

lim ω2 Re L(α)(rn + iωn) = - lim ̂  ί — j - lim ̂  *nC°n

 2 = 0. (2.32)

Then the real part of lim (rn + iωn)L(d)(rn + iωn) = α(0) gives us
«-> 00

lim ω. Im L(α)(rπ + iωn) = - α(0). (2.33)
H-» 00

By (2.32) and (2.33) we have

- lim [(rM

2 - ωn

2)Re L(a)(rn + iωn) - 2rnωn Im L(a)(rn + iωj

= 0. (2.34)

On the other hand,

L(α")(s) = s2L(α)(s) - sα(0) - α'(0).

Set s = rn + iωn and take real part. We arrive at

Re L(a")(rn + iωn) - Re [(rn + iωn)
2L(a)(rn + ίω.)] + rπα(0) = - α'(0).

Let n->oo. We get

lim Re[(rn + iωn)
2L(a)(rn + ίω.)] = α'(0) < 0

H-* 00

by (1.8). This is a contradiction to (2.34).
ii) Let λ° be a finite cluster point of λk(ξ) as ξ -> oo, i.e., there is a sequence ξn -> oo

such that λfc(£n)->λ°.d(λk(ίπ); ί J = 0 gives us

where q is defined by (2.22). Let n -> oo. We get <?(/ί0) = 0. As ξ -> oo, either λfc(ξ) -> ̂
or Afc(<^) -> oo, where λk is a zero of q. If this is not true, λk(ξ) has infinitely many finite
cluster points since λk is a continuous function of ξ, and all these cluster points are
zeros of q. This is impossible because q is a polynomial of degree w2. If lim AΛ(^) = oo,

rewrite d(λk(ξ); ξ) = 0 as *"°°

2 + g'λk(ξ)L(a)(λk(ξ)) + p' = 0.
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Letξ-

597

bo. Note that lim sL(α)(s) - α(0). We have lim lλk(ξ)/ζ]2 = - f. It is easy
S-+QO ξ-> ao

to see by argument principle, for example, that for an w-zero of q there are exactly
m λk(ξ)'s approaching it as £->oo. Therefore we have (2.20) and (2.21). λ^ξ) and
λ2(ξ) are complex conjugates since d(s; ξ) has real coefficients. Q.E.D

Lemma 2.4. Assume that the hypotheses of Lemma 2.1 are in force and ξ is real. Then
for small δ > 0, there exists a constant C = C(δ) > 0, such that

and

A iζLg'λkq!(λk) -f p'foMk)] Λ

£ , d ' ( λ k ; ξ ) e

2Jp'

(2.35)

,-t/C (2.36)

*)+^2(^)3
d'(λk ξ) ^c^-'/c, ί^o. (2.37)

Proof, i) Using (2.18) and the expression for d'(λk; ξ) in (2.13), (2.35) can be checked
by direct computation. The proof of (2.36) is similar to that of (2.37) below.

ii) We only estimate the first term in (2.37). The other terms can be done in
exactly the same way.

From Lemma 2.1 we know that d'(λk(ξ); ξ) Φ 0 except of a finite number of <f s
(including ξ = 0). Suppose that d'(λk(ξ)\ ξ) Φ 0, k = 1,..., n, on a finite interval [£1? £2].
Then on such an interval (2.37) follows easily from the continuity of λk on ξ and
(2.19). Therefore all we need to do is to prove (2.37) for ξ in a small neighborhood
of ξ0 with d'(λk(ξ0); ξ0) = 0 for some k and for ξ -> oo.

Consider a small neighborhood of ξQ in which d'(λk(ξo)\ ξQ) = 0 for some 1 ̂  k ̂  n
and d'(λk(ξ); ξ) φ 0 for ξ^ζo, k= 1,..., n. For definiteness let's assume that λ0 =
^ι(ίo) = ^2(^0) = = Am(ξ0), 2 g m ̂  n, and Ak(ξ0) φ λθ9 k = m -f 1,..., n. By the
continuity of Λ,fc, we can choose 0 < ε0 ̂  α/4 and 50 > 0, where α is the constant in
Lemma 2.3, such that for | ξ — ξ0 \ < δ0,

(2.38)
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Using residue theorem, for any fixed £,0 < \ξ — ξ0\ < δ0,

v λk<l2(λk) ιkt_ ! r *42('

fc=ι d'(λk\ξ) 2πi μ-λ0 |=(3/2)εo d(λ ξ)

Using (2.38) and (2.19), we have for \λ - λ0\ = fe0,

k,ξ)\ = \ λ - λ ί ( ξ ) \ \ λ - λ 2 ( ξ ) \ \λ-λn(ξ)\>(ε0/2)n,

. D p, ί 1 0 \ I D p» 0 *̂ I Q Q I U f* j) /.ί \ ^̂  /y /O
• 1X.C\/l — ^O/ " i -" * ̂  ̂ 0 ^ *^ ^0 " ' -"-̂  1 v ^ O / — /

Therefore

v^ /lk

k^(λk;ξ)

-ε0 max \λq2(λ)\e?*'λ
2 |λ-Ao|=(3/2)εo ,-(«/2)ί

Similarly we can get the same estimate for

(2.37) holds in a small neighborhood of ξ0.
Next consider the case when ξ->ao9

λίq2(λί)v-» /lk

^H'(λk ξ)
Note that

d'iλ. ξ) d ' ( λ 2 ; ξ )
e'Reλ2

. Equation

. (2.39)

and ^2 i
s a polynomial of degree m2 = n — 2. Using (2.20) and (2.21) we conclude

that lim λίq2(λ1)/d'(λί 9ξ)= 1/2. Together with (2.19), the first term on the right-
ξ-+ao

hand side of (2.39) is bounded by Ce~t/c for large ξ. Similarly we have the same
bound for the second term. The third term can be estimated in the same way if g(s)
defined by (2.22) has only simple zeros. If g(s) has a double zero, then we use the
same technique as in the case above when ξ is in a small neighborhood of ξθ9 replac-
ing λ0 by the double zero of q and considering large ξ. Q.E.D

Theorem 2.5. Assume that (23) and (1.6) hold, υQεl}($)πHs(<%\ D~lφ^C([_^ oo);
//s+1(^))nC([0,oo);^ + 1'p(^)), where s^2, -1^/^s and pe[l,2]. Then the
solution U of (2.7), (2.2) satisfies

"1o J

for max(0, /) ̂  k ̂  5, where t ̂  0, απJ C > 0 is 0 constant.

(2.40)



Nonlinear Viscoelastic Model with Fading Memory 599

Proof. By Lemmas 2.2, 2.3 and 2.4, for a small δ > 0 and real ξ,iϊ\ξ\^δ,

Note that (Dk U)Λ (ξ, t) satisfies (2.4), (2.5) with φ Λ being replaced by (ίξ)kφ Λ and t/0

Λ

by (iξ)kU*. Therefore

||/>*l/||2(ί)=ll(βkt/)ΊI2(ί)

-USA
ic ί

+ C j

^C J |^ί/0

ΛK)|2

lίl^ί
ι/2

'Γ Ί1 / 2 I 2

+ C J J e-«-w\ξkφ*(ξ9τ)\2dξ\ dτ\
o L i ξ i ^ ^ J J

k~(1/2)

ηι/2 p

^τJ J
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where we have used the Hausdorff- Young inequality || W Λ ||LP' ̂  C || w ||LP, pe[l, 2],
l/p + \lp' = 1. Taking square root gives us (2.40). Q.E.D

To obtain the decay estimate for the difference between the solution of (1.1) and
the solution of ( 1 . 1 3), again we need to know the decay rate for the difference between
the solutions of the linearizations.

Note that μ defined by (2.17) is positive. We consider the following parabolic
system which is the linearization of (1.13):

vt — P'UX = ~ vxx + φ, xe&, t > 0,

Solve these ODE's,

(2.41)

I/(x,0)=I70(x), xe^, (2.42)

where U = (ύ, v). Take Fourier transform,

μ 2 ~ Λ
f 2

vt

Λ -p'ίξύA =^(iξ)2vΛ + ψ Λ ,

v Λ (ξ ) _

° 1

f c ~ iξJp'd ~ τ) - (μ/2)ξ2(t - τ) _|_ g^^f - τ) - Qι/2K2(f - τ) 7 Λ / ε

oL 2 2p' J

- e ~ ίξ^t ~ (μ/2)ξ2t 4- -

Γl e - iξS?(t - τ) - (μ/2)^(t - τ) + 1 ̂ ^(r - r) - (μ/2)^ - τ) Ί ̂  A ̂  τ)dτ>

L2 2 J
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Theoreni 2.6. Assume that (2.3) and (1.6) hold, U^l}(ffi)c\H\0l\ D~lφ, D'^φe

C([0, oo);/fs+1(^))nC([0, oo); Wl + 1'p(@)), D~lφeC([Q9ao);Wl' + 1 9(3l))9 where
s ̂  2, - 1 ̂  /, /' ̂  s - 1 and p, ge[l,2]. Then the solution U of (2.1), (2.2) and the
solution U of (2.41), (2.42) satisfy

\\Dk(U-U)\\(t)^C

f (1 + ί - τ)- ι/2(*-' + (i/p)-d/2)) || Dι(φ _ φ) \\Lp(τ]dτ

0

(2.44)
o

for max(0, lj')^k^s — i, where t ̂  0, and C > 0 is a constant.

Proof. By Lemmas 2.2, 2.3, 2.4 and (2.43), for a small (5 > 0 and real ξ,ϋ\ξ\^δ9

Theorem 2.6 then follows in exactly the same way as in the proof of Theorem 2.5.
Q.E.D

3. Energy Estimates

Consider the following Cauchy problem

ί, ί>0, (3.1)

(3.2)

Hrusa and Nohel [5] established the existence and uniqueness of the solution for
(3.1), (3.2) and gave an energy estimate for the derivatives of the solution up to the
third order. In this section we generalize their result to higher derivatives, which is
needed later. Precisely, we have

Theorem 3.1. Assume that (1.5) and (1.6)^ hold. For each given w0,w1, and φ
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satisfying

'd O, oo); L2(^))n C([0, oo); Hs+ I(@))ΓΛ L°°([0, oo); tfs+ '

[0, oo); iP(^))nL2([0, oo); Hs

where

+ ]ί\\Φ\\lι + \\ΦΛ^J(τ)dτ + \]\\φ\\(τ)dτ]2

o L O J

is small, then the initial value problem (3.1), (3.2) has a unique solution w defined on
^ x [0, oo) with

w,,eC([0, oo); Hs+1(^))nLco([0, oo);

wmeC([0, oo); //s(^))nL°°([0, oo); Hs

and

max {||wJ|2

+2 + | |w ( | |
2

+ 2+ ||wj|2+1 + ||wm | |2}(τ)

+ { I I w« ||2+ ! + II wίx ||
2

+ ! + II w(( ||
2

+ 1 + || wm ||f
2}(τ)dτ ^ CNS, V t ̂  0, (3.3)

0

where C > 0 is a global constant.

The proof of this theorem is totally parallel to that of Theorem 1.1 in [5], which
is a special case of s = 0. Actually higher derivatives cause no difficulty. We can
simply take derivatives with respect to x at each step for getting a priori estimate
in [5]. This gives us the energy estimate (3.3) under the assumption that the left-hand
side of (3.3) is small. Then using a local existence result which is a generalization of
Lemma 2.1 in [5] we get the global result. We omit the detail.

To our purpose here, let's apply Theorem 3.1 to the problem (1.1), (1.2), with

wx = u — ΰ, wt = v — v,

o
φ= J a'(t-τ)g(η(x9τ))xdτ.

- oo

We also assume (1.6)2 so that (1.9) holds.

Theorem 3.2. Assume that (1.5) and (1.6) hold. For each given η and v0 satisfying
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ι>0 -

η - ΰeL°°(( - QO, 0]; Hs(@)) n C(( - oo, 0];

s ̂  2, z/

ϋ||s(τ) (3.4)

issmall,thentheproblem(l.l\(1.2)hasauniquesolution U defined on & x [0, oo), vwί/z

17 - t/eC([0, oo); #*(«)) nC^P), oo);

and

sup \\V-V ||s
2(τ) + } || Ux ||

2_ ΛτMτ) ̂  CE2, (3.5)
O^τ^r 0

where C > 0 is a constant independent of t.

4. Proofs of Theorems 1.1 and 1.4

Once we have Theorems 2.5, 2.6 and the energy estimate (3.5), the proofs of
Theorems 1.1 and 1.4 become a routine. We outline them as the following.

Proof of Theorem 1.1. Linearize (1.1) around the constant state U,

\ ( v — v)t — f'(u)(u — u)x = g'(u)$a'(t — τ)(u — u)x(x, τ)dτ + hx + </>,
o

where

h = f(u) - f(ΰ) - f(ΰ)(u - ΰ) + ja'(t - τ)\_g(ύ) - g(ΰ) - g'(u)(u -u)~](x, τ)dτ,
o

φ= f a'(t-τ)g(η)x(x,τ)dτ. (4.2)
— oo

Use Theorem 2.5, for 0 ̂  k ̂ j ^ 5 — 2 — /c,

ll^(c/-^)||(ί)gc{(i + ί)~ 1 / 2 ° ' + ( 1 / 2 ) ) l l^o-^llL 1 + ̂ "ί/c

t/2
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Sum' up j,

\\Dk(U-U)\\s_2_2k(t)

ί/2

0

ί/2

Set
Mk= sup (

0 < τ < f

First consider k = 0, then (4.3) is simplified to

It is easy to see from (4.2) that

Using the Sobolev inequality and (3.5), we have

(4.3)

(4.4)

(4.5)

(4.6)

f'(u) - 0'(ϋ)K ||._2(τ)dτ

^ C H U - tJ 1 1 . 1 1 17 - C/| | s_ 2(ί) + e-"-*c|| t/ - U y I/ - UL_ 2(τ)dτ
0

a'(t-τ}lg(η(;τ)}-g(ΰ)-}dτ

(4.7)

From (4.2) we also have

(4.8)
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Substitute (4.6), (4.7) and (4.8) into (4.5). We arrive at

|| 17 - 0 ||s_2(ί) ̂  C(l + tΓll4{Es + M0(ί)2 + EsM0(t)}.

Therefore M0 ̂  C{ES + M2(t)}. M0(t) ^ CES if E5 is small. Equation (1.12) is proved
for k = 0.

Now prove (1.12) by induction. Assume that (1.12) holds for k = 0,1,..., k0 — 1.
We want to prove that it holds for k = /c0. From (4.2) we have, for k0 ^ 1,

+ Cje-«-*c \Dt°-1ί(g'(u)-g'(ϋ))ux]\\Lt(τ)dτ. (4.9)
0

It is easy to see that the first term on the right is bounded by

( fco-l Ί

C X | | M - M | | | | | ) * O W | | + X \ \ D j f ' ( u ) \ \ \ \ D k Q - j u \ \ \ . (4.10)
( j=ι )

Use induction hypothesis to bound || Djf'(u) \\ and || Dk°~ju \\J = 1,..., k0 - 1. After
a careful calculation we find out (4.10) is bounded by

Similarly the second term on the right of (4.9) has the same bound. Therefore,

|| D*°λ ||L1(ί) ̂  C(l + ί)" 1/2(Λo + υIXM ko(ί) 4- £s

2]. (4.1

Again from (4.2) we have for k0 ^ 1,

L

It can be estimated in a way similar to what we did for (4.9) although it is a little
more complicated. For example, we have a term

^ C£S

3/2(1 + t)"1/2(to+(1/2))[Mto(t)1/2

Here in the last step we have considered k0 = 1 and k0 > 1. After a careful computa-
tion we get

,2 + £ϊΛίlko(ί)]. (4-12)

Substitute (4.6), (4.1 1), (4.12) and (4.8) into (4.3). We have

|| D*(U - U) \\s.2-2kό(t) ^ C(l + ί)' 1/2« t°+<1/2»{£ s + E,Mko(t) + £2}.

Therefore,



606 Y. Zeng

We bonclude that Mko(t) ^ CES if Es is small. Equation (1.12) is proved. Q.E.D

Proof of Theorem 1.4. Linearize both (1.1) and (1.13) around the constant state U.
We have (4.1), (4.2) and

(u - ύ\ -(v-v)x = -(u- ΰ)xx

(4.13)

. (v - ϋ\ - p\u)(u -u)x = -(v- v)xx + hx,

where

h = p(u)-p(ύ)-p'(ύ)(u-u\. (4.14)

From Theorem 2.6 we have, for O ^ / c ^ j ^ s — 4 — /c,

- U) || (ί) ̂  c(l + 1)- »/20+(3/2» || l/Q _ ϋ ||LI + e-«/c || ί/0 _ t/ 1| .+ 1

+ J(l + t-τ)
o

+ } (1+ ί - τ)
t/2

+ J (1 + f - τ)- i/2'^*5/2') || ft \\Lί(τ)dτ
o

Γ Π _|_ f τ \-l/2( j-k + (3/2)) || n fc+1 L || (r\ί\rj (i + r — τ) \\υ n\\L\\τ)aτ
t/2

-IID^^IIOWΛ
o

Sum up j,

\\Dk(U - U)\\s_4_2k(t) < CJ(1

ί/2
Γ M _L f <τΛ~ l/2(fc + (3/2)) || L L || /'-r\/7τ
J V J + t — ^j II Λ — n I I Ll(τ)aτ

o

. J(l+ ί- τ)-3/+| |D*(Λ-Λ)| |L 1(τ)dτ
'/2

ί/2
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(4.15)

where h and φ are given by (4.2). Set

Mk(t)= sup (l + τ)1/2(*+(1/r)+(1/2>)||^([/-ί/)||s_4_2t(τ). (4.16)
O S t g ί

First consider k = 0. Equation (4.15) becomes

II U - U \\s_4(t) g cί(l + tΓ3l4Es + }(1 + t - τ)- 3/4 1| /ι - & ||L,(τ)dτ
(. o

*/2 '
+ J(l+t_ τ)-5/«| |Λ | |L l ( τ ) d τ + \(\+t-τΓ3<Ί\hx\\L>(τ)dτ

0 ί/2

o

Integrating by part for /z, we have

h-h = p(u) - p(ύ) - p'(u)(u -u) + a(t)lg(u0) - g(ΰ) - g'(ΰ)(u0 - w)

- τ)lg'(u) - g'(ΰ)lvx(x, τ)dτ. (4.18)
0

It is easy to see that

Therefore by Theorem 1.1 and Theorem 1.3i), we have

l l f c - S l L . W g c i f i X i + tr^nw-ii l l+e-^Ef + fiiO + tr1}. (4.19)
Similarly we also have

||Jί||tl(ί)^CEs

2(l + t)-1/2,

II hx ||L,(t), || h, ||s_4(t), || hx ||,_ 3(ί) £ CEl(\ + t}-\
\\D-^\\L4t)^Ce-"cESif. (4.20)

Substitute (4.19), (4.20) and (4.8) into (4.17),

\\V-V ||._4(t) ̂  C(l + t)- ι/2«ιw+(i/2»{£5>r + Es,rM0(ί)}.

Therefore,



608 Y. Zeng

We conclude that M0(ί) ̂  CEs r if Es r is small. Equation (1.23) is proved for k = 0.
Prove (1.23) by induction for k ̂  1. Suppose (1.23) holds for k = 0, 1, . . . , k0 — 1,

where k0 ^ 1. Then by (4.18),

- h) ||Ll(ί) ̂  || p'(u)Dk»u - p'(u)Dk°u - p'(ύ)

+ C £ \\Dlp\u)Dk°-lu-Dlp'(u)DK°-lu\\Ll
1=1

+ Ce-«c\\Dk°g(u0)-g'(ύ)Dk°u0\\Ll

+ C\e-«-^c\\Dk°{ίg'(U)-g'(aKvx} \\L>(τ)dτ.
0

Take Taylor expansion of p'(u) around ύ. We see that the first term is
bounded by || (p'(u\- p'(ΰ))(Dk°u - Dk°u) ||L, + C\\(u- u)Dk°u ||L,, hence by
C£sMJO(l+0~1/2(feo + ί l/r)+1) + C£S5r.(l + ί)~1/2(/co + (1/r)+1) Here we have used
Theorem 1.3 i), (4.16), (1.23) with k = 0 and Theorem 1.1. Similarly using the induc-
tion hypothesis we can bound the other terms by CEs r(l + ί)~ 1/2<* 0+(i/r) + υ Therefore

\\Dko(h - A)||Lι(ί) ̂  C{EsMko(t)(l + tΓl/2(ko + (llr} + l} + £s,r(l + ί)-1/2(fco+(1/r) + 1)}.

(4.21)

By Theorem 1.1 and Theorem 1.3i) we also have

||DΛo + 1/ί||Ll(ί), ll^0 + 1^ll s-4-2 f c oW, ||Dfco + 1/ί| | s_3_2 f c o(ί)^C£ s(l+ί)-1 / 2 ( f c o + 2).

(4.22)

Substitute (4.19), (4.21), (4.20), (4.22) and (4.8) into (4.15),

\\D*(U - U ) \ \ s _ 4 _ 2 k o ( t ) ί C(l + ή-i^+d^ + d^^ + EsMko(t)}.

Therefore

Mfco(ί) ̂  CESjΓ if Es r is small. Equation (1.23) is proved for k = k0. Q.E.D.
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