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Abstract. By slightly restricting the conditions given by Herbst and Rowland, we
prove the existence of resonances in the Stark effect of disordered systems (and
atomic crystals) for large atomic mean distance. In the crystal case the ladders of
resonances have the Wannier behavior for small complex field.

1. Introduction

In 1981 Herbst and Rowland had provided a setup for the definition of resonances
in the case of one-dimensional regular crystals as well as of disordered systems in
a uniform electric field. They omitted the existence proof.

Starting from such a construction, and slightly restricting the general conditions
of Herbst and Howland (1981), we provide existence theorems for resonances in
disordered systems in the regime of large distance between atoms at small fixed
electric field. This result adds to and completes the recent results on the crystal case
given by Bentosela and Grecchi (1991), Buslaev and Dmitrieva (1990) and Combes
and Hislop (1991) (see also Agler and Froese (1985) for the case of large electric
field). Our proof (see Sect. 2) is very general and refers to standard techniques of
eigenvalue stability. If our treatment is specialized to the case of an ordered atomic
crystal (see Sect. 3), we obtain exact ladders of resonances, that are uniquely
associated with the complex field states of Avron (1979) and Bentosela et al. (1988)
and with the single-band approximation of Wannier.

As a particular case, we consider a model that in the zero field case coincides
with the classical Lame problem, which, for integral values of a parameter, gives
rise to a finite number of bands. In the last case, but for small positive field, we prove
the existence of a ladder for each Lame finite band, as suggested by Avron (1982).
For a study of the quasi regular case by perturbation theory methods we refer to
the paper of Nenciu and Nenciu (1989).
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Finally, let us note that in the disordered system case the absolutely continuous
spectrum disappears, almost surely, at zero field (Kirsch et al. (1985)), so that no
resonances exist in such a limit (but, perhaps, bound states).

2. Stark States for Disordered Systems

Let us consider the Hamiltonian of the form

H:=P 2+F 0, (1)

where V0 is the atomic type potential defined by a real-valued function u(x) on R
such that:
a) u(x) admits analytical translation, x^x — iθ, and dilation, x^>xeiφ, for \θ\ < Θ0

and \φ\ < φQ (Herbst (1979)).
b) for any positive θ < 00,3C, r > 0, q > 1 such that

u(z)\^C\z\~\ Vz such that |3z|<0 and |Mz|>r. (2)

Then (1) defines a self-adjoint operator (still denoted H) on the domain D(p2\ where
ΣCSS(H) = [0, + oo) and Σd(H) c (- oo,0) has multiplicity 1.
Finally, we assume that:
c) Σd(H) is not empty, i.e. there exist at least n, n ̂  1, negative eigenvalues of the
operator H: λ1 < λ2 < - < λn < 0.
The class of such potentials defined by a), b) and c) is clearly not void (see for instance
formula (37)).

Now, adding in (1) the term Fx and performing the analytical translation
x -> x — iθ,0 < θ < Θ0, we obtain the operator formally defined by

Hβ

0tF:=p2 + Ve

0 + Fx-iFΘ (3)

and belonging to the class of Stark models, VΘ

Q is the potential defined by u(x — ίθ).
For F > 0 real we have that Σess(He

0tF) c - iFΘ + R and that, for F small enough,
Σd(Hθ

0^F) consists of n ^-independent non-degenerate eigenvalues λ®'F close to
λj9j= 1,2,...,rc, having imaginary part of order 0(F°°). This follows from
Theorem III.3 in Herbst (1979), concerning a Hamiltonian of the type (3) submitted
to an analytical dilation, and from the coincidence of resonances defined by the
analytical dilation with respect the analytical translation method (see, e.g., Sigal
(1988)). These arguments work for F complex too and, assuming 3F > 0 for sake
of simplicity, we have that HΘ

Q F has compact resolvent (it follows from Theorem II.3
in Herbst (1979) and from the relative compactness of the term VΘ

Q\ its eigenvalues
are 0-independent and the stability as F -> 0 of the n eigenvalues of H holds again
uniformly for F in any sector 0 g argF ^ δ. Moreover we have 3Λ^'F = c0-3F +
0(F2),c0 is the first perturbative coefficient.

We summarize these results in the following:

Theorem 1. Letθ,Q<θ< Θ0 be fixed. We have that:
i) for any dί>0 and anyjj = 1,2,..., n, there exists F0 > 0 such that HΘ

0^F has only
one θ-independent isolated eigenvalues λ®'F in the set {λeC\ \λ — λj\ <d^} for any
Fe{zeC\ \z\ :g2F0,0^argz ̂  δ}. Moreover, for δ>0 small enough we have that
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ii) ifF is real, Σess(Hθ

0 F) ^ — IFΘ + R and the eigenvalues λ®'F have imaginary part
of order 0(F°°);
iii) if 3F > 0, HΘ

0 F has compact resolvent, hence Σess(HΘ

0 F) = 0.

We regard the operator HΘ

0 F as a limit problem for the class of operators
{He

βtF}β^09 as β JO, of the Stark-Wannier type

Hθ

βy.= p2 + Vθ

β + Fx-iFΘ, (4)

for F in the sets Ωδ j and Θε>/, where

and

Θεf= {FεC\f ^ \F\ ̂  2/,ε ̂  argF ̂  π/2},

where 0 < / < F 0 , Q < ε < δ , δ and F0 as in Theorem 1. Here Vθ

β, for β>0, is the
type multiple-atomic potential defined by uβ(x — iθ\ where

meZ

each Xm,meZ, can represent the position of the mth atom. As a model of dis-
ordered system we consider Xm(ω\ ω in a probability space (Ω, 2F, P\ the points of
a Poisson ensemble on R, with mean density 1, where we assume an ordering

^ Λ/ ^ ~\r τ/ //Γ\•• < Λ _ I < Λ O < A I < . (6)

In the following, for sake of definiteness, we assume X0(ω) = 0 f°r anv ω

(otherwise we translate x -* x + β~1X0). We have that, P-almost surely, uβ(z) is finite
and real-analytic in the strip |3z| < Θ0. Moreover, the following bound holds for β
small enough

\uβ(x - iθ)\ ^ Cβ\og(β\x- iθ\ + 2) + C0, |θ| < Θ0, P-a.s., (7)

where C0, Cβ > 0 and C^O as β JO. Indeed, let φ):= (|z|2 + l)~q/2, q > 1 as in (2),
satisfying the hypothesis of Corollary 3.5 in Herbst and Howland (1981), hence

φ):=Xφ-*m(ω)) (8)
meZ

is finite, P-a.s., and such that for some C

Therefore

\uβ(x-iθ)\ =

^ CCβq\og(\x- iθ\β + 2) H- C0. (10)
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In particular, from geometric estimates, a type (7) estimate holds for — f-^ too.
dz

Moreover, from similar arguments, we have that for each xeR, meZ and 0, 1 0| < 00,

- iθ + β~lXJ = u(x - iθ\ P-a.s. (11)
β[0

Now, let us stress that, for F real, He

β F satisfies, P-a.s., the hypotheses of Theorem 2.1
in Herbst and Rowland (1981); hence, it has discrete spectrum (if it is not empty)
lying in the strip {z|zeC, 0 ̂  3z > — Fθ} and its essential spectrum is contained in
the line — iFΘ + R. Moreover, for F complex and 3F ^0,Hθ

βF has compact
resolvent (see Avron (1979)), hence Σem(He

βtF) = 0.
We are going to prove the following theorem:

Theorem 2. Let 0, with 0 < θ <_00> be fixed and F0 and δ as in Theorem li. Then for
anyf,Q < f < FQ, there exists β> 0 such that, VFeβί§/ and V/?e(0,/f] the operator
Hθ

βtF admits, P-a.s., an eigenvalue λβ^F + Fβ~lXm(ώ) at least, for some weZ, where
λβj'F = λft

}

tF(ω) tends to λ^F as β 1 0, j = 1, 2, . . . , n, uniformly with respect to F in ΩδJ.

Proof of Theorem 2. P-a.s. choose m = m(ώ) s.t. (1 1) holds uniformly w.r.t. ω. Since

Σd(H°βfF) = Σd(TΓ ,XMH^FTΓ\XM) + Fβ-lXm(ω)9 (12)

where TΛ is the translation operator x -> x + α, we can assume, without loss of
generality, m = 0. Moreover, in the following, will be implicitly assumed the
dependence of λ^¥ on ω.

Now, following Herbst and Rowland (1981) let us consider the following
representation for the resolvent

Qβ(λ)Sβ(λ) ] ~\ β ̂  0, 3A > 0, (13)

where Sβ(λ) = SβjF(λ, θ; γ) is the inverse operator defined by Hθ

βF + Qβ(λ) — λ,
Hθ

βy.= Hθ

βtF -f iFΘ, and Qβ(λ) = QβtF(λ,θ 9γ) is the bounded operator defined by the
function of xeR given by

λ-vθ i dv°
i "

i(λ-vθ

β) i dvθ

β
4 | χ |3/2Fl/2

^>0. (14)

Here χ[ab] is the characteristic function on the interval a^x^b and yeR + is a
suitable constant whose meaning will be discussed in the following lemma.

Lemma 3. For any compact subset Γ of {/leC ^U > 0 and 9U ̂  0} there exist β>0
and y such that Sβ,F(λ, θ; γ) is uniformly bounded for (λ, β, F)eΛβJ:= Γ x [0, β~] x Ωόtf.

Proof of Lemma 3. Let φ* and φ~ be the solutions of

[p2 + Fx + F + β^μ) - λ]φf =0 (15)

coincident, respectively, with φ+, φ + eL2([/~ \ + oo)), and φ~, φ~ eL2((- oo, - /" ̂
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where φ± are the WKB solutions of \_p2 + Fx + Vθ

β - λ]φ = 0 for large \x\, i.e.:

l-X$Vθ

β(t)(tFΓ1/2dt]l
^o JJ

and

(16)

Let W = M^ F(λ, θ\y) be the Wronskian of </>*. First of all, we prove that there exist
β, γ and μ > Ό such that | W\ > μ for any (A, /?, F)eΛjj t /. Let

be, respectively, the linearly independent solutions of (15) in the intervals
1

>/-1)> [/->, + oo),

where \l/± =φ± J [</>*]" 2dx. Hence, we have
+/- 1

φf=c±e*x + d±e-*x (17)

in the interval [ — (2/)~1,(2/)~1], where c± and d+ are obtained by matching
conditions on the solutions 0^. In particular, one obtains

c+ = -

(18)

(19)
where φ±'(±f~ί)=- Ψ'(±f~1)φ±(±f-1)and

(20)
M*U ^ ' ^J

where ' denotes —. Since 9U ̂  0 and / is fixed we can choose β> 0 such that in
dx

the term Vθ

β(±f~ί\ for any β < β, the contribution given by the overlapping
between the first well and the other ones can be neglected, hence

if/is small enough. Then, we have that the leading term of | W\ =
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satisfies the following estimate for some μ > 0:

Q |-ι9 ' ^ / T V J / \J

7 2 9?A 3A 1 °? w(x — 0) J

' ( '
choosing γ large enough and positive.

β f
Here (15) has no solutions in L2(R) for (λ, jS, F)eΛβ f9 moreover W~ 1 is uniformly

bounded in Λβtf.
Now, we have that Sβ(λ) = W~1A, where A = AβjF(λ, 0; 7) is the operator

):= +f G^(^β,y;x,y)/(y)dy, (22)

where Gβ^(λ,θ,γ,x,y\= φ^(x>\φ~(x<\x> =max(x,^) and x< =min(x,y).
Adapting to our case the proof of Proposition A.I given in Herbst and Rowland

(1981), one can prove that A is a uniformly bounded operator for (λ,β,F)€Λβf (let
us stress that / is small enough but fixed and that Vθ

β satisfies the bound (7) where,
as j8|0, this estimate improves). Hence, Lemma 3 follows. Π

Now, let Γ be chosen such that λ^F + FθeΓ for any FeΩδ)f and any jj =

— and^ - 1 <«z^θl. (23)
2 ~ ~ 2 J

Lemma 4. Let Γbe as in (23) and γ as in Lemma 3, then Qβ(λ)Sβ(λ) converges in norm
to QΌ(λ)So(λ) as β[0 uniformly with respect to (λ,f)eΓ x Ωδtf.

Proof of Lemma 4. Let ΛΓeR + ,(/l,F)eΓ x ΩδJ and

|| Qβ(λ)Sβ(λ) - QQ(λ)S0(λ) || g || χ t_ ̂ [β^WS^A) - βo(A)S0W] ||

+ 11(1 ~ Xi-NwKQβWSβW ~ fioWSo(λ)] ||. (24)

From (14), there exists a constant ci(λ,F)< co such that

H O -Xi-N^ίQβWSβW-QoWSottm ^ τ \ \ s β ( λ ) \ \ ^ o (25)

as AT -> oo uniformly in j? being /leΓ, where, by Lemma 3, Sβ(λ) is uniformly
bounded. Moreover, the other term in (24), for N fixed, tends to zero as /?|0. In fact,
by the resolvent identity, we have:

) max |
xe[-N,N]

+ c3(λ,F)\\Sβ(λ)\\ max 16^)+ V\- Q0(λ)- K»|^0 (26)
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as /?J,0 because of the uniform boundedness of Sβ(λ) for λeΓ and from the uniform
convergence Vθ

β -> VΘ

0, stated in (1 1), and Qβ(λ) -> Q0(λ) in any compact set [ — N, JV],
where c2(A,F) and c3(/l,F) are two β-independent constants. Finally, from the
uniform boundedness ofSβ(λ) in Γ x βίf/, stated in Lemma 3, and from the uniform
convergence, as β J,0, of Qβ(λ) and Vθ

β in 7" x Ωδtf Lemma 4 follows. Π

Let us stress that, from (13) and from the choice of Γ, λεΣ(Hθ

β F)n Γ if and only
if Qβ(λ)Sj(λ) has eigenvalue — 1. Now, since Qo(λ)S0(λ) has simple eigenvalue — 1
for μ°'F - λ°>F + iFΘJ = 1, . . . , n, then for any ε > 0 there exists β> 0 such that the
eigenprojection

Pβ=-~ § lQβ(μΐF)Sβ(μ 'F) -zrldz (27)
2m | z + l | = ε

has dimension one for any β in [0, /?]. Indeed [Qβ(μ°'F)Sβ(μ°'F) — z] ~ l converges in
norm to [Q0(μ° F)S0(μ°'F) - z] " : from Lemma 4 and since [Qo(μ°'F)S0(μ° F) - z] " 1

exists and it is bounded (see, e.g., Kato (1976) Theorem IV-2.23). Then there exists
a unique simple eigenvalue z = z(μ?'F,β) of Qβ(μ®'F)Sβ(μ®'F) in the disk Dε(— 1) of
radius ε and center — 1.

Moreover, since {Qβ(λ)Sβ(λ)}λ is an analytic family of operators in λeΓ and
converges in norm as /?|0 uniformly in 7" x Ωδtf, the function z^\— Zj(λ, β) defined,
for λ close to μ?'F and β close to 0, as the unique simple eigenvalue of the operator
Qβ(λ)Sβ(λ) in the disk Dε(— 1), is well defined and it is analytic in λ and continuous
in β. Besides z7 (μ?'F,0) = — 1, hence for any d2 > 0 the analytic implicit function
theorem, as in Markushevich (1970) IV-§5.5, applied to the function fj(λ,β):=
Zj(λ, β) + 1, assures the existence of 1 ̂  N(j) < oo_zerpes λ?tF

9 i= 1,2,..., N(j)9 of the
function fj(λ,β) close to μ°'F up to d2 if βe[Q,β],β> 0 suitable (here N = N(j) is

3Nz (μ°'F,0)
the minimum positive integer such that — - — ̂  — Φ 0, since /^(λ, β) is analytic in

ί/Λ

λ and not identically zero, then N < oo). Let λβ/:= λff - ίFΘ.
Hence, from the above result and from the uniformity for FeΩδtf stated in

Lemma 4, Theorem 2 follows. Π

Now, linking Theorem 1 and Theorem 2, it follows:

Corollary 5. Let θ, wif/i 0 < 0 < 00, be fixed and δ>0 as in Theorem li. Then, for
any d>0 and for anyf>0 there exists β>0 such that, MFeΩδJ and V/?e[0,/Γ],
P-a.s. there exists an eigenvalue λβ.'F + Fβ~1Xm(ω) at least, for some w, ofHθ

β F where
\λ'J

 F-λJ\<d,j=l,2,...,n.

Now, uniqueness and analytical properties will follow from stability arguments
as βlΰ uniformly for F in Θβf/:= {FeC\f ^ |F| ̂  2/,ε ^ argF ̂  π/2}.

Theorem 6. For απj; ε>0 the eigenvalue λ^F + Fβ~lXm(ώ) given in Corollary 5
(j = 1, 2, . . . , n, weZ and fixed) is unique and analytic for FeΩπ/2 f.

Proof of Theorem 6. The assertion follows from a stability argument as β JO uniform
for FeΘεf. Here 0 < ε < <5, so that the interior of the set Θεtfr\Ωδtf is not empty.

Now, we compare He

βtF with the Stark operator Hθ

0 F = p2 + Vθ

0 + Fx- ίFΘ in
the limit /? J,0. First notice that, as in Theorem 1, #Q F admits rc θ-independent eigen-
values λ°'F close to λj for ε ̂  arg F ̂  π/2, 0 < | F \ ̂  2F0, for any ε > 0, by a stability
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argument as F->0 (see, e.g., Vock-Hunziker's criterion in Hunziker (1988)).
Moreover, such eigenvalues are analytic in the same region of F since HΘ

OF is an
analytic family of operators in F, 3F > 0, and they are free of crossings by stability.

Now, fixing F in 6>ε/, stability arguments as above work as βjO, too.
Indeed, we P-a.s. have that

-<F)0II -0, as /HO, V0eC»(R). (28)

Besides, the asymptotic numerical ranges

{<0,Hj,F0>|0eC?(x>M)} and {<g9H
e

βtPgy\geC%(x < - M)}, (29)

for M large, lie far away from the region of eigenvalues since the Fx term is dominant
with respect to VB

β by the estimate (7). Therefore, for FeΘεj we have only one
eigenvalue λ^Έ close to λj ,(j = 1, 2, . . . , n) and it is the by analytic continuation of
the one given in the set Ωδtf since the interior of the set Θεf n Ωδtf is not empty. Π

Remark 7. Therefore, a kind of disordered ladder of eigenvalues of H θ

β F P-a.s. exists
if β ~ 1 is large enough: for each j, j = 1 , 2, . . . , n, the position of such eigenvalues on
the ladder corresponds to the direct image of the sample parameter in the form
{λβj'F + β' lFXJ(ω)}mεSβ(ω) a Z. In particular, from Theorem 6 and from
Corollary 2.2 of Herbst and Howland (1981) the existence P-a.s. follows, for β < β
and FeΩδtf and real, of disordered ladders of resonances

λβj F + β~lFXm(ωl where P(meSf(ω)) = 1 - O(β) (30)

for the Stark- Wannier operator

HβtP:=p2+Vp + Fx, Vβ=Σu(x-β-1Xm(ω)). (31)
meZ

3. Stark- Wannier States for Crystals

In this section we specialize the results of the previous section to the case of the one-
dimensional crystal. In such a case we have that Xm = ma, where a is the period of
the crystal, so that overlapping in (5) is excluded. Hence uβ(x - ίθ) for \θ\ < Θ0 is
bounded and lim uβ(x — ίθ + β~ lma) = u(x — iθ) for any m and any x. Moreover, the

/no
statements in Corollary 5 and Theorem 6 hold too. Hence the existence, uniqueness
and analyticity of the Stark- Wannier ladder λ?'F + mFβ~ίa, weZ, are given for

,
However, in the crystal case we can improve the above results because the

existence and analyticity of the Stark-Wannier states for complex F in a small disk
tangent to the real axis is known. Indeed, the existence and analyticity of a Stark-
Wannier ladder associated with the single-band approximation ladder of Wannier,
via a regular perturbation theory, for complex electric field in a disk Dp(ip) of radius
p, tangent to the real axis in the origin, was proved in Bentosela et al. (1988). Note
that the radius p does not depend on the period of the crystal but, essentially, on
the isolation distance of the band.

Hence, with such restrictions, we can take complex values of the electric field
arbitrarily small. Moreover the Stark-Wannier states, given by exact ladders, are
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associated by perturbation theory with the single-band approximation states of
Wannier.

From a well known stability result, the /h band tends to λj and the isolation
distance of the band tends to the isolation distance of the eigenvalue λj as jβj,0. Let
r be the minimum isolation distance of the first eigenvalues. Choosing d in
Corollary 5 such that d < (r/4) sin δ and / so small that /: = Dp(ip) n Ωδtf n Θδ/2,f φ

0, then, for any Fel and β small enough, μfF - λj\ < d. So the ladder λβ/ + mβ~lFa
is contained in the strip with boundaries (λj — r/2) + FR and (λj + r/2) + FR. Hence,
from the uniqueness condition stated in Bentosela et al. (1988), this ladder must be
unique and must coincide with the Stark-Wannier ladder associated with the single-
band approximation. In particular, since He

βtF is an analytical family for FeC + :=
{zeC|3z>0} and the eigenvalues λ^Έ are isolated for FeΩδtf9 then a unique
analytic continuation from the disk Dp(ip) to the real axis for the Stark-Wannier
ladders is given.

We can summarize these results in the following:

Theorem 8. Let HβF be the Stark-Wannier operator

meZ

Then, for any f> 0, /< F0, Hβ F has ladders of resonances for β > 0 small enough
and any real F in [/, 2/]. Such resonances are the limit, as 3FJ,0, of the complex F
Stark-Wannier states uniquely associated with the single-band Wannier states.

We conclude this paper considering a model coincident, for F = 0, with the
classical Lame problem. Let

Vθ

k(x):= v (v -f l)[/c2 sn2(x - iθ, k) - 1], k ̂  1, |θ| < Θ0 = π/2, v ̂  1, (33)

where sn(z, k) is the Jacobian elliptic function having real period 4K and imaginary
period 2iK'. In such a model the role of β is played by K'1. Here K and K' are
functions of k given by

K(k) = πf—- ^ and K'(k) = K(Jl - k2). (34)

In particular, we have that

lim K(k) = + oo and lim K'(k) = π/2. (35)

Moreover the following formula holds:

sn (z?/c) V2K7 iwίooL
cosh V^K 7 / c°sh \2K'~KXm)\y

Xm = —-. Equation (36) follows from the formula given in Whittaker and Watson
/C

(1965), Chap. 20, Sect. 2, for the Weierstrassian elliptic function ^(z) (with real
period 2K and imaginary period i2Kf) and identifying (̂z + iKf) with sn2(z, k)
up to an additive constant. From (36) it follows immediately that as /c|l (i.e. as
K->oo) each m / 0 term tends to zero, hence, for any x, we have V9

k(x)-+v
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(v + I)[tanh2(x — iθ) — 1] as fc| 1. The discrete spectrum of

H = p2 + v (v + I)[tanh2(x) - 1] (37)

is not empty for v > 0 and consists (see, e.g., Sect. 12.3 Morse and Feshbach (1953))
of n non-degenerate eigenvalues

λj=-(v-j+l)2, 7=l,. . . ,n=-[-v], (38)

where [•] denotes the integral part.
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