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Abstract. We introduce a unifying framework for treating all of the fundamental
waves occurring in general systems of n conservation laws. Fundamental waves
are represented as pairs of states statisfying the Rankine-Hugoniot conditions; after
trivial solutions have been eliminated by means of a blow-up procedure, these
pairs form an (n + l)-dimensional manifold if, the fundamental wave manifold.
There is a distinguished ^-dimensional submanifold of if containing a single
one-dimensonal foliation that represents the rarefaction curves for all families.
Similarly, there is a foliation of if itself that represent shock curves. We identify
other n-dimensional submanifolds of if that are naturally interpreted as boundaries
of regions of admissible shock waves. These submanifolds also have one-dimensional
foliations, which represent curves of composite waves. This geometric framework
promises to simplify greatly the study of the stability and bifurcation properties
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of global solutions of Riemann problems for mixed hyperbolic-elliptic systems. In
particular, bifurcations of wave curves can be understood as resulting from loss
of transversality between foliations and admissibility boundaries.

1. Introduction

Realistic systems of conservation laws exhibit complicated interactions among
nonlinear waves. This complexity presents a major obstacle to understanding solu-
tions of Riemann initial-data problems. The present work introduces a global
framework for describing nonlinear waves in general systems of conservation laws.
This formalism provides a unified setting for all basic constructs used in solving
Riemann problems - fundamental waves, wave curves, and the loci at which they
bifurcate. These constructs correspond, respectively, to points, foliations, and sub-
manifolds of a single manifold, which we call the fundamental wave manifold W.
When phrased in terms of W, the description of solutions of Riemann problems and
the study of their stability and bifurcation properties are considerably simplified.

A system of conservation laws models the time evolution of a continuum. When
the motion of the continuum is one-dimensional, the system takes the form

Ut + F(U)x = Q9 (1.1)

where the vector U(x, t) represents the state of the continuum. Because the flux
function F depends nonlinearly on (7, solutions of system (1.1) typically form dis-
continuities. For example, in gas dynamics, these discontinuities represent shock
waves, as has long been known. Such nonlinear waves occur in shock-tube
experiments, which were analyzed by Riemann [48] in 1858. These experiments
have piecewise constant initial conditions; analogously, an initial-value problem
for Eq. (1.1) with initial data

is called a Riemann problem.
Gas dynamics also guided the elegant mathematical work of Lax [33] in 1957

on local Riemann problems, for which UR is close to UL. In this setting, solutions
are composed of small-amplitude nonlinear waves. Each wave corresponds to a
mode of a linearization of system (1.1), and behaves essentially as the solution of
the simplest nonlinear scalar conservation law, Burgers' equation. Because different
modes propagate at distinct speeds, local Riemann problems can be solved mode
by mode. The principal task is to construct wave curves, which are one-parameter
families of solutions associated with a particular mode; solutions of Riemann
problems are then obtained by successively traversing the wave curves for the
several modes. Existence and uniqueness of solutions follows from the mutual
transversality of wave curves, which reflects the weak mode coupling.

This classical approach to solving local Riemann problems has been extended
by several authors [45, 58, 60, 9, 35, 36, 37, 10, 38], who identify classes of
conservation laws for which global Riemann problems can be solved. For instance,
Oleϊnik [45] constructed solutions for an arbitrary scalar conservation law; and
for the class of systems studied by Liu [36, 37], each mode can exhibit wave
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patterns as complicated as those for scalar equations. To guarantee existence and
uniqueness of solutions, these authors assume that wave curves extend to infinity
and are mutually transverse. Such hypotheses are rather restrictive, however; in
essence, the coupling between different nonlinear modes must be weak.

While the classical construction works remarkably well even for large-amplitude
waves in gas dynamics, it is not adequate for magnetohydrodynamics, elasticity,
and multiphase flow. In these important applications, waves can interact strongly, so
that wave curves violate the usual hypotheses on asymptotic behavior and transver-
sality. Moreover, the nonlinear coupling causes modes to mix and lose their identifi-
cations with linearized modes; this leads to waves (transitional and overcompressive
waves) that have no counterparts in the classical theory. Much has been learned
about global Riemann problems by studying model systems using mathematical
analysis and computer-aided exploration [26, 49, 55, 54, 24, 28, 29, 21, 53, 23, 19,
1, 25]. However, the classical approach has yielded solutions with conspicuously
complicated descriptions, often requiring myriads of intricate diagrams. Standing
in contrast to the simplicity and elegance of the local theory, such complexity
poses an obstacle to understanding solutions of global Riemann problems.

In this paper we develop a new approach. Its basis is a geometric construction
that represents all fundamental waves, both classical and nonclassical, as points
in a single space. No special features need to be assumed of the conservation laws.
Our thesis is that the strongly nonlinear phenomena associated with large-amplitude
waves are reflected in the global properties of this spcae. This global perspective
leads to a striking unification of ideas.

Central to our construction is the Rankine-Hugoniot condition, which
embodies the physical conservation principle applied to a discontinuous solution.
A jump discontinuity at each instant, is characterized by its speed of propagation
5 and by the states U _ and U+ immediately to its left and right, respectively; the
conservation laws require that these quantities satisfy the Rankine-Hugoniot
condition

- s[L7 + - ί/_] + F(U+) - F(U_) = 0. (1.3)

Triples (17_, U+9s) satisfying Eq. (1.3) are of three types: (a) solutions with U+ Φ ί/_,
representing shock waves; (b) limits, as 117+ - 17 _ | ->0, of shock wave solutions,
which represent rarefaction waves; for these solutions, s is in eigenvalue of the
Jacobian F'(U) at U:= U + = £/_; and (c) solutions with U + = 17_ and other values
of s, which represent constant states in solutions of Riemann problems.

The Rankine-Hugoniot condition represents n equations for 2n + 1 unknowns;
however it is singular on the set of rarefaction solutions, so that it fails to define
an (n + l)-dimensional manifold. We remove this singularity using a blow-up
procedure. In essence, this procedure introduces a set of n — 1 angles Ω to represent
the orientation of the jump U+ — t/_ even when U+ = 17 _. Thus we write
17+ — t/_ = Rr(Ω\ where R is a signedjadial quantity and r(Ω) is the unit vector
corresponding to Ω. The midpoint U:=±(U- + U+) serves as the remaining
coordinate. The blow-up construction is intrinsic, i.e., independent of local
coordinates. This is because the coordinates (U,R,Ω,s) are needed only near the
diagonal U+ = 17_; the coordinates (ί7_,l7+,s) work away from the diagonal.
Thus our construction is invariant under nonlinear changes of variables in the
conservation laws that preserve the jump conditions.
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Regarded as a relationship among the variables J7, R, ί2, and s, the
Rankine-Hugoniot equation (1.3) takes the form R &r(U9R,Ω,s) = Q. Thus the
solution set is the union of two subsets. The first is the trivial subset where R = 0.
The second is the subset if where 3F — 0, an element of which represents a shock
wave when R Φ 0 and a point on a rarefaction fan when R = 0. Since rarefaction
points also belong to the trivial subset, the two subsets intersect, causing a
singularity. Therefore we dispense with the trivial solutions R = 0 and focus on if.

In Sect. 2 we establish that if is a smooth manifold of dimension n + 1, the
closure of the set of shock points. We therefore call if the fundamental wave
manifold. To obtain this result we adopt a mild hypothesis that holds for generic
systems of conservation laws; in particular, systems of mixed hyperbolic-elliptic
type are allowed. While we make this hypothesis to simplify the exposition, the
concepts we develop are useful for completely general systems, as we show by
example.

A significant feature of the global approach is that both rarefaction and shock
waves are represented within the single manifold if. Thus the wave manifold
implements the heuristic idea that shock waves with infinitesimal strength are
infinitesimal rarefaction fans. In Sect. 3 we show that rarefaction points form an
n-dimensional submanifold <β of if± called the characteristic manifold. At a point
of #, r(Ω) is an eigenvector of F'(U) with eigenvalue (i.e., characteristic speed) s.
Information about the behavior of eigenvalues is encoded in the natural projection
that maps ̂  to state space. When the system is strictly hyperbolic, V is an w-sheeted
covering manifold for state_space; but for general systems, the projection has singu-
larities precisely when F'(U) has multiple eigenvalues, i.e., coincident wave speeds.
Geometrically, the sheets of # are glued together along this coincidence set <?, and
# need not cover all of state space, the gaps being regions where the system is elliptic.

As described in Sect. 4, the n families of rarefaction curves for the system of
conservation laws are projections of a single family of curves in #. These curves
form a one-dimensional foliation that is naturally induced by the geometry of #.
Most singularities of rarefaction curves are eliminated by lifting them to #; for
instance, cusps are artifacts of the projection. Singularities in the foliation of # can
occur, however, at certain points in < .̂ These singularities are essential because
they determine the global geometry of rarefaction curves. Also important is how
the wave speed 5 varies along rarefaction curves, the topic of Sect. 5. The set of
stationary points for s, where genuine nonlinearity fails, is the projection of a
subset J of <β called the inflection locus. The wave speed attains an extremum at
a point of J provided that the rarefaction curve is transverse to J there; the set
3?Q where this fails plays a role in wave curve bifurcation.

As discussed in Sect. 6, the wave manifold itself is foliated by two families of
curves, the level curves where either C/_ or U + is fixed. These curves are called
shock curves because they project onto the classical shock curves in state space.
Whereas the classical shock curves display multiple branches near the fixed state,
shock curves in if do not: the blow-up procedure eliminates this primary bifurca-
tion. Secondary bifurcations occur where one of the shock foliations is singular;
thus the secondary bifurcation loci &R and &L are important for the global
geometry of shock curves. As is natural, rarefaction singularities occur where $R

and &L intersect #.
In Sect. 7 we study the behavior of the shock speed s along shock curves.

Stationary points for s occur on n-dimensional submanifolds, called the sonic
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manifolds ϊfL and ̂ R, where s is an eigenvalue of F'(L/_) or F'(U+)9 respectively.
This result is a geometric version of the Bethe- Wendroff theorem. The shock speed
attains an extremum at a sonic point if the shock curve is transverse there; loss of
transversality occurs on the hysteresis loci JjfL and 3? R, and this causes wave
curve bifurcation. The intersection of the sonic loci & \ and £fR is the union of
the inflection locus J and the locus $) comprising doubly sonic shock waves,
another wave curve bifurcation locus.

As we show in Sect. 8, the sonic manifolds themselves are foliated by families
of curves that are induced naturally by the shock and rarefaction foliations. These
curves parameterize solutions of the conservation laws called composite waves,
each comprising a sonic shock wave adjacent to a rarefaction wave. The composite
foliation also possesses singularities that affect its global structure.

Throughout Sects. 2-8 we systematically illustrate the theory by applying it
to several representative examples of conservation laws: gas dynamics, models with
quadratic polynomial flux functions, and a class of models studied by Keyfitz-
Kranzer and Isaacson-Temple.

In Sect. 9 we discuss how the wave manifold framework can shed light on two
fundamental problems in the theory of conservation laws: the physical admissibility
of shock waves, which is determined by properties of dynamical systems that are
parameterized by the points of W\ and the bifurcation of wave curves, which can
be characterized as loss of transversality between the rarefaction, shock, and
composite foliations and the boundary of the region of admissible waves. Another
application of the global approach is treated in a companion paper [42] that
concerns systems of two conservation laws with flux functions that are close to a
quadratic polynomial; it is proved that the fundamental wave manifold and its
shock foliations are stable under perturbations of the flux function.

Throughout the main body of the paper we assume, for simplicity, that the
state space is R". In the Appendix we provide an intrinsic definition of the
fundamental wave manifold when the state space is a general smooth manifold.
To do so we extend the classical blow-up construction.

An enlightening discussion of the role of the fundamental wave manifold in a
broader context is found in the review article of Glimm [16]. Conversations
between this reviewer and the present authors were instrumental to the inception
of this paper.

2. The Fundamental Wave Manifold W

The simplifying feature of Riemann problems is invariance under the scalings
(x, ί)ι— >(αx,αί) for all α>0. Therefore we seek scale-invariant solutions. For
instance, the discontinuous scale-invariant function

- *X < S ί' (2.D
+ if X>St,

is a solution when 17 _, U + 9 and s satisfy the Rankine-Hugoniot jump condition

= 0, (2.2)

which embodies the physical conservation principle applied to a jump discontinuity.
The solution (2.1) represents a shock wave propagating at constant speed s. On
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the cither hand, a differentiable scale-invariant function U(x, t) = U(x/i) is a solution
for t > 0 if and only if

' = 0 with s = x/t; (2.3)

it corresponds physically to a rarefaction wave. Equation (2.3) can be viewed as
arising from the Rankine-Hugoniot condition in the limit of weak shock waves
(I U+ — U- 1 -»0). The general scale-invariant solution of a Riemann problem can
be decomposed into wave groups, which are bounded by sectors where the solution
is constant. Each wave group is composed of adjoining rarefaction and shock
waves.

In this section we construct an (n + l)-dimensional manifold that parameterizes
solutions of Eq. (2.2). Triples ((/_, U + 9s) satisfying Eq. (2.2) are of three types: (a)
solutions with U+ φ [/_, representing shock waves; (b) limits, as | U+ - U- \ ->0,
of shock wave solutions, which represent rarefaction waves; for these solutions, s
is an eigenvalue of the Jacobian F'(U) at U:= U + = l/_; and (c) solutions with
U+ = 17 _ and other values of s, which represent constant states in solutions of
Riemann problems.

We assume for simplicity that U(x, t) belongs to the state space ^:=R" and
that the flux F is a smooth map from ^ to R". (An example where °U is a convex
open subset of R" is studied below; the case in which ^ is a more general
n-dimensional manifold is treated in the Appendix.) The solution set for Eq. (2.2)
is a subset of the ambient space ̂ := ̂  x ̂  x R, namely the zero-set of the function
^f:^->R" defined by

. (2.4)

It is a submanifold of & near any point at which the derivative of 3? has full rank
n. This derivative is

-, U+9 s)=- [17+ - I/_]ώ + [- s

(2.5)

At points U+ φ U - representing shock waves, dtf has full rank except in rather
pathological circumstances. Likewise, dJ f has full rank at points representing
constant states. At rarefaction points, however, U+ = ϊ/_ and s is an eigenvalue
of F'(U+) = F(l/_), so that dJ^ has rank less than n. This singularity occurs where
the closure of the set of constant solutions intersects the set of rarefaction solutions.
To remove it, we employ the technique of blowing up. (See the Appendix for a
general discussion of this construction.)

The blowing up process resolves the singularity at U + = U _ using a variable
Ω to represent the orientation of the vector ΔU:—U+ — U_ even when ΔU = 0.
Specifically, we introduce #eR and ΩeSn~^ to serve as polar coordinates for
ΔU = Rr(Ω); here S""1 is the (n— l)-dimensional sphere, and the coordinate Ω
parameterizes unit vectors r(Ω) in the tangent space of fy at the midpoint
U:=%(U- + U+). Notice that (R,Ω) is not uniquely determined from ΔU: the
antipodal point (-R, —Ω) works as well ( — Ω being antipodal to Ω on the sphere);
and Ω is arbitrary when ΔU = 0. The blowing up technique exploits the latter
ambiguity. In fact, singularities at ΔU = 0 are less severe in terms of (R,Ω)
coordinates.



Global Formalism for Nonlinear Waves 511

_ Consider^ the space $:=% xR x S"'1 xR. We associate to each point
(U9R9Ω9s)e& the left and right states

U_:=U-±Rr(Ω\ U+:= U + \Rr(Ω\ (2.6)

respectively. Thus U = ^(U- 4- U+ ) is the midpoint between U+ and C7_, while R
and Ω determine the difference Rr(Ω) = U+ — U_. Notice that IΓ_ and U+ are
each unchanged when (U9 R, Ω, s) is replaced by the antipodal point (U, — R, — Ω, s).
We therefore define ^* to be the space obtained from & by identifying these points,
and let σ: & -> ̂ * denote the identification map. Then ̂ * is a smooth manifold and
& is a two-fold covering manifold for ̂ * [32, p. 44]. Indeed: the quotient topology
on ^* is Hausdorff; and each point (U9 R, ί2,5) in ̂  has a neighborhood G disjoint
from its image — G under the antipodaljransformation, so that σ defines a homeo-
morphism between G and σ[0]. Thus U,R,Ω, and 5 serve as local coordinates for
^* on σ[0].

The map from $ to ̂  defined by Eqs. (2.6) induces a mapπ:^*->^ because
antipodal points are carried to the same image. The induced mapπ is a
diffeomorphism of the subset of ^* where R ̂  0 with the subset of & where
17+ + E 7 _ , but each point on the diagonal A = {(17_, l7 + ,s)e^: U+ = 17_} is the
image under π of a projective space RP""1 embedded in ^*. Geometrically, if Ω
belongs to the RP""1 over (U, Ϊ7,s)e^, then r(ί2) spans a line through the origin
of the tangent space of Φ at C7. (See the Appendix.) The hypersurface R = 0 in 0>*
is denoted ^*:= ̂  x {0} x RP"'1 x R.

Definition 2.1. T/ze (2n + l)-dimensional manifold &* is called the blow-up of
0> = Wx(%xR over its diagonal Δ. The collapsing map is π:^*->^. The
2n-dimensional manifold 0**9 which is the preimage under π of the diagonal of έP, is
called the exceptional hypersurface.

The relationship between these spaces is summarized in the following diagram:

/τ~r τ-» ^ \ SΓΛ σ. identification
(U9R,Ω,s)e0>

(-R,-Ω)~(R,Ω)

U+ = ϋ±\Rr(Ω) π. collapse

Example. When n = 29 we take ί2e[0,2π)_to be the polar angle, so that r(Ω) =
(cos ί2, sin Ω). The antipodal map carries (U9 R, Ω, s) to (17, — R, Ω + π, s). To serve
as coordinates for ^*, (R,Ω) can be restricted to the range R x [0,π], with each
pair (-R,π) identified with (R9_0). Therefore 0>* = % x M2 x R, where M2 is a
Mόbius strip. For each fixed U and s, ^* can be viewed as the ruled surface
Δu = RcosΩ and Δυ = RsmΩ embedded in (Δu94t;,β)-space, as depicted in
Fig. 2.1. The collapsing map corresponds to vertical projection.

Remark. The blow-up construction is still feasible, although somewhat more
complicated, when the state space ^ is a general n-dimensional manifold, as
discussed in the Appendix. The principal difference is that the coordinates
(U,R,Ω,s) can be used only in small neighborhoods of points on the exceptional
hypersurface. Even though <% is assumed to be R" in the main body of the paper,



512 E. L. Isaacson et al.

Fig. 2.1. The slice M2 of £P* with fixed U and s, as embedded in the space with coordinates
(Δu,Δv,Ω\ in the case n = 2. Above each point ΔU φ 0 lies a unique point of M2, but the vertical
projection is singular along the /2-axis

all results carry over to the general case provided that we employ the coordinates
(t/_, U + 9s) away from ^*.

The subset of & defined by Eq. (2.2) is singular along the diagonal 17 + = 17 _;
however, it is the projection of a less singular subset of the blow-up ^*, which we
now construct. To this end, notice that there exists a matrix-valued function A that
satisfies

for instance,
1/2

):= ί
-1/2

αKr(β))dα

(2.7)

(2.8)

satisfies Eq. (2.7). We regard A as defined on both & and ^*. In terms of the
composite map^f °π:^*->R", the Rankine-Hugoniot condition becomes

Examples.
1. A prototype for the equations governing gas flow is the system of two conserva-
tion laws ut + p(v)x = 0 and vt — ux = 0. In terms of jReR and ί2e[0,π],w+ =
ΰ±^R cos Ω and ι;± = t; ± ̂ R sin β. Let

i
-φ_ +αι; + )έ/α (2.10)

denote the average of — p' over the interval [ι?_, ι; + ]. Then the Rankine-Hugoniot
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condition requires that either (a)u+=u_ and v+=v- or (b)s2 = Ψ(v-9v+)9

cotΩ = — s, and u+ = ΰ + ̂ s(v+ — 1;_).

2. A quadratic model is a system of conservation laws for which the flux F depends
quadratically on U. For such models, Eq. (2.8) shows that A(U9R,Ω) = F'(ΰ).
According to Eq. (2.9), ( U _ , U + , s) satisfies the Rankine-Hugoniot condition if and
only ifeither (a) U+ = 17 _ or (b) the difference U+ — 17 _ = Rr(Ω) is an eigenvector
of F'(U)9 the Jacobian evaluated at the midpoint ί/ = ^(ί/_ + £/ + ), with the shock
speed 5 being the eigenvalue. (This is known as the midpoint rule [24].)

3. The models studied by Keyfϊtz and Kranzer [31] and by Isaacson and Temple
[22, 27] have fluxes of the form F(U) =Φ(U)U, where Φ:^->R. We will refer to
them as KKIT models. Let

Ψ(U,R,Ω):= J Φ'(l7 + αΛr(β))dα. (2.11)
-1/2

Then A(U9R9Ω):= Φ(U,R,Ω) + UΨ(U,R,Ω) satisfies Eq. (2.7). (In this example,
it is better not to adopt_definition (2.8).) As a result,_Eq. (2.9) holds jf and only if
either (a) R = 0, (b)Ψ(U9 R, Ω)r(Ω) = 0 and s = Φ(U, R, Ω\ or (c) U = κr(Ω) for
some /ceR and s = Φ((7, R,Ω) + Ψ(U9 R,Ω)U. In case (b), a solution corresponds
to a contact discontinuity with Φ(U + ) = s = Φ(U _). For a solution in case (c),
U-9U + 9 and U all lie along the line generated by r(Ω): U + = κ + r(Ω) with
κ± '•= K ± ^R. If the scalar flux function gΩ is defined by gΩ(κ):= κΦ(κr(Ω)\ then
the solution corresponds to a shock wave for the scalar conservation law

1/2 _ 1
κt + gΩ(κ)x = 0, since s= J g'Ω(κ + aR)da = \g'Ω((^ — α)/c_ + ocκ+)da is the slope

-1/2 0

of the chord on the graph of gΩ.
Equation (2.9) explicitly displays the trivial solution R = 0 that is to be eliminat-

ed by blowing up. Although dividing tff °π by # does not yield a well-defined map
on ^*, it does define a map 2F\ & -> R" on the covering space :̂

# (t7,Λ,β,s):=[-s-h^(ϊ7,Λ,fl)]r(β). (2.12)

Definition 2.2. LetW^gP denote the zero-set of^:&-+Rn. The fundamental wave
set *W c ̂ * /5 ί/i^ image ofifi" under the identification map σ: $—>&*.

The fundamental wave set generalizes the manifold constructed by Marchesin
and Palmeira [42] for a class of systems of two conservation laws with quadratic
fluxes. (The construction of ref. [42] is based on the ambient space tfί x ̂  rather
than ̂  = ̂  x °U x R. This is equivalent to the present approach because the shock
speed s can be recovered from U _ and U + . See the Appendix for further discussion.)

Examples.
1. In gas dynamics, u+ and Ω are explicit functions ofv-9v + 9 s 9 and u. Thus it is
convenient to regard *W as the set of points (v_9v+9s9u) such that s2 = Ψ(v-9v+).
Thus if = ̂ base x R, where the factor R corresponds to the velocity coordinate ΰ.
To understand if, are study the fixed- velocity surface ifbase.

For concreteness, take p to be an isotherm for the van der Waals equation of
state (see, e.g., refs. [57, 52]): (p + 3/v2)(v - 1/3) - 8T/3 for v > 1/3. (Although this
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αmM

Fig.2.2. Level curves of s2 = Ψ(v-,v + ) for a van der Walls gas. The black hole is the region ?̂
where Ψ is negative. The speed s tends to infinity at the two axes υ _ = 0 and v + = 0, and tends
to zero along any other radial direction. Several features are marked for comparison with Fig. 7.2

equation of state illustrates nicely how elliptic behavior is accommodated in a global
setting, we do not advocate its use as a physical model.) If T > 1, p' is strictly negative
everywhere, so that the system is strictly hyperbolic. In this case, i^base consists of
two disconnected sheets, corresponding to the solutions s= Ψ(v-,v+)1/2 and
s= - Ψ(v_,v + Y12. Otherwise, if T< 1, there is a hole ̂  in the (ι;_,t; + )-plane where
Ψ(v-9v + ) < 0. Again there are two sheets, now lying over the complement of 0t,
which glue along the boundary of ̂  (where 5 = 0) to form a tube. The speed 5 is
needed as a coordinate for Wbase in the neck of the tube. Level curves of s2 are shown
in Fig. 2.2.

2. For the quadratic models studied by Marchesin and Palmeira [42], W is a three-
dimensional manifold with the global topological structure of M2 x R, where M2

is a Mobius strip.

3. For the KKIT models, W is the union of two^ manifolds: the contact manifold
Contact on whLch Ψ(U,R,Ω)r(Ω) = Q and s_=_Φ(U,R,Ω); and the ruled surface
^ruied where U = κr(Ω) for KeR and s=Φ(U,R,Ω) + Ψ(U,R,Ω)U. Although
^ruied ̂ as dimension n + 1, ̂ contact has dimension In — 1, and these two manifolds
intersect. Thus W is not a manifold.

Theorem 2.3. Assume that zero is a regular value for ,̂ i.e., the derivative of 3F has
rank n at each point ofifr*. Then the fundamental wave set W is an (n + l)-dίmensional
submanίfold of the blow-up &* of& over its diagonal. Furthermore, ifi~ ^$ is a two-
fold covering manifold for 'W.
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Proof. Since the derivative of ̂  has rank n at each point of ifr", iff is an (n + 1)-
dimensional submanifold of ̂ . Also, W is jnvariant under the antipodal transfor-
mation because ^(U, -R,-Ω,s)= - &(U9 R, Ω, s). If 0 c & is an open set disjoint
from its antipodal image — @, then the identification mapσ:^-^* establishes a
diffeomorphism between ^n0 and Wc\σ\β\ Thus σ restricts to a two-fold
covering map from i^ onto W. Π

The assumption that zero is a regular value for OF is expected to hold for flux
functions that are generic (in a suitable sense). Nevertheless there are important
systems of conservation laws for which *W is not a manifold; examples are discussed
throughout the paper. To simplify the exposition, however, the following implicit
assumption will be made in all theorems in the remainder of the paper.

Assumption 2.4. Zero is a regular value for J*.

In our analysis of if, we will repeatedly invoke the following simple lemma.

Lemma 2.5. The function ^ is an even function of R. In particular, any partial
derivative of IF that has odd order with respect to R vanishes at R = 0.

Proof. The definition (2.7) of A shows that A(U, -R,Ω) = A(U, R, Ω). Π

Intuitively, 'W contains shock and rarefaction points, but excludes constant
states; see Fig. 2.3. In fact, it is the closure of shock wave solutions.

Proposition 2.6. The fundamental wave manifold 'W is the closure in &* of points
(l/_, l/ + ,s) with U+=£U- satisfying Eq. (2.2).

constant
states

rarefaction
points \

shock
waves

Fig. 2.3. A schematic picture of the (2n + l)-dimensional space ̂ *, the 2/ι-dimensional exceptional
hypersurface &$, and the (n + l)-dimensional fundamental wave manifold W. The wave manifold
parameterizes shock wave solutions, while the exceptional hypersurface corresponds to constant
states. The intersection of these manifolds is the w-dimensional characteristic manifold # that
contains rarefaction points
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Proof. We must show that W is the closure of points (U9R9Ω9s)e&* with R ^0
such that (#e °π)(l/,K,ί2,s) = 0, i.e., 1T is the closure in ^* of W\0>*. This is a
consequence of the following lemma. Π

Lemma 2.7. The exceptional hypersurface έP* a 0>* is transverse to the submanifold
TT.

Proof. The hypersurface ^0 c & where R = 0 is invariant under the antipodal
transformation, so that it is a two-fold cover of ̂ J c ̂ *. Therefore it suffices to
show that ^o is transverse to ̂  But because 2F R = 0 on ̂ 0 by Lemma 2.5, dR is
linearly independent of d& on ̂  n ̂ 0. Π

Remark. Since the blow-up process is rather involved, one might question whether
blowing up & is essential for defining Of. An alternative approach is to work with
the closure, within ,̂ of shock wave solutions ((7_,C/ + ,s) with U+^U_.
According to 2.6, the set obtained is π[ι̂ ], where π: ̂ * -+& is the collapsing map.
The alternative approach is equivalent to the present one if (a) π[̂ ] is a smooth
manifold and (b) π establishes a diffeomorphism between W and π[ι̂ ]. To prove
(a), we must construct local coordinates for π[Ί^] near each of its points with
U + = U _, which amounts to introducing R and Ω, i.e., by blowing up &. Thus the
alternative approach does not sidestep the blow-up process. Even so, one might
prefer to work with π[ι̂ ] after establishing its smoothness. This is reasonable if
(b) holds, which means that Ω can be recovered from U and 5. In some_ cases,
however, Ω is not uniquely determined. In fact, if s is an eigenvalue of F'(U) with
geometric multiplicity k ̂  2, then Ω can take any value in a (k — l)-dimensional
projective space. Points with geometric multiplicity k ̂  2 (called umbilic points) are
generic in systems with many components (n ̂  4), and they occur in important
models with n = 2.

In the remainder of the paper we will introduce several geometric objects
embedded in W. Typically such as object is constructed in the manner that W is:
iHs the image under the identification map of the zero-set of a function defined on
& (but not ^*). As will be evident in each case, the zero-set is invariant under the
antipodal transformation. Therefore it will prove convenient to perform calculations

in .̂ Implicit in the following is that all constructs in ̂  are to be projected onto
corresponding ones in ̂ *.

Calculations with & are simplified by noting that A(U,Q9Ω)r(Ω) = F'(U)r(Ω).
Therefore alternative formulae for ̂  are

(2.13)

for R Φ 0 (Eqs. (2.6) being assumed) and

# (ί/,0,fl,s) = [- s + F'(ί7)]r(fl) (2.14)

for R = 0. Differentiating Eq. (2.13) shows that

= - [17 + - I/_]<fa + [- 5 + F;(l/ + )]dl/+ - [- 5 + F(l/-)]ifl/- (2.15)

when R Φ 0. Furthermore, since 2F R = 0 at .R = 0 by Lemma 2.5, Eq. (2.14) implies
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F"(Ό}r(Ω)dV + \_- s + F'(U)y(Ω)dΩ (2.16)

when R = 0.

3. The Characteristic Manifold *

The R = 0 slice of if, corresponding to rarefaction waves, plays a distinguished
role. By Eq. (2.14), a point on this slice satisfies

0. (3.1)

Thus s is the speed for a characteristic direction associated with the system of
conservation laws, and r(Ω) is a corresponding right eigenvector, which defines a
hyperbolic mode that propagates at speed s (cf. Eq. (2.3)).

Definition 3.1. The characteristic set <#:= W n^** is the exceptional subset ofW.

The characteristic set # generalizes the manifold introduced and studied by
Palmeira [46] for a class of conservation laws with n = 2 and quadratic fluxes.
For a general system of two conservation laws, the characteristic manifold can be
depicted within ̂ * (if the speed coordinate 5 is suppressed); a schematic example is
shown in Fig. 3.1. As we will see presently, each point (ΰ, v) in the hyperbolic region
of state space is the projection of two points of #, while no portion of # lies above
the elliptic region. The boundary separating these regions, which corresponds to
coincidence of eigenvalues, is the projection of a fold locus.

characteristic surface rarefaction curves

hyperbolic ' elliptic

Fig. 3.1. A portion of a characteristic surface # for a system of two conservation laws, as embedded
in ^J (with the speed coordinate 5 suppressed). The surface folds along the coincidence locus,
which projects onto the boundary between the hyperbolic and elliptic regions. The characteristic
manifold is foliated by rarefaction curves, as discussed below. For the model shown, the rarefaction
foliation has a saddle point singularity. (Adapted from ref. [23].)



518 E. L. Isaacson et al.

Examples.
1. For gas dynamics, # is defined by the equation v + = v _ =: ϋ, so that %> = ( xR,
where ̂ base consists of triples (ι?, υ9 s) such that s2 = — p'(v). For a van der Waals gas
with T> 1, p' is strictly negative everywhere, so that ̂ base consists of the two discon-

nected curves 5 = ±^/—p'(v). In case T< 1, we refer to Fig. 2.2, in which ^base is
part of the diagonal v + = v _. If the local minimum and maximum oϊp are attained
atv = m and v = M, respectively, then ^base consists of two disconnected branches
corresponding to the intervals 0 < v ̂  m and M ̂  v. At the critical temperature
T= 1, ̂ base consists of two curves that cross at m = M, so that it fails to be a
manifold.

2. For quadratic models, 2F is independent of R, so that (U9 R, Ω,s)ei^ if and only
it(U9Q9Ω9s)EV. Thus TT is the product ^ x R, and iT is obtained by identifying
each point ([/, — #, — Ω9s) with (U,R,Ω,s). For the models studied by Palmeira
[46], the characteristic manifold ̂  is a cylinder embedded in &% with two twists. An
example of c€9 parameterized by certain global coordinates K and Ω, is shown in
Fig. 3.2. See App. B of ref. [23] for more general quadratic models.

3. For KKIT models, <£ is the union of two submanifqlds of ^*: the (In — 2)-
dimensional submanifold #contact of ̂ contact on which Φ'(U}r(Ω\= 0 and s =
and the n-dmιensional_submanifold ruled of ^ruled where t/ = ̂ r(ί2) for
and_s = Φ(t/)+ Φ'(U)U, i.e., s = g'fj(κ). These two submanifolds intersect when
φ'(U)U = 0, so # fails to be a manifold. App. B of ref. [23] contains a discussion of
the case n = 2.

The following is a consequence of Lemma 2.7.

Theorem 3.2. Assume zero is a regular value of 3F . Then the characteristic set Ή is
an n-dimensional submanifold of the (n + l)-dimensional manifold W.

Fig. 3.2. The characteristic manifold # for the quadratic model ut -f (3w2/4 + t;2/2 + y)x = 0,
vt + (MU — u)x = 0. In terms of the global coordinates KeR and Ω e [ — π/2, π/2], w = — 4 sin 2ί2 —
K cos 2ί2 and i; = sin 2Ω - (κ/4) cos 2Ω. The edges ί3 = — π/2 and ί2 = π/2 are to be identified so
that ^ is a cylinder. Also shown are other features defined below: the coincidence locus, K = 0;
the sheets of # corresponding to the two eigenvalue families, slow and fast; typical rarefaction
curves; three singularities of the rarefaction line field, one node and two saddle points; and the
inflection locus
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Remarks.
1. More generally, the transversality of Lemma 2.7 implies that near each point of
the diagonal R = 0, W is locally the product # x R, with the factor R corresponding
to the R coordinate.

2. The characteristic set can^be defined independently of if as follows. Let « 0̂

denote the restriction of J^-^R" to the hypersurface £f0

 c ̂  where R = 0, and
let ^ c ̂ >* be its zero-set. Then # c ̂ * is the image of # under the identification

map σ0:^0->^J. For ̂  to be a submanifold of ̂ *, it is sufficient that zero be a
regular value of J%.

The structure of ̂  reflects the behavior of the characteristic speeds for the system
of conservation laws. According to Eq. (3.1), a state C/e^ is the projection of some
point (U9 0, β, s)eV if and only if 5 is a (real) eigenvalue of F(U). When F'(Ό) has fe
real eigenvalues, all distinct, there are k distinct points (17,0,^,5^6^ that project
onto 17, and # provides a /c-fold covering for a sufficiently small neighborhood of
U and tfl. The case of coinciding real eigenvalues is addressed in the next result.

Lemma 3.3. Assume that s is a real eigenvalue of F'(ΰ) with corresponding eigen-
vector r(Ω). Then s has algebraic multiplicity greater than 1 if and only if the n x n
matrix (3? Ω, J%) is singular at (17, 0, ί2, 5).

Furthermore, s has algebraic multiplicity 2 if and only if(^n^s) has rank n — 1
and lr'(Ω)Ω^Q whenever I and (Ω,s) are nonzero left and right null vectors of
(2F Ω, J%), respectively. In this instance, s has geometric multiplicity 1 if and only if
sVO.

Proof. Let e29...,en span the tangent space of S""1 at Ω\ define e1:=r(Ω) and
ei:=r'(Ω)ei for z = 2,...,n. Because F'(U)r(Ω) = sr(Ω\ the matrix of -s
with respect to the basis eί,...,enis

(3.2)
0

where d is an (n — l)-component row vector and D is an (n — 1) x (n — 1) matrix.
According to Eq.(2.16), 3?Ω= [-s + F'(U)y(Ω) and &a=-r(Ω). Therefore
( J^β, &s) has matrix

-Co1 ί)
with respect to the basis (0, 1), (£2, 0), . . . , (en, 0) for its domain and the basis el9..9 en

for its range. Thejirst statement of the lemma follows immediately: s is a multiple
eigenvalue of F'(U) if and only if D is singular, i.e., C is singular.

Suppose that s has algebraic multiplicity 2. Then D has rank n — 2, so C has
rank n— 1. Let (i2,s)^0 span the kernel of (3Fα^^\ notice that Ω^Q since
J% ̂  0. Hence we can assume that e2 = Ω and write

(3.4)

where/and g are (n — 2)-component row vectors and E is an (n — 2) x (n — 2) matrix;
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E is ήonsinguiar because C has rank n - 1. Expressed in the basis dual toel9...,enί

a left null vector / of (̂ β, J%) is a nonzero multiple of (0,1, -fE'1). Therefore

Conversely, suppose that (& β, J%) has rank n — 1, with (12, s) ̂  0 in its kernel.

As before we can assume that e2 = Ω and that Eq. (3.4) holds. If s has algebraic
multiplicity greater than 2, then E is singular, say mE = Q with m Φ 0. Thus there is
a left null vector / ̂  0 of C, represented in the dual basis by (0, 0, m), such that

Finally, when s has algebraic multiplicity 2, Eqs. (3.2) and (3.4) show that s has
geometric multiplicity 1 if and only if s φ 0. D

Coincidence of eigenvalues is significant in the theory of conservation laws. For
hyperbolic conservation laws, where the eigenvalues are real, coincidence corres-
ponds to loss of strict hyperbolicity. For mixed-type conservation laws, the locus
of coinciding eigenvalues separates regions with different hyperbolic-elliptic charac-
ter. Lemma 3.3 suggests a definition.

Definition 3.4. The coincidence locus $ is the set of points (Ό,Q,Ω,s)^ where s is
a multiple eigenvalue of F(Ό\ i.e., the matrix (^Ω^s) is singular. A point of $ is
called an umbίlic point ifs has geometric multiplicity greater than 1.

Typically, $ is an (n — l)-dimensional submanifold of ̂  For this it is sufficient
that zero be a regular value of the function det ( ̂  Ω, J*s).

Examples.
1. For gas dynamics, there is no coincidence locus if T> 1. If T< \,S consists of
two straight lines with s = 0, ΰ arbitrary, and either v-=m = v+ or ι>_ = M = v + .

2. In (nondegenerate) quadratic models with n = 2, the projection of g onto ̂  is a
conic section [23]. It can be shown that ̂  is a ruled surface embedded in ̂ * with
zero, one, or two twists according s the projected coincidence locus is a hyperbola,
a parabola, or an ellipse.

3. For KKIT models, the coincidence locus g contains ̂ ruled n ̂ contact. If n ̂  3, then
0 contact — (

The characteristic manifold #, regarded as covering state space ,̂ has sheets
corresponding to eigenvalue families. One geometric interpretation for eigenvalue
coincidence is that these sheets glue along g. More precisely, we shall show that the
projection from ^ to ̂  folds along g.

Definition 3.5. Let p:%->fy denote the projection (£7,0, 12, s)-+ U from 0>% to Qί, as
restricted to %> c= 0>*.

Recall that a point peX is a fold point for a smooth map f:X -> Y between
m-dimensional manifolds X and y when there are local coordinates (x l 9..., xm) for
X near p and (Vι,...,.ym) for y near f(p) in terms of which / takes the form
(xl9...,xm-!, XmJ^-K*!,..., xm-1, x%). This is equivalent to the following conditions:
(a) f'(p) has rank m - 1; and (b) lf"(p)r2 φ 0, where / and r are nonzero left and right
null vectors of /'(/?), respectively. See, e.g., ref. [17].

The following lemma characterizes fold points for a map / that is the restriction
of another map g to a submanifold.



Global Formalism for Nonlinear Waves 521

Lemma 3.6. Suppose that g: X x Rm-» Y is a smooth map for which f(x) = 0(x,z0);
let h: X x Rm -> Y x Rm with h(x, z):= (g(x, z), z). Then peX is a fold point for f if and
only if(p, z0) is a fold point for h.

Proof. Elements of the kernel of h'(p,z0) are (r,0) where f'(p)r = 0, and left null
vectors of Λ'(p,z0) are (/, -/#2(p,z0)), where //'(p) = 0. Furthermore, it is easy to
check that (/, -/0z(p,z0)Mp,z0)(r,0)2 = lf"(p)r2. Therefore/folds at p if and only
if h holds at (p,z0). D

Theorem 3.7. The map_p:^^ % is singular 0ί p:= (ί7,0, ί2, s)e# if and only pe<f, i.e.,
the eigenvalue s ofF'(U) has algebraic multiplicity greater than 1. Moreover, petf is
a fold point for p if and only ifs has algebraic multiplicity 2 and geometric multiplicity 1.

Proof. A tangent vector (ΐ/,0,β,s) of ^* is tangent to <β if and only if &ϋU +

^ΩΩ + J^s = 0, while its image ynder p'(p) is U. Therefore (ϊ/,0,ί2,s) belongs to
the kernel of ρ'(p) if and only if U = 0 and (Ω, s) is in the kernel of (J*β, J%). The
first conclusion of the theorem follows from Def. 3.4 and Lemma 3.3.

To determine when peS* is a fold point for p, consider the map ψ:^*^^ x R"
carrying (U, 0, β, s) to (U, ^(U, 0, Ω, s)). Then p is a fold point for p if and only if it
is one for ψ. Indeed, because # is the submanifold of 0>% where J^ = 0, there are
coordinates (x, y) for 3?$ near p in which # is given by j; = 0 and ^ takes the form
(x, y)\-^>(p(x, y\ y). In these coordinates, p carries x to p(x,0), so the result follows
from Lemma 3.6.

Applying this same lemma to ψ shows that (17,0, Ω, s) is a fold point for ψ if and
only if (Ω, s) is a fold point for the map φ:(Ω9s)\-^^(U9 0, ί2, s). Thus p is a fold point
of p if and if (a) (J β̂, J%) has rank n - 1; and (b) lφ"(Ω, s)r2 φ 0, where / and r are
nonzero left and right null vectors for (J^β, J%), respectively. As in Lemma 3.3,
r = (Ω9 s); since Ĵ > = [ - s + F'(U)y(Ω), I is a left null vector of - 5 -h F'(U). Conse-
quently, lφ"(Ω,s)r2 = —2slr'(Ω)Ω, as a simple calculation shows. In other words,
condition (b) holds if and only if 5 φ 0 and lr'(Ω)Ω^O. To complete the proof, we
invoke Lemma 3.3. D

Remark. Consider the projection p:#->^ when n = 2. By Whitney's theorem (see,
e.g., ref. [17]), singularities of maps between 2-dimensional manifolds are generically
folds and simple cusps. Nevertheless, p cannot exhibit a simple cusp singularity,
since otherwise there would be points in ̂  having three distinct preimages in #.

Slicing the characteristic manifold # by fixing Ω yields a curve, called a fixed-
eigenvector curve, that is defined implicity by ^(t/,0,ί2,s) = 0. The projection of
such a slice onto the state space ̂ , also called a fixed-eigenvector curve, satisfies a
system of n — 1 equations &(U,Ω) = Q obtained by eliminating the variable s. Thus
the projected slices form a family of curves in tft parameterized by Ω. The envelope
of this family is the projection of the coincidence locus S\ this is because (J*#, J%)
is singular if and only if ̂ βis. Fixed-eigenvector curves are useful in the analysis of
mixed-type conservation laws, such as those governing multiphase flow [43].

Examples.
1. Since cot Ω = —sin gas dynamics, a fixed-eigenvector curve is a level curve of s
in #. As # = ̂ base x R, a fixed-eigenvector curve is a union of lines, on which
p'(ϋ] = const., each line being parameterized by ΰ. (For a van der Wasls gas, a
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fixed-eigenvector curve is the union of at most three lines.) Thus # is ruled by
fixed-eigenvector curves.

2. For (nondegenerate) quadratic models, ̂  is a ruled surface, the rules being slices
at fixed ί2, which are therefore the fixed-eigenvector curves. Projected onto ,̂ a
fixed-eigenvector curve is a straight line (called a characteristic line in Ref. [23])
that is tangent to the boundary of the elliptic region in state space.

3. For KKIT models, the fixed-eigenvector curves within ̂ ru]ed are the rules, which
project onto lines through the origin in ύU.

4. The Rarefaction Foliation

A rarefaction wave is a solution U(x, i) = U(x/t) satisfying Eq. (2.3); such a solution
is constructed as follows. Suppose that F'(U^) has k real eigenvalues at some point
C/^e^, and that these real eigenvalues are distinct. Then there are smooth functions
λt and vector fields ri9 i = 1,..., /c, defined on an open neighborhood 0 of 17 ,̂ such
that rf(l/) is an eigenvector of F'(U) with corresponding eigenvalue λ^U) for all
UeG. For each family z, integrating the ordinary differential equation

V' = rtU) (4.1)

yields a rarefaction curve in °U through each point of Θ. Such a curve satisfies Eq.
(2.3) if it is reparameterized so that λt{U) = x/t. This is possible provided that the
genuine nonlinearity condition,

λ%U) rfU)*Q9 (4.2)

holds all along the curve, meaning that the characteristic speed varies monotonically
along it.

This construction of rarefaction curves in ̂  fails, however, when the real eigen-
values are not distinct. This difficulty is remedied [46] by considering a line field
on the characteristic manifold <β. Because multiple sheets of # lie over Φ, the several
families of rarefaction curves in <*U arise by projecting the integral curves of the single
line field on #.

Recall that ^* denotes the exceptional hypersurface R = 0 of ^*, viz., έP$ =
W x {0} x RP""1 x R. Asjnentioned previously, the elements of the factor RP"'1

are lines tangent to <%: if (ί/,0,Λ,s)e^J, then r^Ω] spans a line in Γ ,̂ the tangent
space of ̂  at U. Notice that for any vector (17,0, Ω, s) tangent to ̂ * at (17,0, ί2, s),

the component U also belongs to T^. Furthermore, the set of vectors (t7,0,i2,s)
for which U lies in the line spanned by r(Ω) forms an (n + l)-dimensional plane. In
other words, there is a natural field 2Γ of (n + l)-dimensional tangent planes on 0*$:

the vector (U90, ί2, s) at the point p:= (U,0, Ω, s) belongs to the plane &~p provided
that U is parallel to r(Ω). At a point p on the n-dimensional submanifold # c ^*,
the plane 3~p intersects Tfl along a line (unless ^p and Tp<$ are not in general
position).

Definition 4.1. The (possibly singular) line field on Ή induced by the plane field ^~ is
called the rarefaction line field. A rarefaction curve in Ή is an integral curve of the
rarefaction line field.
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Thus the rarefaction line field contains vectors (17, 0, Ω, s) tangent to # such that
U is parallel to r(Ω). We emphasize that information regarding the conservation
laws is encoded in the manifold <6 and its embedding in ̂ *, not in the plane field 2Γ.

Example. If we suppress the trivial factor R corresponding to the speed s, ̂ * is
essentially the canonical line bundle ̂  x RP""1. This space is depicted in Fig. 4.1
for the case n = 2. The vector (u,v,Ω) at p:=(ΰ,v,Ω) lies in yp provided that
— sin Ωu + cos Ωv = 0.

Proposition 4.2. The singularities of the rarefaction line field occur at the points of%>
where (y^^r(ί2), ̂ Ω,^S) has rank less than n. In particular, they belong to the
coincidence locus $ c #.

Proof. With p:=(U9Q9Ω,s), a vector in yp takes the form (f#r(ί2),0,ί2,s); this
vector is tangent to # if and only if

^Dr(Ω)R + &ΩΩ + ̂ ss = 0. (4.3)

Singularities of the rarefaction line field occur when this linear system does not have
full rank, i.e., (^or(Ω), 3FΩ, J ŝ) has rank less less than n. A singularity belongs to $
because (J β̂, ̂ ^ must be singular if (\ ̂ ^r(Ω\ 2F Ω, J%) is to be rank deficient. D

Definition 4.3. The locus of rarefaction singularities J*0 is the set of points at which
the rarefaction line field is singular, i.e., {^^^r(Ω\ J^^s) is rank deficient.

U

Fig. 4.1. The exceptional hypersurface £P* for n = 2, with the speed coordinate s suppressed. The
field of tangent planes 3~ is illustrated. The plane through p:=(ΰ, v, Ω) projects to the line through
U = (ύ, v) that lies at angle Ω relative to the w-axis. The intersection of 3~p with the tangent
plane Tft is a line; such lines constitute the rarefaction line field
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Corollary 4.4. Rarefaction curves consitute a one-dimensional foliation of^\^0.

The condition that characterizes singularities represents one additional con-
straint on points of $. Assuming certain nondegeneracy conditions, ̂ 0 has dimen-
sion n — 2.

Examples.
1. For gas dynamics, # is defined by s2 = — p'(ϋ\ so that the vector (v,v,s,u) is
tangent of # if and only if 2ss + p"(ϋ)v = 0. Since cot Ω = —s,U = (M, v) is parallel to
r(Ω) when u + sv = 0. These two linear equations for έ, s, and u are linearly dependent
if and only if s = 0 and p"(v) = 0; thus singularities of the characteristic foliation on
^ occur at points where both p'(ϋ) and p"(v) vanish. There are no singularities for a
van der Waals gas unless T= 1.

2. Nondegenerate quadratic models with n = 2 have one, two, or three singularity
points on <f, which correspond to the roots of a cubic polynomial [46, 23]. For the
models studied ref. [46], a singularity is either a node or a saddle. An example is
shown in Fig. 3.2.

3. On thejηgnifold ^contact of a KKIT model, Φ'(U)r(Ω) = 0, so that if U = \Rr(Ω\
then Φ'(U)U = 0. Therefore a rarefaction curve is contained in a locug of contact
discontinuities Φ(U) = const. A vector tangent to #ruled satisfies U = κr(Ω) +
κr'(Ω)Ω; for U to be parallel to r(Ω\ ί2must vanish. Thus a rarefaction curve on
this surface is a fixed-eigenvector curve Ω = const. Since s = g'Ω(κ\ rarefaction curves
mimic those for the scalar conservation law κt + #Q(K)X = 0. A simple calculation
shows that the locus of rarefaction singularities contains the coincidence locus and,
if/ι^3,thewholeof^c o n t a c t.

An integral curve for the rarefaction line field can be obtained, locally, by
integrating a vector field. Consider the (local) vector field

Ω\ (4.4)

where adj B denotes the classical adjoint of the matrix B, so that B adj B = (det B)I.
Thisjield belongs to the rarefaction line field since it satisfies the tangency condition
3Fu\J + ̂ ΩΩ + ̂ ss = 0. Furthermore, its critical points occur precisely where the
line field is singular; in fact, the matrix (^ϋr(^)^Ω^s) fa^s to have full rank if
and only if

det(J^,J%) = 0,
adj(^β, ŝ)^r(ί2) = 0. (4.5)

Equation (4.4) does not, however, define a global vector field on # or 0>$, since it
is not invariant under the antipodal transformation.

Rarefaction curves in ̂ , which are used to construct rarefaction waves, are the
projections of rarefaction curves in # under the map p:^ -+(%. Away from the
coincidence locus, p is a covering map, so that the projected curves are smooth; at
the coincidence locus, however, the projection introduces singularities.

Proposition 4.5. Suppose that pε$\$Q is a fold point for the map p-.^-^tft. Then the
rarefaction curve through p is transverse to $, ana its projection onto <% has a cusp.
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Proof. By Eq. (4.4), a tangent to the rarefaction curve at p has Ό = 0, so that it spans
the kernel of ρ'(p\ Since p is a fold point, this vector and members of Tp$ together
span Tfl. If αi—>#(α) parameterizes the rarefaction curve, with q(Q) = p and q'(G) ^ 0
in the kernel of p'(p\ then (ρ°q)'(Q) = 0 but (ρ°q)"(0) Φ 0, as follows from the normal
form of p at the fold point p. D

In the classical theory, it is sometimes useful to regard rarefaction curves of a
given family as level curves of n — 1 real-valued functions defined on ̂ , the so-called
Riemann invariants. For instance, consider a strictly hyperbolic system of two
conservation laws. Locally there is a Riemann invariant w4 for each of the two
families, i = 1,2. In this case, the characteristic manifold ̂  is a double covering of
01, which consists of two disjoint sheets V1 and #2 associated to families 1 and 2,
respectively. Therefore the two functions wf can be consolidated into a single
function w on #: define w to be wt when it is restricted to #f, i = 1,2.

A natural generalization of Riemann invariants in the present formalism is a
function w ^-^R""1, the level curves of which are the rarefaction curves. To avoid
trivialities, w should not be locally constant anywhere [34]. (Strictly hyperbolic
systems have Riemann invariants with nonvanishing gradients.) When n = 2, such
a function w exists locally away from rarefaction singularities. For example, the two
Riemann invariants defined by Kan [30] for symmetric Case IV quadratic models
derive from a single function defined on #. For Case III models, however, no global
Riemann invariant w exists because one of the rarefaction singularities is a node.
(See Fig. 3.2.) More generally, a Riemann invariant can be constructed for a quadratic
model so long as all rarefaction singularities are saddle points; this follows from the
formulae in App. B of ref. [23].

5. The Inflection Locus

Return, for the moment, to the classical construction of rarefaction waves when the
real eigenvalues of F'(U) are distinct, as described at the beginning of Sect. 4. To
construct a rarefaction wave, the characteristic speed λ{ must vary monotonically
along the rarefaction curve in tfί. Therefore points at which λt reaches an extremum
are important in solving Riemann problems. It proves simpler and more useful to
find stationary points for λt. By definition, these are points where genuine non-
linearity [33] fails.

Proposition 5.1. Suppose that the real eigenvalues ofF'(U) are distinct. Consider the
graph of the characteristic speed λf along an integral curve through U for the eigenvector
field rt. Then the graph has a stationary point at U if and only iflF"(U)r2 = 0, where
I and r:= r^U) are nonzero left and right null vectors of the matrix — λ^U) + F'(U\
respectively.

Moreover, at such a stationary point, the graph ofλt has vanishing second derivative
if and only if

/F''(l/Wl/)3 + Sim/J WU)® ̂ 17)̂ 17)) = 0. (5.1)

Proof. For simplicity, let a dot (temporarily) denote differentiation with respect to
U in the direction of r^U). Differentiating the relation F'(U)rjU) = ,̂(17)̂  17) yields

F"(U)rί(U)2 + L-λ^U) + F'(U)WU) = λjU)rtU). (5.2)
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Therefore lF"(U)r£U)2 = ^(U)lrt(U). Notice that lr£U) / 0 because λ^U) is a simple
eigenvalue of F'(U). Hence λ^U) = 0 if and only if /F'(LOη(ί7)2 = 0.

Differentiating Eq. (5.2) and evaluating at a point where λ^U) = 0 shows that

(5.3)

Thus, λiίlO = 0 if and only if Eq. (5.1) holds. Π

A rarefaction curve in #, projected onto the state space ,̂ provides a solution
of Eq. (4. 1), with s corresponding to λ£. Stationary points for s, regarded as a function
along a rarefaction curve, occur where the line field lies in the hyperplane ds = 0.

Lemma 5.2. At a point (0, 0, Ω, s)e#, there is a nonzero vector contained in both the
rarefaction line field and the tangent hyperplane ds = 0 if and only if the matrix
Bo(ϋ9Ω9s):=(±Pϋr(Ω\fΩ) is singular.

Proof. Let(±Rr(Ω\ 0, Ω, s) φ 0 belong to the line field. According to Eq. (4.3), s = 0
only if (R, Ω) is a null vector for B0(U, Ω, s). Conversely, if (R, Ω) / 0 is a null vector,
then (^Rr(β),0,β,0) /O is tangent to # and belongs to both the rarefaction line
field and the hyperplane ds = 0. Π

Theorem 5.3. At a point p:= (U9 0, ί2, s)e#\<f , genuine nonlίnearity fails at Ό for the
characteristic family corresponding to s if and only if the rarefaction line field is
contained in the tangent hyperplane ds = 0.

Proof. By Proposition 5.1_ and the lemma, it suffices to show that £0(ί7,ί2,s)_is
singular if and only \!lF"(U)r(Ω)2 = 0, where / Φ 0 is a left null vector of - s + F'(U).
Notice that &ϋr(Ω) = F"(U)r(Ω)2 and &r

a = [-s + F'(U)']r'(Ω)9 as seen from
Eq. (2.16). Suppose that B0 is singular; then there is an / Φ 0 such that IB0 = 0, i.e.,
lF"(U)r(Ω)2 = 0 and /[- s 4- F'(ΰ)y(Ω) = 0. Since pφδ,\_-s + F'(U)Y(Ω) has full
rank_n— 1, so that / must also_be a null vector of — s + F'(U). Conversely if
lF"(U)r(Ω}2 = 0 and /[- s + F(U)] - 0, then /B0 = 0. Π

For scalar conservation laws (i.e., n = 1), loss of genuine nonlinearity corresponds
(typically) to an inflection point in the graph of the flux function. This suggests the
following terminology.

Definition 5.4. The inflection locus J* is the set of points ofΉ where there is a nonzero
vector contained in both the rarefaction line field and the tangent hyperplane ds = 0,
i.e., the matrix B0(U, Ω, s) = (^<Ffjr(Ω\ ^Ω) is singular.

In nondegenerate cases, «/ is an (n — l)-dimensional submanifold of #. A
sufficient condition is that zero be a regular value of the function det B0.

Examples.
1. In gas dynamics, the inflection locus is a union of lines, parameterized by ΰ, that
are associated with points in the graph of p where p'(υ) g 0 and p"(v) = 0. When
p'(v) < 0, such a point generates a pair of lines, corresponding to the two choices of
sign for s. For a van der Waals gas with T < 1, there is one pair of inflection lines,
which is associated to the point labeled ./ in Fig. 2.2.

2. For (nondegenerate) quadratic models with n = 29 the inflection locus is a union
of curves in #, which are either straight lines or are parameterized by Ω [23]. The
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inflection locus does not intersect itself even though its projection onto m can do
so [46].

3. All points of the manifold ̂ contact m a KKIT model are inflection points. Indeed,
Φ'(U)r(Ω) = 0 and s = Φ(U\ so thats is constant along an integral curve. On ̂ ruιed>
away from the coincidence locus, U = κr(Ω) is an inflection point if and only if
g"Ω(κ) = 0, where gΩ(κ):= κΦ(κr(Ω)) is the associated scalar flux.

Usually a rarefaction curve intersects J transversally and the graph of λt has
an extremum. The exceptional points of «/ where transversality fails play an
important role in wave curve bifurcation, as discovered by Furtado [14] (see Sect. 8).
The following result motivates a general definition.

Lemma 5.5. Assume that M: X ->L(Rm,Rm) is a smooth matrix-valued map defined
on a manifold X; suppose that det M(x) = 0 for some xeX. Then x is a regular point
for the map det M: X -> R if and only if (a) M(x) has rank m - 1 and (b) l(M'(x)x)r Φ 0
for some xeTxX, where I and r are nonzero left and right null vectors of 'M(x), res-
pectively.

In this case, the subset ofX on which M is singular is a smooth hypersurface in a
neighborhood ofx. Furthermore, the tangent space of this hypersurface at x consists
of vectors xeTxX such that l(M'(x)x)r = 0.

Proof. The derivative of det M is d detM = tr{adj MdM}. If (a) holds, then / and
r can be normalized so that adj M(x) = rl (outer product), so that (det M)'(x)x =
/(M'(x)x)r. Therefore (b) implies that d det M Φ 0 at x. Conversely, if M(x) has rank
less than m — 1, then adj M = 0, so that d det M = 0 at x.

If x is a regular point, then the implicit function theorem guarantees that the
subset where M is singular is a manifold near x. Furthermore, the tangent space at
x comprises vectors xeTxX such that (det M)'(x)x = 0. Π

Proposition 5.6. Suppose that p:= (U, 0, β, s)e«/\<f is a regular point for the function
det BO . Consider the graph ofs along the rarefaction curve through p. This graph has
vanishing second derivative at p if and only if the rarefaction curve is tangent to «/ at p.

Proof. Let / and r:=(R,Ω) be nonzero left and right null vectors of B0(U,Ω,s),
respectively. Notice _that K^O, since otherwise both r(Ω) and r'(Ω)Ω would be
eigenvectors of F'(U) with eigenvalue s, contradicting pφ$. Also, the vector
(^Λr(Λ),0,β,0) is tangent to the rarefaction curve at p. This curve is tangent to «/
if and only if lB0r = 0, where B0 denotes B'Q applied to (^Rr(Ω)9Ω,Q). As a simple
calculation shows,

(5.4)

The result follows from Eq. (5.1) if we^can verify that r'(Ω)Ω =±Rr'i(U)ri(U)
when rf has been normalized such that r^U) = r(Ω\ To see this, we recognize that

both (R, r'(Ω)Ω) and (1, ̂ (U^U)) are right null vectors of the matrix (±F"(U)r(Ω)2,
— s + F'(U))9 which has rank n — 1. These two vectors are independent from the
null vector (0, r(β)), so they must be parallel. Π

Remark. The quantity lB0r is defined intrinsically even though it involves second
derivatives of 3F\ no choice of affine connection is needed. In fact, it is a generaliza-
tion of the Hessian that derives from the intrinsic derivative of B0 [17].
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Definition 5.7. The exceptional inflection locus ffl 0 consists of inflection points at
which either (a) p is not a regular point for the function det B0 or (b) lB0r = 0, where I

and r:=(R9Ω) are nonzero left and right null vectors of Bθ9 respectively, and BQ

denotes B'0 applied to the vector (±Rr(Ω),Ω,Q).

The following consequence is important for wave curve bifurcation.

Corollary 5.8. Suppose that peJ> is a regular point of the function det#0 Then if
o, the rarefaction curve through p is transverse to </ at p.

Examples.
1. In gas dynamics, the inflection lines associated to a point ϋ consist entirely of
exceptional points when p'"(v) = 0.

2. For (nondegenerate) quadratic models with rc = 2, there are at most two
exceptional inflection points.

3. All points of ̂ contact in a KKIT model are exceptional inflection points. On ̂ ruled,
away from the coincidence locus, an inflection locus is exceptional when g "^(K) = 0.

The definition of «/ implies that singularities of the rarefaction foliation are
points of inflection: ̂ 0 — ̂  c &- The converse is true at fold points.

Proposition 5.9. A fold point of the map p'.Ή^tft is a singularity of the rarefaction
line field if and only if it belongs to the inflection locus.

Proof. We need only show that if the point is not a singularity, it is not a point of
inflection; we invoke Theorem 3.7 and Lemma 3.3. At a fold point, the matrix
(J*β, J%) has rank n - 1, and an element (Ω, s) φ 0 in its kernel has s / 0. Since the
vector (0, 0, 12, s) belongs to the line field, the point is not on the inflection locus. Π

This result is significant for the existence of transitional rarefaction waves [23],
which we now define. For strictly hyperbolic systems of conservation laws, the
characteristic speeds (̂17), i = 1, . . . , n, can be arranged in increasing order. Thus a
rarefaction wave has an associated family i. Furthermore, shock waves that conform
to the Lax admissibility criterion can be classified according to family, and wave
groups always comprise shock and rarefaction waves of the same family. When the
system of conservation laws is not strictly hyperbolic, labeling of waves by family
is still feasible, but wave groups involving several families can occur. For instance,
a wave group is said to be transitional if it contains faster family waves situated on
the left of slower family waves. A transitional rarefaction wave is a continuous
transitional wave group. Such a wave is constructed by following a rarefaction curve
in the direction of increasing 5; for the wave to be transitional, the curve must pass
from a sheet of ̂  corresponding to a faster characteristic family to one with a slower
family.

In the case n = 2, there is a convenient analytical characterization ̂ f family: the
family of a point of %> is 1 or 2 according as Φ(U,Ω,s):=s — ̂ trF'(ί7) is negative
or positive. The arguments of Proposition 5.9 applied to Φ show that a transitional
rarefaction must cross the coincidence locus, where Φ vanishes, at either a singularity
or a non-fold point. In fact, suppose that a rarefaction curve crosses the coincidence
locus at a fold point that is not a rarefaction singularity. Then the derivative of Φ
along this rarefaction curve, evaluated at the coincidence locus, is Φ = s φ 0;
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therefore if the rarefaction curve is traversed in the direction of increasing 5, then
Φ must increase across the curve. See ref. [23] for further discussion. We expect
that this result holds as well when n > 2.

6. The Shock Foliation

A fundamental step in solving Riemann problems is the construction of one-
parameter families of shock waves ([/_, U + 9s) with fixed left states Ϊ7_. Given a
state L/o, the set of shock waves with U _ = I70 is obtained by solving the n equations

- slU - l/0] + F(U) - F(l/0) = 0 (6.1)

for the right state 17 := U+ and shock speed s. This set is typically one-dimensional,
although it can have several branches and can fail to be a one-dimensional
submanifold (such as at self-intersections and isolated points).

Right states U that satisfy Eq. (6.1) for some s comprise a shock curve in <%
through the point [70. Alternatively, the set of shock waves with fixed left state
17 _ = l/o can be regarded as embedded in ^*; it consists of points (U9R,Ω,s)ei^
such that

U-±Rr(Ω)=U0 (6.2)

for some fixed state C70. Analogously, we can fix the right state 17+ = l/0 instead,
obtaining points such that

U + ±Rr(Ω)=U0. (6.3)

Definition 6.1. Aβxed-U_ shock curve is a slice of'W withflxed left state 17_; a
fixed-U + shock curve is a slice with fixed right state 17+ .

Examples.
1. The shock curves for a van der Waals gas with T< 1 can be determined from
Fig. 2.2. A shock curve with fixed u. and ι?_ corresponds to a vertical slice of ̂ base.

Such a slice can be parameterized by v+9 taking s= ±^/Ψ(υ-9υ+) and ΰ =
M_ — ̂ s(v+ —V-). The shock curve typically has two disconnected branches, but
the branches connect when u _ = α or ι>_=/?, forming crosses at the points
(v_, v +, s) = (α, M, 0) and (t;_, v+, s) = (/?, m, 0) in i^base. Here α and β demarcate the
spinodal region: a chord of the graph of p is horizontal if drawn between α and M
or between m and β. Near the cross points, ι^base has the form of a saddle with
respect to the coordinate ι;_; slicing ̂ base through the saddle point gives the cross
structure.

2. For quadratic models, using Eq. (6.2) to eliminate U from &(U9 R, Ω, s) = 0 yields
n linear equations for R and s with coefficients that depend upon Ω. Consequently
there are n — 2 solvability constraints on β, and R and s can be expressed in terms
of points Ω satisfying them. (See refs. [24,23] for the case n = 2.)

A typical fixed-C7_ shock curve in W is depicted schematically in Fig. 6.1 in
terms of certain global coordinates R, fc, and Ω (cf. Fig. 3.2). The shock curve
intersects # at two points, L t and L2, which correspond to zero-strength shock
waves with U+ = 17 _ and 5 = λ^U) for i = 1,2. There are three shock branches, the
two local branches A1L1A2 A3 and L2B, and the detached branch through the point
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C. (ΐhe two copies of the point A2 are to be identified, since they correspond to
antipodal points.) Plotting the right states 17+ along the shock curve yields the
diagram at the bottom of the figure.

3. For KKIT models with n = 2, a shock curve with fixed left state 17_ / 0 is the
union of two parts: the contact curve comprising points with 17+ on the level curve
of Φ containing [/_, i.e., Φ(£7+)=Φ(C7_); and the scalar shock curve of points with
U+ on the line through the origin that contains 17 _. The shock foliation is singular
at points with C7_ = 0, and it is singular everywhere if n ̂  3, since level sets of Φ
have codimension 1.

As in the case of rarefaction curves, it proves useful to regard shock curves as
integral curves of line fields. Notice that the n component equations of dU- = 0
define a line field on the (n + l)-dimensional manifold if. Furthermore, a fixed-17 _
shock curve in if is an integral curve of this line field, since L/_ is constant along
the shock curve. Similarly, fixed- U + shock curves are integral curves of the line field
dU+=0.

Definition 6.2. The (possibly singular) line field on if defined by the equations
all - = 0 is called the fixed-U _ shock line field. Similarly, thefixed-U+ shock line
field is defined by dU + = 0.

Fig. 6.1. A typical fixed-17 _ shock curve for a quadratic model, drawn in terms of global
coordinates R, K, and Ω for W. The shock curve intersects # at two points, labeled L x and L2.
The projections into the (u,t?)-plane of the 17+ states along the shock curve are shown below.
The ellipse is the boundary of the elliptic region, which is the projection of the coincidence locus
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The occurrence of singularities in the shock line field corresponds to bifurcation
of shock curves, as we now describe. For simplicity, the ensuing discussion will focus
on shock curves with fixed left states. By the implicit function theorem, the points
(U, s) that satisfy Eq. (6.1) form a curve in a neighborhood of any solution for which
the derivative

- [E/ - t/0]ώ + [- s + F'(U)~]dU (6.4)

has full rank. As already discussed, there is a singularity when U = U0 and s is an
eigenvalue of F'(U0). Because of this primary bifurcation, the shock curve has several
branches emanating from [/0; away from eigenvalue coincidence, there is one for
each real eigenvalue of F'(U0). The primary bifurcation is removed by the blowing-
up process. (This is main purpose for blowing up.)

For nontrivial shock waves, U Φ l/0, the derivative has full rank unless: (a) s is
an eigenvalue of F'(U); and (b) l(U — U0) = 0 for some corresponding left eigenvector
/ (which satisfies IF'(U) = si). Expressed differently, conditions (a) and (b) mean that
the matrix (17 - l/0, - s + F'(U)) has rank less than n. This situation was identified
by Wendroff [60] and is called secondary bifurcation. In the simplest cases, a shock
curve has either a cross structure or an isolated point at a secondary bifurcation
point; this follows from an analysis using bifurcation theory [18]. The geometric
significance of secondary bifurcation is as singularities of the shock line field.

Theorem 6.3. A point ofW\β is a singularity of the shock line field if and only if it
is a secondary bifurcation point. A point ofΉ is a shock singularity if and only if it is
a singularity of the rarefaction line field.

Proof. Away from <&, we use the coordinates (17 _, U + ,s) for ^*. A tangent vector
(C7_, l/ + ,s) belongs to the line field dU _ = 0 when U_ = 0; it is also tangent to W
provided that

=0, (6.5)

as seen from Eq. (2.15). Therefore the shock line field has singularities precisely when
the linear system (6.5) has rank less than n, i.e., at secondary bifurcation points.

Evaluated at K = 0,dl/_ =dΰ-±r(Ω)dR. Thus a tangent vector (U9R9Ω,s)

belongs to the shock line field at a point of # if and only if U = ̂ r(Ω)R. Because
3F κ = 0 when R = 0 by Lemma 2.5, this vector must satisfy

s = 0 (6.6)

to be tangent to if. Hence shock singularities occur when (^ijr(Ω\^Ω^s) is
rank deficient. According to Proposition 4.2, this happens at singularities of the
rarefaction line field. Π

Thus a singularity of the shock line field corresponds to bifurcation of the shock
curve at the right state. This suggests a definition.

Definition 6.4. The right secondary bifurcation locus $R is the set of points in W
where the shock line field dU . = 0 is singular. Similarly, the left secondary bifurcation
locus &L comprises singularities of the shock line field dU+ = 0.

Corollary 6.5. Thefixed-U- shock curves constitute a one-dimensional foliation of

R9 and thefixed-U+ shock curves foliate
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Corollary 6.6. The locus of rarefaction singularities is 38 R n # = J*0 = J^L n # .

Secondary bifurcation requires that an n x (n 4- 1) matrix be rank deficient, and
thus represents two conditions on points of Of. Therefore, if certain nondegeneracy
conditions holds, &R has dimension n — 1, and it intersects # trans versally. In
determining the smoothness of @R at points of #, the following formulae are useful.

Proposition 6.7. TTie powίs of the secondary bifurcation locus &R are the points
where the matrix (9 R + \9^r(Λ\ ^Ω + f #J*V'(β), J%) is rαnfe deficient. Similarly,
the matrix (^R - \& ϋr(Ω\ &Ω - \R^^r\Ω\ J%) is rank deficient at points of@L.

Proof. A tangent vector (U,R,Ω,s) belongs to the shock line field dU. =0 at

a point of nΓ if and only if U = \r(Ω)R + ±Rr'(Ω)Ω. Combining this with the
condition for tangency to W yields

= 0. (6.7)

Since U is determined from R and ί2, singularities of the line field occur if and only
if the matrix of Eq. (6.7) has rank less than n. Π

Examples.
1. The bifurcation loci are empty for a van der Waals gas if T > 1. For T < 1, the
bifurcation locus &L consists of two lines parameterized by ΰ; these lines correspond
to the cross points (i; _ , v + ) = (α, M) and (υ.9v+) = (β9m) described above. Similarly,

Fig. 6.2. The shock curve through the point B on the secondary bifurcation locus $R. This shock
curve has a cross structure at B\ under a small perturbation, it bifurcates into the shock curve
shown in Fig. 6.1, with point B splitting into points B and C. The projections of the U+ states
along the shock curve are shown below.
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the bifurcation locus &R corresponds to the cross points (ι;_,t; + ) = (M,α) and
(υ-9v + ) = (m,β).

2. For quadratic models with n = 2, the condition of Proposition 6.7 reduces to a
homogeneous cubic polynomial equation in cos/2 and sin Q, which hasjoots Ω
called the asymptotic angles, together with three linear equations relating U, R, and
s. Thus the secondary bifurcation locus consists of one, two, or three lines [23]. At
each point along the bifurcation lines, the shock foliation has a saddle point
singularity, so that the shock curve has a cross structure. The shock curve through
a secondary bifurcation point BE&R is depicted in Fig. 6.2.

3. For KKIT models with n — 2, a shock point is in $R if and only if either: it lies
on ^contact and Φ'(U +) = 0 (so that the level curve of Φ has a singularity at £/+);
or it belongs to both ^contact and ̂ ruled, i.e., it is a contact discontinuity as well as
a shock wave for the associated scalar conservation law.

Remark. At a secondary bifurcation, in the least degenerate instances, a shock curve
has either a cross structure or an isolated point. The nature of the singular point
for the shock foliation is determined by unfolding these singularities: when the shock
curve has a cross structure, the foliation has a saddle point; when the shock curve
has an isolated point, the foliation has a center.

The understand the relationship between shock curves and rarefaction curves,
consider how the shock foliation intersects #. According to Eq. (6.6), the vector
witth components

(6.8)

is tangent to the shock foliation at a point of #\^0. Therefore the vector of Eq. (4.4),
which is tangent to the rarefaction foliation, has the same components except that
R = 0. At a point pe^*, the projection from Tp0>* to Tp0>* that sets the ^-component
to zero is defined invariantly, as shown in the Appendix. For this reason the
rarefaction line field on # is induced naturally by the shock line field on W.

Shock curves in <% are obtained from shock curves in Hf through the projection
map (U, R, f2,s)t—>[/ + . This projection is one-to-one away from U = U0: if both
(t/o, U,sJ and (Uθ9 £/,s?) satisfy Eq. (6.1) with U Φ Uθ9 then s2 = s^ As the next
result describes, the projection is an immersion except on <ί u 3SR.

Proposition 6.8. The U + map, restricted to aβxed-U_ shock curve, is singular at
peiJ^\&R if and only ifpe$. Moreover the shock curve through a fold point of $ \&Q

is transverse to $, and its U + projection has a cusp.

Proof. Away from #, a tangent vector ([/_,£/ + , s) /O to the shoςk curve satisfies
Eq. (6.5) and 17_ = 0, which implies that U+ ^0. On #, U+ = 2U, and according
to Eqs. (6.8), this vector vanishes if and only if det (^Ω, J%) = 0. In this case R = Q,
i.e., the shock curve is tangent to the rarefaction curve, and the result follows from
Prop. 4.5. D
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7. the Sonic Locus <f

Not all solutions of the Rankine-Hugoniot condition (1.3) represent physical shock
waves. The conservation laws (1.1) usually arise from a parabolic equation of the
form

Ut + F(U)x = ε(D(U)Ux)x (7.1)

in the singular limit as ε -» 0; here D — D(U) is called the viscosity matrix. A physical
shock wave is a solution of the Rankine-Hugoniot condition that is the limit, as
£->0, of a stable solution of Eq. (7.1).

Determining whether a shock wave is physical is difficult, and simple criteria
are useful when solving Reimann problems. The Lax criterion is typical. Define a
shock wave to be a Lax shock of the ith family [33] if

(7.2)

It is known that for strictly hyperbolic and genuinely nonlinear systems of conser-
vation laws, a weak Lax shock wave is physical (for the viscosity matrix D(U) = I).

Proving this involves two steps: (1) showing that a weak Lax wave admits a
viscous profile [12, 7]; and (2) showing that the viscous profile is stable [39]. A
viscous profile of the shock wave (L/_, U + ,s) is a traveling- wave solution U(x,t) =
U((x - st)/ε) of Eq. (7.1) for which U(ξ) -> U ± as ξ -> ± oo; such absolution tends (in
Lloc) to the shock wave solution as ε -> 0. To be a viscous profile, U must be an orbit
of the dynamical system

Dφ)ϋ' = -s[ϋ- l/_] + F(U) - F(U.) (7.3)

that connects the critical points U _ and U + . When D(U) = I, the Lax criterion
means that the dimensions of the unstable manifold of 17 _ and the stable manifold
of U+ add to tt+1, which essentially guarantees existence and stability of a
connecting orbit if U - and U + are close.

For strong shock waves, the Lax criterion is not adequate. Even for scalar con-
servation laws (n — 1) there are Lax shock waves that do not admit viscous profiles;
this phenomenon is important for systems, too [56, 19]. Furthermore, transitional
and overcompressive shock waves (which do not satisfy the Lax criterion) can enter
the solution of the Riemann problem [8, 55, 62, 4, 23, 51, 49, 13, 40]. For simplicity,
however, we study only the Lax criterion in the present work; this is a necessary
first step in understanding more realistic admissibility criteria. Moreover, the Lax
criterion, viewed in the context of the fundamental wave manifold, illuminates the
relationship between different admissibility criteria. Shock waves satisfying inequa-
lities (7.2) correspond to open regions in W, the boundaries of which are parts of
hypersurfaces that we define in this section. Similarly, other criteria also corres-
pond to regions of W, and the admissibility boundaries overlap with these
hypersurfaces.

Remarks. The fundamental wave manifold offers a framework for studying the
dynamical systems associated with shock waves [6, 5]. Indeed, Eq. (7.3) defines a
map from iΓ to the space &(<%) of vector fields on %. Thus iff parameterizes a
family of dynamical systems, which depends on the viscosity matrix D.
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Consider a shock curve in W with fixed left state. The portions of this curve
consisting of Lax shock waves are delimited by points at which either s = A f(L/_) or
s = λi(U +). By analogy with gas dynamics, such a shock wave is called sonic (on the
left or right, respectively). Thus the boundaries of the Lax admissibility regions
consist of sonic shock waves. Bethe [2] and Wendroff [60] related the sonic
condition to the behavior of s along the shock curve.

Proposition 7.1. Consider a point U Φ U0 on the shock curve in <% through (70;
suppose that it is not a secondary bifurcation point. Then the shock speed s is an
eigenvalue ofF'(U) if and only if the graph ofs along the shock curve has a stationary
point at U.

Moreover, at such a stationary point, the graph ofs has vanishing second derivative
if and only if lF"(U)r2 = 0, where I and r nonzero left and right null vectors of the
matrix —s + F'(U), respectively.

Proof. Since U is not a secondary bifurcation point, the shock curve through 170

is a parameterized curve in a neighborhood of U. Differentiating Eq. (6.1) with
respect to the parameter shows that

-[l7-l7o]i + [-s + F(l7)]l/ = 0, (7.4)

where (U,s) Φ 0. If s = 0, then U φ 0, so that s is an eigenvalue of F'(U). Conversely,
suppose that s is an eigenvalue of F'(U). Then Eq. (7.4), multiplied on the left by
a corresponding left eigenvector /, implies that l[Ό — (70]s = 0, where, by assump-
tion, /[ U - 170] Φ 0.

Differentiating Eq. (7.4) and evaluating at a point where s = 0 shows that
[17 - I70]s = F"(U)U2 + [- s + F'(17)]U. Thus S = 0 if and only if lF"(U)r2 = 0,
with r:= U. D

The Bethe- Wendroff Theorem can be rephrased in terms of the shock foliation
of the manifold TJΓ. In this context, stationary points for s, regarded as a function
along a shock curve, occur where the shock line field lies in the hyperplane ds = 0.

Lemma 7.2. At a point p:=(U,R,ί2,s)εlSΓ, there is a nonzero vector contained in
both the shock line field dU - = 0 and the tangent hyperplane ds = 0 if and only if
the matrix B+(Ό,R,Ω,sY=(^R + \^ϋr(Ω\^Ω-\-^R^:

Όr'(Ω)) is singular.

Pjroof. Let (U9R,Ω, s)=£Q belong to the shock line field, so that we have
U = \r(Ω)R + ±R'r(Ω)Ω. According to Eq. (6.7), 5 = 0 only if (R, Ω) is a right null

vector of B+(U,R,Ω,s). Conversely, if (R,Ω)^Q is a null vector of B+ and

U:= ±r(Ω)R + \Rr'(Ω)Ω, then (U, R, Ω, 0) Φ 0 is tangent to HT and belongs to both
the shock line field and the hyperplane ds = 0. D

Theorem 7.3. At a point (E/_, U+,s)ei^\&R with U+ ΦU -, the shock line field
άU - = 0 is contained in the tangent hyperplane ds = 0 if and only ifs is an eigenvalue
of F'(U+). On ^X^Qί P°*nts where the shock line field lies in ds = 0 are points of
inflection.

Proof. When pφ%, we can use the coordinates (17 _, U+.s) for 0*. If ( ί _ , l/+,s)
belongs to the shock line field, then 17 _ = 0 and Eq. (6.5) holds. Thus s = 0 if and
only if 17+ is an eigenvector of F(17+) with eigenvalue s. When pe%9R = 0 and



536 E. L. Isaacson et al.

ff* = 0, so that &+(U9Q,Ω,s) = (\^^r(Ω\^^\ this matrix is singular if and only
if pe J. D

Definition 7.4. The right sonic locus ^R consists of points in W where there is a
nonzero vector contained in both the_shock line field dU-=Q and the tangent
hyper plane ds = 0, i.e., the matrix B+(U,R,Ω,s) is singular. The left sonic locus &*L

is defined similarly for the shock line field dU+ = 0; it comprises points where the
matrix B_(ϋ,R,Ω9s\.= (^R-^ϋr(Ω\^Ω-\R^ϋr'(Ω)) is singular.

In working with B+, the following formulae are useful:

for any (Ϊ7,jR,ί2,s)e^, as is verified by a straightforward calculation using
Eq. (2.15). In particular, near a point with R Φ 0, the sonic locus &*R is defined by
the equation det [- s + F(l/+)] = 0.

The sonic loci ΪSL and £fR are w-dimensional submanifolds of if when certain
nondegeneracy conditions hold. For instance, &*R is smooth if zero is a regular
value of det B + on 'W. While such a condition is expected to hold for generic flux
functions F, there are cases when it is violated. For example, Xu [63] has observed
singularities of £fR in a model of three-phase immiscible flow. In this model, there
are shock waves ([/_, U+,s) with 17+ φ V - such that 5 is a multiple eigenvalue
of F'(U+) with geometric multiplicity greater than 1, i.e., 17+ is a (projected) umbilic
point. The right sonic locus ί?R is singular at such a point because — s + F(ί/+)
has rank less than n—l. For simplicity of exposition, however, the following
assumption will be made.

Assumption 7.5. Zero is a regular value of both det£+ and det£_ on if.

The sonic loci are related to other loci, as follows immediately from their
definitions.

Corollary 7.6. The secondary bifurcation loci are contained in the sonic loci:
@R c &>R and @L c <yL. Furthermore, the inflection locus is y L n V = J = &>R π #.

According to Proposition 7.1, when a shock curve intersects ^R\3SR, the graph
of s has an extremum unless genuine nonlinearity fails at the state U. The latter
situation was termed hysteresis by Shearer and Schaefler [54]. As the following
result shows, hysteresis occurs when the shock curve is tangent to &R.

Proposition 7.7. Suppose thatp:= (t/_, U+,S)E^R\^R with U+ + ί/_. Consider the
graph of s along the fixed-U _ shock curve through p. This graph has vanishing
second derivative at p if and only if the shock curve is tangent to t?R at p.

Proof. Since pφΉ, we can use the coordinates ([/_, U+9s) for ^* in a sufficiently
small neighborhood of p. The portion of £fR contained in this neighborhood is
the subset of W where the matrix - s + F'(U +} is singular. Let (0, U +, 0) Φ 0 be tan-
gent to the fixed-ί/_ shock curve at p; here 17+ must satisfy [ — s + F'(U+)']U+ = 0
for this vector to be tangent to if. To determine when this vector is tangent to
&R9 we invoke Lemma 5.5.

Let / and r:= U+ be nonzero left and right null vectors of —s + F'(U+)9

respectively. The derivative of — s + F(ί/+), applied to the shock tangent, is
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F"(U+)U+. Therefore the shock curve is tangent to SR if and only if lF"(U+)r2 = 0.
The result now follows from Proposition 7.1. D

Definition 7.8. The right hysteresis locus J^R consists of points in &R such that
/β+r = 0, where I and r:=(R,Ω) are nonzero left and right null vectors of B+,
respectively, and B + denotes B'+ applied to the vector (t/,#,ί2,0) with
i/:=±r(β)β + ̂ r'(Ω)β. The left hysteresis locus J^L is defined analogously for
the shock line field dU + = 0.

Corollary 7.9. Suppose that pe^R\^R. Then the fixed-U _ shock curve through p
is transverse to £fR at p if and only if pφ3tifR.

According to Propositions 7.1 and 7.7, a point of ̂ R\^ belongs to 3?R if and
only if IF"(U+)U2

+ = 0. For points of #, the condition for hysteresis is related to
the condition for tangency of a rarefaction curve to the inflection locus, as we now
demonstrate.

Lemma 7.10. Suppose that p_:=(£7,0,ί2,s)e#. Let I and r:=(R,Ω) be nonzero left
and right null vectors ofB+(U,Q,Ω9s), respectively, and let B+ denote B'+ evaluated
at p and applied to the vector (ΰ, p, ω, σ). Then

lB+r = ±pRlF'"(U)r(Ω)3 + \ plF"(ϋ)'(r(Ω)®r'(Ω)Ω} + /£0r, (7.6)

where B0 is the matrix of Definition 5.4, and B0 denotes B'0 applied to the vector
(w, ω, σ).

Proof. We have that B+(U9Q9Ω9s) = B0(U9Ω9s). Furthermore, partial derivatives
of 3F that have odd order with respect to R vanish at R = 0 by Lemma 2.5. On
R = Q, therefore, B+ simplifies to be B+ = p(^r

RR9^ϋr'(Ω)) + B0. From the
definition (2.7) of A we find that &RR = ±F'"(U)r(Ω)*, so that Eq. (7.6) follows. D

Proposition 7.11. A point p belongs to the exceptional inflection locus 34f0 if and
only if either pe Jtf R r\^or^R is not transverse to % at p. Also, JtfL n # = tf R n #.

Proof. We adopt the notation of the lemma. By definition, pEJ^f0 if and only if
either (a) p is not a regular point of det£0 or (b) lBQr = 0 where B0 denotes B'0
applied to (ΰ,ω,σ)\=(\Rr(Ω\Ω, 0). Given Assumption 7.5, Eq. (7.6) implies that
(a) occurs if and only if all vectors tangent to ̂ R have R = 0. Thus condition (a)
holds if and only if <fR is not transverse to ψ at p. Furthermore, the same equation
shows that when (ΰ,p,ω,σ)\=(^Rr(Ω\R,Ω^\lB+r = |/50r; see Eq. (5.4). Conse-
quently, (b) holds if and only if peJf κn^. From the form of condition (b), it is
evident that tfL n ̂  = tf R n *. D

Transversality between the fixed-U_ shock foliation and SfR is important for
wave curve bifurcation. Similarly, it is useful to characterize when the other shock
foliation, for which U+ is fixed, is transverse to £fR.

Proposition 7.12. Suppose that p:=(l/_, U+9s)e^R\^L with U+ Φ (7_. Then the
fixed-U + shock curve through p is tangent to &*R at p if and only if the shock wave
(£/_, U +9s) is doubly sonic, i.e., s is an eigenvalue of the matrix F'(U _) as well as
ofF'(U+).

Proof. Near pe^, we can use the coordinates (£/_, U+9s) for ^*, and &*R is the
subset of if where the matrix —s + F'(U+) is singular. Let the nonzero vector
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(£/-,'0, s) be tangent to the fιxed-C/+ shock curve at /?, so that — [(7+ — t/_]s — [ — s +
F(ί/ _)]£/_ =0. Since the derivative of — 5 + F'(U +) applied to this vector is — s/,
Lemma 5.5 and Assumption7.5 imply that transversality between the shock curve
and yR is equivalent to s / 0. Consequently, the shock curve is tangent to ̂ R if
and only if s is an eigenvalue of F(t/_). D

Doubly sonic shock waves are points of ^Lr\^R with U+ΦU_. More
generally, the intersection of the sonic loci consists of points of 'W for which
det B- = 0 and det£+ = 0. As seen by expanding these determinants, such points
satisfy the equations

= 0 (7.7)
and

det&^Kflλ-^β) + * det (̂ ,1 (̂12)) = 0. (7.8)

Notice that when R = 0, Eq. (7.7) is satisfied because 3?R = 0, while Eq. (7.8) is
satisfied precisely on the inflection locus «/. In fact, y L n £f R is the union of «/
with a locus that contains the set of doubly sonic shock waves. An equation
defining the latter is obtained by removing a factor of R from Eq. (7.7).

Definition 7.13. The double sonic locus Q) consists of points in ΊV such that

det (R- 1PR,PΩ) + det (^r(Ω\^ϋr'(Ω}} = 0 (7.9)
and

= 0. (7.10)

Here R~^^R denotes the smooth extension of this function, as defined on
to all of TT:

1/2 1

R-^R(U,R,Ω,sY= ] ]a2Ff"(U + aβRr(Ω))r(Ω)3dβda. (7.11)
-1/2 0

Corollary 7.14. The intersection of the sonic loci is ^L(^^R = J>v<2>.

Examples.
0. The relationships among the loci is elucidated by an example of a scalar
conservation law. In the scalar case, 'W is simply the graph of the shock speed

1/2 _ 1

s= } Γ(U + α/fy/α - JF((1 - α)£7 _+αt/ + )έ/α. Thus 17 _ and U+ serve as global
-1/2 0

coordinates, and the characteristic manifold is the diagonal 17+ = l/_. The
fixed- U _ shock foliation consists of vertical lines, and fixed- U+ shock curves are
horizontal. Figure 7.1 shows W when the flux is a double well, F(U) = (U2 - I)2.
The sonic loci are ellipses that intersect # at «/, which comprises the two inflection
points of F. Points of the double sonic locus correspond to shock waves between
the minima ± 1 of the flux.

1. As we have seen, the fundamental wave manifold for a van der Waals gas with
T< 1 is if = ̂ base x R, where ^base is a cylinder obtained by gluing two copies
of Fig. 7.2 along the boundary of the black hole. Similarly, each distinguished
submanifold is a submanifold of ι^base crossed with R. The left and right sonic
loci £fL and & \ correspond to points where the level curves of 5 in Fig. 2.2 have
horizontal and vertical tangents, respectively.
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Fig. 7.1. The fundamental wave manifold W for the scalar model Ut + [(I/2 - l)2]x = 0. Shown
here are the characteristic manifold #, the sonic loci yL and &*R, the inflection locus </, the
double sonic locus 0, and the hysteresis loci ML and 3FR. Shock waves in the shaded regions
satisfy the Oleϊnik admissibility criterion; those in the cross-hatched region satisfy the Lax
criterion but not the Oleϊnik criterion

Recall that a fixed- £/_ shock curve is parameterized by t?+, and that
s2 = Ψ(υ-,υ+). Therefore extrema of 5 occur along a shock curve at points where
dΨ/dυ+=Q, and ¥R is defined by this equation. As follows from a simple
calculation, this means that s2 = - p'(v+) on yR\% and p"(v) = 0 on ̂ Rn^. The
intersection ^Lr\^R of the sonic loci consists of the inflection locus J and the

Fig. 7.2. The upper sheet s= + Ψ(υ-,v+)112 of ιTbase for a van der Walls gas. (Compare
Figs. 2.2 and 7.2, noting that they are scaled differently.) Shown here are the characteristic
manifold #, the sonic loci tfL and &Rt the inflection locus «/, the double sonic locus 9, the
bifurcation loci ^L and ̂ Λ, and the hysteresis loci JfL and JfΛ. Shock waves in the shaded
regions are limits of traveling-wave solutions of the system ut + p(v)x = vuxx, vt - ux = 0 as v-*0;
those in the cross-hatched region satisfy the Lax criterion but do not admit viscous profiles
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double sonic locus 2, which correspond to the maximum and the saddle points
in Fig. 2.2, respectively. The inflection locus arises from the inflection point of the
graph of p, while a double sonic point is obtained from a chord that is tangent
at both its ends. The bifurcation loci J^L and J*R are subsets of ̂ L and ̂ R, as
indicated.

2. For (nondegenerate) quadratic models with n = 2, the sonic loci are ruled
surfaces within if when certain global coordinates R, K, and Ω are used, the rules
obtained by fixing Ω. Relative to the characteristic manifold R = 0, a sonic locus
has two, one, or zero twists according as the projected coincidence locus is a
hyperbola, a parabola, or an ellipse. Each hysteresis locus is the intersection of a
ruled surface with a sonic locus. The double sonic locus comprises the rules at
angles Ω that are roots of a homogeneous quadratic polynomial in cos ί2and sin Ω.

3. For KKIT models, points on the right sonic locus within ifruled correspond
to sonic shock waves for the associated scalar conservation law. All points on

^contact aΓe Sθnίc

As we now describe, the sonic loci have a geometric interpretation as the
singularity loci for certain projection maps of iff.

Definition 7.17. Let τ_:τT->Φ x R denote the map (U9R,Ω,s)\-^(U.9s)from &*
tojfy x R, as restricted to iff <^&*. Similarly, define τ+:if-+<% xR as the map
(U9R9Ω,s)^(U+,s).

Theorem 7.18. The map τ_:if^^xR is singular precisely on £fR. Moreover,
is a fold point for τ_ if and only

Proof. Suppose that a vector (U, R, Ω,s)^Q tangent to iff at p is mapped to zero

by the derivative τ'_ of τ_. Then U = \r(Ω)R + \ Rr\Ω)Ω and s = 0; in particular,

(R,Ω) 7^0. Also, the condition for tangency of this vector to if simplifies to

[< κ̂ + î V(β)]* + [&Ω + ̂ R^ϋΛΩ) }Ω = 0. (7.12)

Thus P^^R. Conversely, if p€^R, then there is a nonzero vector (R,Ω) satisfying

Eq. (7.12). Therefore with U:=±r(Ω)R + ±Rr'(Ω)Ω, the vector (£/,K,β,0)^0 is
tangent to if and is mapped to zero by τ'_, so that τ _ is singular at p.

Consider the map ψ :&>*-+<& x R x R" that carries the point (U,R,Ω,s) to
(l/_,s, ̂ (U,R,Ω, s)). Because if is the submanifold of ̂ * where & = 0, p is a fold
point of τ_ if and only if it is one for ψ; this follows from Lemma 3.6 using an
argument similar to that given in the proof of Theorem 3.7. If / and r:= (R, Ω) are
nonzero left and right null vectors of B+(U,R,Ω,s), respectively, then
Γ=(^/J^5 — l&vl) and r = (U,R,Ω,Q) are nonzero left and right null vectors of
ψ'(p), where U:= ^r(Ω)R + ^Rr'(Ω)Ω. Furthermore, as a simple calculation shows,

ϊψ"(p)r2 = lB+r, where B+ denoted B'+ applied to r. Thus p is a fold point for ψ
if and only if pφ3>(fR. D

It is natural to ask how many zeros U the Rankine-Hugoniot equation (6.1)
has for each U0 and s. A detailed answer is given for systems of conservation laws
with two equations in the work of Malta and Tomei [41]. The question can be
rephrased within the present formalism: how many times does a shock curve with
17 _ = l/o intersect a constant-speed slice of if corresponding to s?
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The 'approach of Malta and Tomei is to determine how the number of
intersections n(U09s) varies with U0 and s. Notice first that n(U0,s) is constant in
a neighborhood of any point (U0,s) that is a regular value of the projection map
τ _ : W -» W x R. Furthermore, because the singular locus of τ _ is the sonic manifold
t?R, the locus JS? where n(U0,s) changes comprises points of W that project onto
τ-[^κ] In other words, 3? consists of points (Uθ9 U,s)ei^ such that the shock
curve with U- = U0 contains a right sonic point (U09U,s)e^R with the same
speed s. clearly, <£ contains ^R; moreover, it is easy to verify that <£ contains
points (£7, U0,s)eit/" for which the shock curve with U+ = U0 contains a left sonic

point (17, U0,s)£<yL, so that & contains ί?L.
The locus JS? is important for studying traveling- wave solutions of the parabolic

equations (7.1). If W is regarded as parameterizing a family of dynamical systems,
then & is the set of dynamical systems such that one of the critical points is not
hyperbolic. For this reason we refer to 3? as the local bifurcation locus. Portions
of & form the shock wave admissibility boundary.

Examples.
0. For the scalar conservation law considered in Fig. 7.1, the boundary between
the shaded and cross-hatched regions is part of JSf . This boundary separates shock
waves that satisfy the Oleϊnik condition from those that satisfy only the Lax
condition. The other parts of <&\(£fLv£fR), which play no role in shock wave
admissibility, have been omitted.

1. In gas dynamics, ̂ \(^Lu^R) is represented in Fig. 7.2 by a dashed curve and
by the boundary between the shaded and cross-hatched regions. The latter
boundary separates physical from unphysical shock waves.

2. The local bifurcation locus for quadratic models is the subject of current research
[6, 5].

3. For KKIT models, ^πi^ruled derives from the local bifurcation locus for the
associated scalar conservation law.

8. The Composite Foliation

General scale-invariant solutions are composed of wave groups, each a sequence of
adjoining rarefaction and shock waves. For a shock wave to appear next to a
rarefaction wave, with no intervening constant sector, the shock wave must be sonic.
Specifically, a rarefaction wave situated on the left of a left sonic shock wave is
termed a left composite wave. Such a solution takes the form

ί
U0 if x < s0ί,

U(x/t) if s0t^x<st, (8.1)

17+ if x > st;

here U is a rarefaction satisfying Eq. (2.3), 170 = U(s0), and with the definition
17-:= U(s), the triple (l7_,£7+,s) satisfies the Rankine-Hugoniot condition Eq.
(1.3). Similarly a rarefaction wave situated on the right of a right sonic shock wave
is a right composite wave.



542 E. L. Isaacson et al.

Just as rarefaction and shock waves are organized into curves, the family of
(left) composite waves with fixed 170 forms a composite curve. Notice that the state
U0 uniquely determines the rarefaction function C7; this is because U solves the
ordinary differential equation (4.1) with initial condition U0. Therefore a composite
curve is, in essence, a family of sonic shock waves (C7_, U+9s) with U. = U(s)
traversing a (projected) rarefaction curve in (JU. Represented within the wave
manifold W, a composite curve lies in the left sonic locus ί?L9 and its tangent
projects, under the E7_ map, to an eigenvector of F'(U_) corresponding to s.

To be more precise, consider a point p = (U,R,Ω9s)e<9y

L, and let £/_:=
U -±Rr(Ω) be its 17_ projection. Then the matrix — s + F(l7_) is singular; this
follows from Eq. (7.5) when pφ<% and from Eq. (3.1) when pe#. Denote by yp the

set of vectors (U,R,Ω9s) tangent to ¥L at p for which the C7_ projection

E7_ := t) - {r(Ω)R - ±Rr\Ω}Ω satisfies

-0. (8.2)

This subspace is one-dimensional unless the matrix — s + F'(U-), as restricted to
TP&*L, has rank less than n - 1. Away from such a singularity, Eq. (8.2) defines a
smooth line field 3~ on yL.

Definition 8.1. The (possibly singular) line field 2Γ on ̂ L is called the composite line
field. A composite curve is an integral curve of this line field. A similar definition applies

composite
curve

F(U)

Fig. 8.1. A schematic depiction of a composite curve. A shock curve with fixed £/_ is drawn
from each point along a rarefaction curve in #; the points where the shock curves intersect ̂ L

form a composite curve. The flux diagram shown below indicates the analogous construction
for a scalar conservational law Ut + F(U)X = 0
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In other words, when pe<9V\^, a vector (17_, U+9s) belongs to the composite
line field provided that it is tangent to ΪSL and [-s + F(t7_)] C7_ = 0. If, on the

other hand, pe^Ln#, then a vector (L7,K,i2,s) projects to £/_:= £7-±r(ί2)K;
therefore this vector belongs to the composite line field provided that it is tangent

to ̂ L and [-s + F'(U)~\U = 0. The construction of a composite curve is illustrated
in Fig. 8.1.

There is an alternative perspective on the composite line field, based on drawing
U+ -fixed shock curves. At a point pe^L there is, by definition, a nonzero vector
tangent to 'W that belongs to both the shock line field dU+ = 0 and the tangent
hyperplane ds = 0. The U _ projection w _ of such a vector serves to define the
composite line field, as follows.

Proposition 8.2. At a point pe^L, consider a nonzero vector tangent to Hf that
belongs to both the shock line field dU+ = 0 and the tangent hyperplane ds = 0; let U-
denote the 17 _ projection of this vector. Then

[-s + F(l/_)]ιι_=0. (8.3)

Furthermore, w _ vanishes only ίfp is an umbilίc point.

Proof. If p:= (Ϊ7_, L/+,s)eyL\^, we can use ί/_, 17 +, and s as coordinates. Thus
there is a vector (w_,« + ,σ)/0 tangent to if such that #+ =0 and σ = 0; in
particular, w _ ^ 0. Tangency to W requires w _ to satisfy Eq. (8.3).

If p:= (17, 0, ί2, s)e^L n C, there is a vector (w, p, ω, σ) ̂  0 tangent to nF such that
u+ := w + f pr(ί2) = 0 and σ = 0; ΰ and ω satisfy J^w -I- ̂ Ωω = 0. In other words
there is a pair (p, ω) / 0 such that

0. (8.4)

Corresponding to the vector (ΰ,p,ω,σ) is its ί/_ projection, u_:=ύ — \
— pr(Ω). Consequently, Eq. (8.3) holds.

If w _ vanishes, then_according to Eq. (8.4), there is an ω Φ 0 such that ̂ Ωω = 0.
Since 2F Ω = [ - s 4- F((7)>'(ί2), we see that s is an eigenvalue of F(17) corresponding
to two independent eigenvectors, r(Ω) and r'(ί2)ω. This implies that p is an umbilic
point. Π

Proposition 8.2 facilitates the computation of the composite line field. To
determine 2Γp at the point pe^L, first draw the fixed- U + shock curve through p.
Next let w _ be the 17 _ projection of a nonzero vector that is tangent to this curve;
notice that M_ / 0 as long as p is not an umbilic point. Finally, ^~p consists of vectors

tangent to ^L for which the 17 _ projection C7_ is parallel to w _ . (An example of
this procedure is given below.)

The composite line field has a singularity at a point pei^ if and only if the
subspace 2Γp has dimension greater than 1. The following theorem determines these
singularities (cf. App. B of ref. [44]).

Proposition 8.3. A point pe^L\^ is a singularity of the (left) composite foliation if
and only ifpe^nJίfL or pe£fLn&R. A point pe^Ln^ is a singularity if and only
ifp is an umbilic point, pe3tf0,

Proof. First suppose that pe^L\^, so that the coordinates (£7_ , U + , s) are valid in
a neighborhood of p. In this neighborhood, the sonic surface ̂ L is defined by the
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equations Jf = 0 and det[ — 5 + F'(£7_)] = 0. One consequence of Assumption 7.5
is that — 5 + F'(L7_) has rank n — 1; therefore we can find nonzero left and right null
vectors / and r of — s + F'(17_), respectively, such that /r ̂  0.

By virtue of Eq. (8.2), a vector (£/_, l/+,s) in the line fp has £7_ = άr for some
άeR. As a result, the conditions for tangency to £fL are

=0 (8.5)

and — sir + /F"(ϊ7_) (r® t/_) = 0 (see Lemma 5.5). Combining these conditions
gives

IFΊU )r2

-ά[l7+ - I/.] -A~- + l-s + W+)]l/+ = 0. (8.6)

Singularities of the composite line field occur where this linear system for ά and
17+ is rank deficient. Equivalently, singularities occur when there is a nonzero left
null vector \Φ 0 of -~s + F'(U+) and either Ϊ[I/+ - l/_] = 0 or lF"(U.)r2 = 0, i.e.,
peΛR or pE^R n j(?L.

Now suppose that pe^Ln^. If p is an umbilic point, then — s + F'(Γ7) has rank
less than n — 1, so that p is a singularity of the composite line field. In the remainder
of the proof, therefore, we can assume that p is not an umbilic point, i.e., r(Ω) spans
the null space of -s + F'(U).

Consider a vector (17, R, Ω, s) belonging to <yp. Equation (8.2) implies that there

is an άeR such that Ό = ^άr(Ω). To be tangent to £fL9 the vector must satisfy

s = 0 (8.7)

along with the equation lB_r = 0, where / and r nonzero left and right null vectors
of £_, respectively, and B_ denotes B'_ applied to the vector. If pe^0, then Eq.
(8.7) has rank less than n, so that there are fewer than n + 1 linear conditions on ά,
R, Ω, and s; thus p is a singularity for the composite line field. Therefore we can
assume that pφ &0 during the rest of the proof.

Comparing Eq. (8.7) to Eq. (8.4), we find that s = 0. Furthermore, the vector
r:=( — ά, 12) =^0 is a right null vector of the matrix (—^^(Ω),^^ which is B-
evaluated at fl = 0. A straightforward calculation shows that

ά/B_r = (ά-£Λ)/JV, (8.8)

where B0 denotes B'0 applied to (^άr(Ω\ Ω, 0). Noting that ά ̂  0 by Proposition 8.2,
the equation IB-r = 0 represents the required single constraint on ά and R if and
only if lB0r ^ 0, i.e., pφtf 0. Q

Examples.
1. For gas dynamics, let ( ύ _ 9 v + 9 s 9 ΰ ) denote a vector tangent to a fixed- 17+ shock
curve through a point of £fL. Since ύ+ =0, ύ+ =0, and s = 0, the relationship
w + = w _ — s(v+ — f _ ) o n i ^ implies that ιi_ = — sι)_; this is the condition (8.3) on
(ti_,ι;_). Now let (ύ-9v + 9 s 9 u ) be tangent to SfL. The conditions for tangency are
obtained by differentiating the equations s2 = Ψ(v-9v+) and dΨ/dv- =0. Hence
this vector belongs to the composite line field if and only if ιi_ = — sι;_. There are
no singularities of the composite foliation for a van der Waals gas with T φ 1.

2. The structure of the composite foliation for quadratic models remains to be
determined.
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3. For itKIT models, composite curves arise from those for the associated scalar
conservation law.

9. Conclusions

To conclude we discuss how the fundamental wave manifold provides a natural
setting in which to study two fundamental problems on the theory of conservation
lows: the physical admissibility of shock waves and the bifurcation of wave curves.

One of the most important issues in the theory of nonlinear conservation laws
is choosing physically relevant discontinuous solutions. Not all solutions of the
Rankine-Hugoniot conditions represent physical shock waves because dissipative
effects have been neglected in the conservation laws. Thus the conservation laws
must be supplemented by rules that mimic the neglected physics, called admissibility
conditions. Mathematically, such rules are needed to avoid multiple solutions.

At present, the most encompassing criterion is the viscous profile criterion
[15, 8, 7]: a shock wave is admissible provided that it is the zero-viscosity limit of
a traveling wave solution for a parabolic system such as system (7.1). Such a travel-
ing wave corresponds to an orbit connecting the critical points of a dynamical
system derived from the parabolic equations. The question of shock wave admis-
sibility is tied, then, to how connecting orbits form or break as the shock wave is
varied. Because bifurcation theory for dynamical systems in the plane is well
understood [47, 59], the theory is developed especially well in the case n = 2. For
instance, Schecter and Shearer [50, 51, 56] have obtained some detailed results
concerning such bifurcations.

An important reason for introducing the fundamental wave manifold is that it
parameterizes the dynamical systems associated to shock waves. In particular, bi-
furcations of the dynamical systems, which affect the connecting orbits, occur on
certain submanifolds of i^. In fact, a point on a sonic locus ^L or £fR9 or more
generally the local bifurcation locus 5£, corresponds to a dynamical system that is
unstable because one of its critical points is not hyperbolic. Other submanifolds of
if correspond to global bifurcations, such as heteroclinic and homoclinic bifur-
cations, and are the subject of current research [6, 5]. Thus the set of admissible
shock wave can be pictured as an (n + l)-dimensional region within W. We expect
that this global perspective, based on the wave manifold, will be fruitful in the study
of physically admissible shock waves.

The wave manifold is also natural for describing wave curve bifurcation. This
phenomenon underlies how solutions of Riemann problems depend on the Riemann
initial data, UL and UR. In fact, the Riemann problems are solved by successively
traversing wave curves; therefore abrupt changes in the nature of solutions are
caused by the bifurcation of wave curves as the curve origin varies. Since wave curves
are composed of segments of rarefaction, shock, and composite curves, wave curve
bifurcation can, in turn, be reduced to the bifurcation of wave segments.

Wave curve bifurcation was studied systematically by F. Furtado [14]; this
theoretical development draws on the experience of several authors who studied
model systems of conservation laws [55, 54, 24, 28, 29, 21, 25]. Furtado identified
the complete list of loci where wave curves bifurcate. However, the list is along and
complicated, and the bifurcation loci do not have an intuitive interpretation.
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Furthermore, the list is derived assuming the Lax admissibility criterion; an
extension to other criteria is straightforward but tedious.

The global perspective of the wave manifold clarifies Furtado's result: wave
curve bifurcation is simply loss of transversality between the wave foliations (rare-
faction, shock and composite) and the characteristic manifold # or the local
bifurcation locus <£. More generally, # and <£ can be regarded as the boundaries
of the regions of Lax admissibility; therefore wave curve bifurcation with respect
to other admissibility criteria is loss of transversality between wave foliations and
the admissibility boundary. There are three causes for loss of transversality: (a) the
foliation is singular; (b) the admissibility boundary is singular (e.g., at corners); or
(c) a curve in the foliation is tangent to the admissibility boundary.

In the present work we have shown how these bifurcation loci arise. Concerning
singularities of the foliations, we established that: the shock foliations are singular
on the secondary bifurcation loci J*L and ^Λ; the rarefaction foliation is singular
on the singularity locus J*0; and the composite foliations are singular at umbilic
points, singularities of </, and on the loci (^n^fL)u(^Ln^) and (® n Jf Λ)u
(ί^Λn#L). Under certain nondegeneracy conditions, each of these bifurcation loci
has codimension 2 relative to the manifold foliated by the curves (viz., TίΓ, #, and
SfL or &*R9 respectively).

The boundary of the Lax admissibility region is formed by portions of # and
Jδf the local bifurcation locus Jίf is composed of the sonic loci tfL and t?R and their
"extensions." Assuming that these loci are smooth manifolds, the admissibility
boundary has singularities only at the intersections of these manifolds, where the
boundary has corners. (See Figs. 7.1 and 7.2.) Thus singularities of the admissibility
boundary occur on </ and 2 and certain "extended loci," all of which have
codimension 2 in W. Finally, we have shown that: the shock foliation is tangent to
the sonic loci on the hysteresis loci 3tfL and Jtf R; and the rarefaction foliation is
tangent to the sonic loci (in fact, to ./) on the exceptional inflection locus J^0.

While work remains to prove that the list just sketched is complete, we
conjecture that loss of transversality gives rise to all of Furtado's bifurcation loci.
Thus the bifurcation of wave curves, as well as physical admissibility of shock waves,
is clarified by a global approach based on the fundamental wave manifold.
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Appendix. General Systems of Conservation Laws

In this Appendix we give an intrinsic definition of the fundamental wave manifold
'W for general systems of conservation laws with one spatial variable. For such
systems, the state space <% is a smooth rc-dimensional manifold, and the conserved
quantity l/(x, t)e<% is governed by the partial differential equations.

The flux functions H and F are smooth maps from ^ to R".
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Suppose that a weak solution of Eq. (A.I) has a jump discontinuity along a
smooth curve in the (ί, x)-plane. This discontinuity is specified by the inclination
angle θ and by the limiting states 17+ and l/_; by convention, (nt, nx) = (cos 0, sin θ)
is normal to the discontinuity curve, and U+ lies on the side to which the normal
points. The angle and states conform to the Rankine-Hugoniot condition

cos 0[/f (17 +) - #(£/_)] + sin 0[F(I/+) - F(l/_)] = 0. (A.2)

A characteristic direction for systern^A. \) at a state D corresponds to an inclination
angle and a line r tangent to Φ at £7 such that

[cos 0 H'(U) 4- sin 0 F(t/)] r - 0. (A.3)

We make the basic assumption on system (A.I) that each characteristic and each
discontinuity has a unique inclination angle. More precisely: we assume that (A) if
H(U+) =_ff(CΛ.) and F(U+) = F(C/_), then U+ = <7_; and that (B) if reTb« is such
that H'(U)r = 0 and F'(U)r = 0, then r = 0 [61, p. 116]. These assumptions reflect
the physical requirement that the flux functions distinguish points of Φ.

The quantities entering the Rankine-Hugoniot condition are points (I/_ , £7+ , 0)
in Φ x * x S1, but the two points (C7+ , [/_ , 0 + π) and (l/_ , 17+ , 0) represent the
same discontinuity. Denote by 9 the ambient space obtained from ^ x fy x S1 by
identifying such pairs of points. We are interested in the subset of ̂  defined by the
Rankine-Hugoniot condition. However, Eq. (A.2) is singular when U+ = 17 _ =:U
and 0 is such that Eq. (A. 3) holds for some r. This singularity will be removed by
blowing up 9 over the diagonal submanifold Δ where !/+ = £/_.

The blow-up procedure derives from the classical quadratic transformation of
algebraic geometry. This construction extends to schemes [20], complex spaces
[11], and vector bundles [3]. Our application requires blowing up a smooth
manifold over a submanifold; we define this procedure in several steps.

First let V be a vector space, and let PV denote the project! ve space of lines
through the origin in V. The blow-up of V over 0 [3, p. 268, 20, p. 28] is the set
Γ0V:= {(x,l)eV x PK:xe/}, i.e., the disjoint union of the lines in V. The blow-up
has a standard structure as an analytic manifold; indeed, it is the total space of the
universal line bundle ΓQV->PV. The projection π:Γ0F-> V of the first factor is
called the collapsing map, and the set 0*:=π~1[0] ̂ PV is a submanifold of
codimension 1 called the exceptional hypersurface.

The standard atlas { (0ί9 φ{) : i = 1, . . . , dim V] for Γ0 V is defined as follows. For
ye V with y Φ 0, let [j>]:= {αy:αeR}ePK denote the line through y. Then we define
the set &i as {(x, [ y ] ) : y e V , xe[y], yt ¥= 0} and the map φi\Qi-+V as taking (x, [y])
to (y\ly^ - > *i> - , 3>π/yi) Clearly Γ0 V is covered by the 0i9 each φf is a bijection,
and the transition maps φf ° φ Γ 1 are analytic on $, n $,-. To make a connection with
the construction of the blow-up in Sect. 2, consider any norm on K, such defines a
sphere SV c K Then each point (K,ί2)eR x SV maps to a point (RΩ, [β])eΓ0K
By identifying antipodal points (#,/2) and (-K, -ί2) within R x 5K we obtain a
space diffeomorphic to Γ0V. As a set, Γ0V can be identified with (K\{0})uPK,
where the isomorphism carries (x, I) to x if x Φ 0 and to / otherwise.

Next suppose that G is an open subset of V with Oe0. Then the blow-up of G
over 0 is Γ00:= Γ0Fn(0 x PV). More generally, suppose that 0f g ̂  for i = 1,2
with Oe02, and let M = Gv x (92 and S = G± x {0}. Then the blow-up of M over the
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subπianifold5isΓsM = ̂ 1 x Γ0d?2, and the collapsing map π:ΓsM-» Mis defined
to carry (xt,x2Λ) to (x^x2) The blow-up can be identified with the set
(M\S)u(S x PVι\ in which case the collapsing map is the identity map on M\S
and the projection of the first factor on S x PV2. Notice that 5 x V2 £ TM/TS is
the normal bundle NS of 5 as a submanifold of M, so that S x PF2 is the project! ve
normal bundle PNS. In essence, S is blown up to be the hypersurface 5* : = π 1 [S] ̂
/WS within ΓSM.

Extending this definition to general manifolds requires understanding theeffect
of a change of coordinates. Consider a diffeomorphism ψ between M = $ι x 02 and
M = Θι x (9 2 that restricts to a diffeomorphism between the submanifolds S =
ΘI x {0} and S =* &ι x {0}. Then we define the blow-up of ψ, denoted Γψ:Γ§M-+
ΓSM, as follows. Writing ^ = (ψί9ψ2), let

(A-4)

Notice that ^2(^1^2)^2 = <M*ι»*2) and that ^(x^O) = (d\l/2/dx2)(xί90) is non-
singular. If x2e/2, therefore, Ψ2(x^x2^2 is a line and ι^2(x1, x2) belongs to it, as seen
by considering the cases x 2 ^0 and x2 = 0. Hence we define Γ^(x1,x2,/2) =
((A1(x1,x2),^2(x1,x2), Ψ2(xl9x2)l2)

 τhat this map is a diffeomorphism is easily

verified. The blow-up of ψ reduces to ψ on M\S*, while on S* it carries (x^OΛ)

to (ιA1(xι,0),0,(διA2/^2)(^ι>0)/2). The latter map is the induced map PNψ:PNS-+
PNS between projective normal bundles.

A related construction gives rise to a universal mapping property for blow-ups.

Suppose that 5* = Θί x {0} is a hypersurface in f = 0t x Φ2 (i e., Oe02 £ R), and
that π:f ->M is a smooth map such that (a) S* = π"1^] and (b) the induced map
Nπ:NS* -+NS is injective. Then there is a unique smooth map p:Γ-+ΓsM such
that π = π°p. Indeed: when (x1,x2)^Sr*, p(xί9x2) must equal (π1(xι,x2),π2(x1,x2),
[772(x1,x2)]), where Π2 is defined by the formula analogous to Eq. (A.4); and
assumption (b), which means that the vector (δπ2/δx2)(xl90) Φ 0 for all (xl90)eS*,

implies that this definition of p extends smoothly to S*.
Finally, suppose that M is a smooth manifold and that S is a submanifold. Let

PNS^S be the projective normal bundle of 5 as a submanifold of M, which has
fiber P(TXM/TXS) above xeS. Define the blow-up of M over S to be the set
ΓSM: = (M\S)uPNS and endow it with the following atlas of charts. If peM\S,
then any chart (Φ,φ) for M with peΘ^M/S serves as a chart for ΓSM. If, on
the other hand, pePNSx for some xeS, then consider a chart (0,φ) for M at x;
assume that this chart conforms to the submanifold S of M, in the sense that
φ[0'} = (9lx(92<=VlxV2 and <p[0nS] = ̂  x {0}. Such a chart induces an
isomorphism between the projective normal bundle PNS\& over 0 and 0^ x PK2,
and therefore between the subset (Φ\S)vPNS\Θ and Γ0ίX(Q}Θl x&2 = (91x ΓQΘ2.
Under this isomorphism, we obtain charts for ΓSM from charts for Θl x Γo$2. (For
instance, we may use coordinates (xί9R9Ω)e(ΰί x R x SV2.) The resulting atlas
makes ΓSM a smooth manifold because the overlap maps are the blow-ups of
diffeomorphisms like those discussed above.

The collapsing map π : ΓSM -> M is defined to be the identity map on M \S and the
bundle projection on PNS; it is smooth because it reduces to the collapsing map on
each chart. The preimage S*:=π~1[S] = PNS is a submanifold of codimension 1,
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called trie exceptional hypersurface, since it is the exceptional hypersurface in each
chart. Finally, a universal mapping property characterizing the blow-up follows
from the local version described above.

Proposition AΛ.^Suppose π:Γ -»M is a smooth map such that (a) £*:= π~ *[S] is a
hypersurface ofΓ and (b) the induced map Nπ:NS*^>NS between normal bundles is
injective. Then there exists a unique smooth map p:Γ-+ΓsM such that π = π°p.

In our application to conservation laws we let ̂ *:= ΓA9 be the blow-up of 9
over the diagonal submanifold Δ. Composing the left-hand side of Eq. (A.2) with the
collapsing map yields a smooth map Jjf °π:^*->R". The zero-set of 3? °π is the
union of two parts: the exceptional hypersurface 0*$ and the fundamental wave set
if (see Fig. 2.3). Indeed, just as in Sect. 2, ̂  °π exhibits an explicit factor of R when
expressed in local coordinates about the exceptional hypersurface; the zero-set of
the remaining factor is defined to be if. Under mild regularity assumptions, if is
a submanifold of ̂ * that is transverse to 0>J, so that #:= 1fr\&>* is a submanifold
of if. Our basic assumption on system (A.I) implies that the inclination angle θ can
be expressed as a function of coordinates for if.

It was shown in Sect. 6 that the rarefaction line field on V is induced from the
shock line field on if by the projection that sets the ^-component of the tangent
vector to zero. In the present setting, this projection p : TΓSM \s -> TΓSM \s is defined
as follows. By localizing to a chart, we reduce the problem to defining a projection
/?:T(0 [y])Γ0F-» T(0tly]}Γ0V, where yeV with y ^0. Corresponding to the standard
charts (Gi9 φ^ i = ί, . . . , dim K, for Γ0K, there are bijections σ f: T(0 [y])Γ0V~ V such
that if (0, ίy])εOi n 0^ then σf>σ~ 1 is the Jacobian (φ?φj 7(φ/0,[y])). Let p,: V-* V
be the projection that sets the /th component of yeV to zero. It is easily verified
that (σi°Gjl)°pj coincides with Pi0(σi°σ]'1γ Therefore there is a unique projection
p: T(0tφ}Γ0V-+ T(QmΓQV such that a?p°a7 1 = pt when (0, [y])^. This definition
globalizes to give a smooth projection p: TΓSM\S^TΓSM\S. In terms of the local
coordinates (*!, £,«)€#! x R x SV2 for Γ2M,p takes (xl9R, Ω)^V1 x R x ΓSF2to

The universal mapping property gives a global definition for the coordinates
used throughout the main body of the paper. To see this, let M be the space
R" x R" x Sl modulo the identification of each point (— x, — y,θ + π) with its
antipode (x, y, θ), and define ̂ :̂  -> M by

β). (A.5)
Also, let S^RP1 be the submanifold of points (0,0,0)eM. Then 9°π:&*-+M
satisfies hypotheses (a) and (b) of Prop. A.I; indeed, these hypotheses follow directly
from assumptions (A) and (B), respectively. Therefore there is a unique map
p.0>*_> psM such that ^°π = p°πM, where πM:ΓsM -» M is the collapsing map.

Since M is R2" x S1 with antipodal points identified, the blow-up ΓSM is
R x S2""1 x S1 modulo identifying the points (-K, -ί̂ , -Λ2,θ) and (-R,Ωl9

Ω2, θ -f π) with (Λ, βl5 ί22, (9). (Here (ί̂ , β?)eS2fl" 1 c R" x Rw.) The subset of ΓSM
consisting of points such that cos ΘΩ1 + sin ΘΩ2 = 0 forms an (n + l)-dimensional
submanifold ̂  c 7"MS that is transverse to ̂ J. On ̂  we can write Ωί = — sin ftβ
and /22 = cos ΘΩ for some ΩeSn~ 1, so that ̂  has coordinates (#, β, 0). Furthermore
the map p induces a map from if to ,̂ thereby defining R and β globally
throughout if.
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