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Abstract. We construct a non-commutative (C*-algebra Cμ(U) which is a quantum
deformation of the algebra of continuous functions on the closed unit disc U. Cμ(ΰ)
is generated by the Toeplitz operators on a suitable Hubert space of holomorphic
functions on U.

1. Introduction

Alain Connes has shown [8] that a substantial part of differential geometry can
be extended to a non-commutative setup in which a non-commutative *-algebra
replaces an algebra of functions on a manifold. Clearly, not every non-commutative
algebra has an interesting geometry and, while a satisfactory concept of a "non-
commutative differentiable manifold" has not been formulated yet, it is desirable to
study examples of such structures.

Recently, a growing number of examples of "non-commutative differentiable
manifolds" has been studied, see e.g. [16,18,22]. These examples form, in a sense,
a testing ground for probing general concepts of non-commutative differential
geometry and so give us a better insight into the properties of a non-commutative
manifold. Also, some important applications of these ideas have been found in
other areas of mathematics and physics [3,7,9].

In this paper, we begin a program of developing a theory of non-commutative
Riemann surfaces. We believe that non-commutative Riemann surfaces should play
a distinguished role in non-commutative differential geometry, very much like
ordinary Riemann surfaces in the commutative case. Also, there are some speculations
[13] that quantum Riemann surfaces might be helpful in studying certain integrable
systems arising in string theory.

Conceptually, the simplest method of constructing non-commutative manifolds
is the framework of deformation quantization, see e.g. [2,4,19,22]. This is the
starting point of our approach.
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Let M be a Riemann surface and let ω be a symplectic form on M. Then, the
•-algebra C™(M) of smooth functions on M comes equipped with a Poisson bracket:

{Ag}:=ω'\df9dg)9 f9geC»(M). (1.1)

We wish to construct a family of <C*-algebras j ^ μ , 0 < μ < l , called quantum
Riemann surfaces, together with "quantization maps" T(μ): C°°(M)-> j / μ such that:

1 (β)

= 0. Further-(i) Tiμ) is linear and *-preserving and (ii) lim
iμ

more, we require that the biholomorphisms of M act on slμ and that &tμ is, roughly
speaking, the fixed point algebra of the quantum universal covering of M.

In this paper we construct a quantum deformation of the unit disc (= universal
covering space of hyperbolic Riemann surfaces). Our construction draws some ideas
from Berezin's paper [4] on quantization by covariant symbols. In a subsequent
paper [11] we will describe quantum deformations of hyperbolic Riemann surfaces.
In another development [12] we study a two-parameter deformation of the unit
disc which is closely related to the quantum group SUq(l,1). We should also
mention that quantum Riemann surfaces of genus 0 and 1 have already been studied
in the literature, see [16,20] (quantum sphere) and [8,18] (quantum torus). Also,
quantizations of the unit disk using various symbolic calculi have been studied (see
e.g. [14,21] and references therein).

Recall that the group of biholomorphisms Sl/(1,1)/Z2 of U = {zeC: \z\ < 1}
consists of fractional transformations

+ ά)-\ | α | 2 - | f t | 2 = l. (1.2)

The (essentially unique) Sl/(1, l)/Z2-invariant symplectic form on U is

ω=l-(l-\z\2y2dzΛdz, (1.3)

with the corresponding Poisson bracket

{f,g} = i(l - \z\2)2(dfdg - dfdg). (1.4)

In Sect. II we give the definition of the quantum unit disc Cμ(U) in terms of
generators and construct an 5(7(1,1)/Z2 action on Cμ(U). In Sects. Ill and IV we
study the representation theory of Cμ(U) in terms of the algebra of Toeplitz
operators on a suitable Hubert space. This leads us to structural theorems for the
quantum unit disc which are closely related to the Brown-Douglas-Fillmore theory
[5]. In Sect. V we show that the St/(1,1)/Z2 action can be implemented on this
space by a unitary projective representation of SU(l91)/Z2. Finally, in Sect. VI we
study asymptotic expansions of products of Toeplitz operators and prove that,
indeed, T(/i) satisfies requirement (ii) formulated above.

II. Quantum Unit Disc

For 0 < μ < 1 we let Pμ(U) denote the unital C-algebra generated by two elements
z and z with the following relation:

lz,z]=μ(I-zz)(I-zz). (Ill)
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We call Pμ(U) the algebra of polynomials on the closed quantum unit disc. The goal
of this section is to study some general properties of representations of Pμ(U). We
show that Pμ{U) has a nontrivial universal enveloping <C*-aIgebra. We call this
(C*-algebra the algebra of continuous functions on the closed quantum unit disc.

Let Jf be a Hubert space and let π: Pμ(U) -> <£(jf) be a representation of Pμ(U)
by bounded linear operators on jf satisfying the condition π(z)* = π(z). By abuse
of terminology, we will refer to such representations as *-representations (strictly
speaking, Pμ(U) is not a *-algebra). Setting_π(z) = eiθ, π(z) = e'{\0 <; θ < 2π, we see
that nontrivial ^representations of Pμ(U) exist. By π(Pμ(U))~ we denote the
<C*-algebra of operators on tf defined as the norm closure of π{Pμ(U)).

We will frequently use the following notation:

x:=zz, y:=zz.

Applying π and taking the adjoint of (II. 1) we find that

i.e., π(x) and π(y) generate an abelian subalgebra of π(Pμ(ΰ)).

Theorem II.l. The operators π(z) and π(z) satisfy

Proof. Let (C*(x, y) denote the abelian unital sub-<C*-algebra of S£(3tf) generated
by π(x) and π(y). As a consequence of a Gelfand-Naimark theorem, (C*(x, y) is
isometrically isomorphic with C(Σ\ the (C*-algebra of continuous functions on the
spectrum Σ of <E*(x,y). Let x(σ) and y(σ),σeΣ9 denote the images of π(x) and π(y)
under this isomorphism. Clearly, x(σ\ y(σ) ^ 0.

From Eq. (II.l) we have

y(σ)lμx(σ) + 1 - μ] = (μ + l)x(σ) - μ. (II.5)

Since μx(σ) + 1 - μ > 0, we have for all σeX,

σ)-μ ( Π 6 )

μx(σ) + 1 - μ

The function 0 g t -> [(μ + l)ί — μ]/[μί + 1 - μ] is continuous and monotonicaHy
increasing, and thus as a consequence of (II.6),

But from (II.2), || π(x) \\ = || π(y) \\ = \\ π(z) ||2. Substituting this into (II.7) and solving
the resulting algebraic equation yields || π(z) || = 1, as claimed. D

Lemma II.2.

(i) Ker(7 - π{x)) = Ker(7 - π(y)\

(ϋ) Ran(7 - π(x)) = Ran(7 - π(y)).

Proof (i) This is an immediate consequence of (II.l) and (II.3).
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(ii) If φ = (/ - π(x))φ, then from (II. 1) and (II.3), (/ + μ(I - π(y)))φ = (/ - n{y))φ.
But ||μ(I - π(y))\\ < 1, and thus φ = (I- π{y))(I + π{y)))~1φeRan{I - π{y)\ prov-
ing that Ran(/ — π(x)) c Ran(/ — π(y)). By a similar argument, Ran(/ — n{y)) c
Ran(J-π(x)). D

Lemma Π.3.
(i) Ker(/ - π(x)) is invariant under π(Pμ(UJ)~9

(ii) Ran(/ — π(x)) is invariant under π(Pμ(U)).

Proof, (i) Indeed, if φeKcτ(I - π(x)), then by (II.8), (/ - π(x))π{z)φ = π(z)(I - π(y))φ =
0, and (/ - π(y))π(z)φ = π(z)(I - π(x))φ = 0, i.e., π(z)φ9 π{z)φeKeτ(I - π(x)). Since
Ker(/ — π(x)) is closed, the claim follows.

(ii) If φ = (I-π(x))φeRan{I-π(x)\ then by (II.9), π(z)φ = (I-π(y))π(z)φe
Ran(/ - π(y)) = Ran(/ - π(x)). Furthermore, φ = (I-π(y))φ' and thus π(z)φ =
(I - π(x))π(z)φ/eRan(/ - π(x)). D

We now write

Jf = Ker(/ - π(x)) φ Jf, (II. 10)

where ^f is the orthogonal complement of Ker(/ — π(x)). As a consequence of
Lemma II.3 (i) and the fact that n[Pμ{Ό))~ is a *-algebra, both direct summands in
(11.10) are invariant under π(Pμ(U))~.

Let now yeSU(l91). We will write the inverse of γ as

(Π.11)

where

| f l | 2 - | 6 | 2 = l. (11.12)

Lemma II.4. IfyeSU(l, 1), then (bπ(z) + α Γ ^ P ^ t / ) ) " .

Proof. Consider the series

a-1 Σ(-b/a)nπ(zγ. (11.13)

As a consequence of (11.12), \b/a\ < 1. Since by Theorem Π.l, ||π(z)|| = 1, the series
(11.13) converges to an element of S£(2tf). A routine calculation show that its limit
is, in fact, (bπ(z) +a)"1. •

We now set for yeSU(l91),

py(π(z)):= (bπ(z) + α)~ \aπ{z) + b). (11.14)

In the theorem below we assert that py defines an action of Sί/(1,1) on π(Pμ(U))~.

Theorem Π.5. Let yeSU(l, 1). Then:

(i) py(π(z))* = py(π(z)), (11.15)

Proof (i) This is clear.
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(ii) We verify (11.16) on Ker(/ - π(x)) and jfc separately. We set z':= ργ(π(z)) and
z':= pγ(π(z)). If ωeKer(/ — π(x)), then a straightforward calculation shows that

which proves that (11.16) holds on Ker(J — π(x)).
To prove that (11.16) holds on $ we observe that the inverses (/ —π(x))"1

and (/ —π(j ) ) " 1 exist as densely defined unbounded operators. Furthermore,
as a consequence of Lemma II.3 (ii), Dom((/ - π(x))~ *) = Dom((/ — π(y))~ *) =
Ran(/-π(x)).

Lemma II.6. Relation (II.I) restricted to $ is equivalent to the following equation
on Ran(/ — π(x)):

(/-π(x)Γ1-(/-π(y)Γ1=μ. (Π.17)

Proof. Multiplying (II. 17) by / - π(x) on one side and by / - π(y) on the other yields
(II. 1). Conversely, writing (II. 1) as

((/ - π(j )) - (/ - π(x)))φ = μ(I - π(x))(7 - π(y))φ,

and using (II.3) yields (11.17). D

We can now conclude the proof of the theorem. As a consequence of (11.12) and
Lemma II.4,

/ - z'z' = (bπ(z) + a)~ \I - π(x))(fcπ(z) + a)' \ (11.18)

and

/ - z'z' = (bπ(z) + ά)-\I - π(y))(bπ(z) + a)'x. (11.19)

We claim that / - z'z' and / — z'z' are invertible on Ran(/ - π(x)). Indeed, we set for

(/ - z'z')- xφ = (bπ(z) + ά)(I ~ π(x)Γ \bπ{z) + α)ψ9 (11.20)
and

(/ - z'z')- V = (bπ(z) + α)(I - π{y))-\bπ(z) + ά)φ. (11.21)

As a consequence of Lemma II.3 (ii) these are well defined. A simple calculation
shows that (11.20) and (11.21) are indeed the inverses of I —z'z' and I —z'z',
respectively.

As a consequence of the above considerations we have, as operator equations
on Ran(/ — π(x)):

(/ - z'z')-1 -(I- z'z')-1 = (bπ(z) + ά)(I - π(x))-1(bπ(z) + α)

-(bπ(z) + α)(I-π(y))-1(bπ(z) + ά)

= \b\2{π(y)(I - πiy))-1- π(x)(I - n^Γ1}

= μ(\α\2-\b\2) = μ.

This shows that z' and z' satisfy (11.17) and the proof of the theorem is complete. D
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We now let for aePμ(U\

| | f l | | :=sup| |π(β)| | , (11.22)
π

where the supremum is taken over all possible *-representations of Pμ(t7). As a
consequence of Theorem II. 1, || a || < oo forall aePμ(U). Let N:= {aePμ(U): \\ a || = 0}
be the null-ideal in Pμ(U). We define Cμ(U) to be the completion oiPμ{U)/N in the
norm induced by || || and call it the algebra of continuous functions on the closed
quantum unit disc. By definition, Cμ(U) is a unital <C*-algebra with involution
defined by z*:=z. The following theorem is a consequence of the above
considerations.

Theorem II.7. The (C*-algebra Cμ(U) is generated by two elements z and z satisfying
(ILI) and such that \\z\\ = 1. The mapping

defines an action ofSU(l, 1) on Cμ(Ό).

III. Representation Theory

In this section we classify all irreducible *-representations of the algebra of
polynomials on the quantum unit disc Pμ(U). As in Sect. II, let π: Pμ(U) -+ ^(Jίf) be
a representation of Pμ(U) on a Hubert space Jf.

Proposition III.l. Let λn:= nμ(\ -h nμ)~ \ n = 0,1,2,.... Then

(i) SpeφM^μj^uίl}, (III.l)

(ii) Spec(π(y))c={AΠ}^ou{l}. (III.2)

Proof By Theorem II.l, | |π(x)|| = \\π{y)\\ = 1. Therefore, Speφ(x)), Spec(π();))c
[0,1]. Furthermore, Spec(π(x))\{0} = Spec(π(y))\{0}. Let JΛ,n = 0,1,2,... be a
sequence of open subsets of [0,1] defined by In:=(λn,λn+1). We claim that
7nnSpec(π(x)) = 0 and 7nnSpec(π(j;)) = 0 , for n ̂  0. Indeed, as a consequence of
(II.l),

π(y) = {(μ+ l)π(x) - μ] {μπ(x) +l-μ}'\ (III.3)

and thus π(x) ̂  λ[. Therefore, Io n Spec(π(x)) = 0 . Consequently, / 0 n Spec(π(y)) =
0 . We now proceed inductively. Assume that I0,Iί9...9In do not intersect the
spectra of π(x) and π{y). If λeln+1 is in the spectrum of π(x),^then by (III.3)
λ = {{μ+\)λ-μ){μλ+\-μ}'1 is in the spectrum of π(y). But λeln9 which is a
contradiction. Therefore, In+1 does not intersect the spectrum of π(x) and,
consequently, it does not intersect the spectrum of π(y). D

Theorem III.2. An irreducible ̂ -representation (Jf, π) ofPμ(U) is unitarily equivalent
to one of the two following representations:

(α) a one-dimensional representation π(z) = e~iθ, π(z) = eiθ, where 0 ̂  θ < 2π;
(β) an infinite dimensional representation defined as follows: let Jf = 12(Έ+) (where

Z + is the set of nonnegative integers) and let {fn}n>obe an orthonormal basis for Jf.
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Then

n(z)fn= r , , „ "' (IΠ.5)

Proof. We assume that (Jt, π) is an irreducible ^representation oϊPμ(U). We write
Jίf as in (11.10) and observe that either Ker(/ - π(x)) = 0 or $ = 0. If $ = 0, then
π(z)π(z)* = π(z)*π(z) = /, i.e., π(z) is unitary. As a consequence, Jf is one-
dimensional and π(z) = e~iθ. Let Ker(/-π(x)) = 0 and let # n , n = 1,2,... be the
eigenspaces of π(x) corresponding to the eigenvalue λn. By the spectral theorem,
Jf7 = © &n. Observe that, as a consequence of (II. 1), π(z) maps&n into # Λ + 1 9 and

π(z) maps # n + x into #Π. Indeed, if / e ^ n , then

(I + μ- μπ(zz))π(zz)π(z)f= μπ(z)f - μπ(z)π(zz)f

+ π(ί)π(zz)/ = (/ι - μλn

Consequently,

π(zz>(z")/ = (μ - μ2M + AΠ)(/ + μ -

= (μ- μλn + Λ,)π(z-)(/ + μ - μπ(zz)

i.e., π ( z ) / e ^ w + 1 . In the same way we show that π(z):^n + 1^^n. Now, let in denote
the restriction of π(z) to C3n and let rn denote the restriction of π(z) to &n. Then
inrn + ί=λnl and rΠ + 1ϊn = AM/. This shows that the subspaces $„ and &n + 1 are
isomorphic, n = 1,2, We claim that ^ x is one-dimensional. Indeed, if el9e2e

(^ί

are nonzero and mutually orthogonal, then the subspaces generated by {π(zm)e1}m^ x

and {π{zm)e2}m> x are nonzero, invariant under π(Pμ(U)) and mutually orthogonal.
As a consequence, all <3n are one-dimensional. Let fo^i with | | / 0 | | = 1, and let
/„, n ^ 1, be defined by

Then {/„}„ > o forms an orthonormal basis for Jf. A simple computation shows that

πφfn = \/K

π(z)fn = -

We now describe a representation of Pμ(U) on a Hubert space of holomorphic
functions on the unit disc [ / c C . This space was previously studied by Berezin [4]
in the context of quantization of covariant symbols.
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We set

r : = - + l , (III.7)

μ
and observe that r > 2. Let tfυ be the Hubert space of holomorphic functions on
U equipped with the Petersson scalar product

(φ9ψ):=^fφ(ζMQ(l ~ \t\2Γ2dζ Λ dζ. (III.8)

We set

dAir(o=^(i-ιcι2r2dCΛdc: (m.9)

It is well known that the functions

φ (ζ) = \- Γ{χ + ^ i ζ" (in. 10)

form an orthonormal basis for 3^v. This leads us to the following expression for the
corresponding Bergman kernel:

) = π-\r-\){\-ζή)-r. (III.ll)

Recall that K(ζ, η) is the integral kernel of the orthogonal projection P of L2(U, dμr)
onto 3tfυ. For each continuous function / on Ό we consider an operator Ty on J^υ

defined by

Tfφ(Q' = (PMfφ){ζ) = j K(ζ9 η)f(η)φ(η)dμr(ζ). (III. 12)

Here My denotes the multiplication operator on L2(U9 dμr). Observe that Tfe^{J^υ\
An operator of the form Tf is calleda Toeplitz operator with symbol / (see e.g.
[10]). Note that 7 > = T * . Let Pμ(U) denote the <C*-algebra generated by the
Toeplitz operators.

We define the following Toeplitz operators:

(π(z»(C):= J K(ζ,η)ηφ(η)dμr(η) = ζφ(Q,
u

(π(z)φ)(ζ):= J K(ζ, η)ήφ(η)dμr(η) = (π(z)*φ)(ζ). (111.13)
u

Lemma III.3. We have

o

Proof. We set ψ(ζ):= (π(z)φ)(Q. Then using (III.ll),

^ ( 0 = π" \r - 1) j ί( l - ζή)-rφ(η)dμr(η)
u

dζu
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1 ~\(l-ζή)K(ζ,η)φ(η)dμr(η)
r-\dζ

As a consequence, we obtain a differential equation on φ,

ζψ' + rψ = φ'. (111.15)

Solving this equation yields

as claimed. D

Theorem III.4. ( J f ^ π ) defines a ^-representation of Pμ(ΰ). This representation is
unitarily equivalent with representation (β) of Theorem III.2.

Proof From(IΠ.10)and(IΠ.13),

(π(z)φn)(ζ) = ζφn(ζ)

which proves (III.4). Likewise, from (III. 14),

(π(z)φn)(ζ) = Γ r ί ι Γ y ,
o [ n - l + r

for « ^ 1 and (π(z)^o)(O = 0. This proves (III.5). D

In other words, π is a_ homomorphism of Pμ(U) into 3ΓμΦ\ Our next result
states that, in fact, Cμ(U) is isomorphic with ^~μ(U). Therefore, the concrete
<C*-algebra jfμ(U) may serve as a universal representation of the abstract C*-
algebra Cμ(U).

Theorem_III.5. π:Pμ(U)^fμ(U) induces an isomorphism of the <E*-algebras Cμ(U)
and Γμ{U).

We will prove this theorem in Sect. IV.

IV. Toeplitz Operators

Our goal in this section is to prove Theorem III.5. The technique to achieve this is
a detailed analysis of the structure of the <C*-algebra &~μ(U). Our analysis follows
the standard methods (in particular those of [10,1 and 6]). For the reader's con-
venience we include the details of the proofs referring to the literature at appropriate
places. Throughout this section, / denotes a continuous function on U and
denotes its sup-norm.

Lemma IV.l. (i) | |7} | |
(ϋ) τf = 0, if and only iff = 0.
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Proof. Part (i) is clear. To prove part (ii) we observe that Tf = 0 if and only if
(φm, Tfφn) = 0, m, n = 0,1,2,..., where φn is defined by (III.10). Since

and since the monomials ζmζn generate a dense subspace in L2((7, dμr) this is possible
if and only if / = 0. D

Let J f p f v) denote the (C*-algebra of compact operators on Jf υ.

Lemma IV.2. TfeJIΓ(3PΌ) if and only iff \du = 0.

Proof We follow [1] and [6]. Suppose that f]dv = 0. There is a sequence {/„} of
continuous functions such that supp/„<=£/ and | | / —/n|loo~*0 Let {φm} be a
sequence in Jίfv such that φm -• 0 weakly (recall that a weakly convergent sequence
is bounded). We claim that Tfφm->0 in norm which means that Tf is compact.
Indeed, since φm(ζ) -> 0 pointwise, it follows that, for a fixed n, φm(C) -> 0 uniformly
on supp/n. Therefore,

sup |φw(OIII/JI + ll/-/JlcollΦ.
Cesupρ/M

ί } 1 / 2

where C = < J dμΓ(ζ) > < oo. Choosing n sufficiently large and using the fact that

U JII φm || g K, we see that the right-hand side of this inequality is arbitrarily small.
To prove the converse we consider the sequence of elements of J^v

φn(ζ):=K(ζ,ηn)/K(ηn,ηnyi2,

where ηneU,ηn-+ηedU. Then | | φ j | = 1 and φn(ζ)-+0 uniformly outside a neigh-
borhood V oϊη. Passing to a subsequence, if necessary, we may assume that φn-+Q
weakly. Since

II(Tf - f{η))ΨnII2 ύ J 1/(0 - f(η)\21φn(Q\2dμr(Q
u

U6C7\F

we see that || (Tf — f(η))φn \\ -• 0. As a consequence,

since T r is compact. Therefore, f(η) = 0. D

Lemma IV.3. TfTg-Tfg,[Tf,Tg]e^{^u).

Proof. We follow [1]. Obviously, the second claim is a consequence of the first, so
we need prove that TfTg - TfgeX(J^υ). Clearly Tfg - TfTg = PMf{\ - P)Mg. Let
Jfu denote the orthogonal complement of 3tfυ in L2(U,dμr) and let if/:=
(1 - P)MfP: tfυ-• ^ . Then

Tfg-TfTg = HjHg. (IV.l)
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Furthermore,

Hf9 = SfHg + HfTg, (IV.2)

where Sf: Jtr^Jtr^ is defined by Sf:= (1 -P)M f. Let now &:= {feC(U):Hf is
compact}. As a consequence of (IV.2), 0$ is a closed subalgebra of C(U). Also, H1 = 0,
tfζ = 0andby(IV.l),

So 1, £ fe#, and thus by the Stone-Weierstrass theorem J> = C{U). D

Let J a ^~μ(ΰ) be the commutator ideal oί^μ(U\ i.e., the smallest norm-closed,
two sided ideal in &~μ(U) containing all the commutators.

Lemma IV.4. J = Jf p f „).

Proof. We follow [1]. To show that JtΓ(tfΌ) c ^μ(J^v) we use Theorem 5.39 in
[10]._Firstly, Jf ( J f ^ n ^ p f v ) Φ 0 , as [Tζ, Ύj}ε#(tfυ\ Secondly, we claim that
^~μ(U) is irreducible. Indeed, let Q be an orthogonal projection in J^v which
commutes with fμ(U). Then (Qφ)(ζ) = QTφ{l)\ = φ(ζ)(Ql){ζ) for all polynomials
φeJ^u. From Q2 = Q we haveJ21 = 1 and the claim follows. Therefore, by the
quoted theorem, Jf(J^u) a 3~μ{U). As a consequence of Lemma IV.3, J c Jf (jf ( ).
Since JΓ^u) is simple [10], C/f(Hυ) = J. D

Theorem IV.5. (i) There is a short exact sequence of<£*-algebra {the Brown-Douglas-
Fίllmore sequence)

(ii) Every element AG^~μ(U) can be written as

A = Tf + K,

where Kec/f(jeυ\ Furthermore,

| |7} + K||

Proof, (i) We claim that

as (C*-algebras. Indeed, let σ\C(U)-^^μ{U)IX(j^υ) be the map defined by
σ(/):= Tf (mod JΓ(^f [;)). By Lemma IV.3, σ is a *-homomorphism whose range is
dense. By Lemma IV.2, Ker(σ) = C(0)(l/):= {feC(U):f\du = 0}. So σ induces an
injective *-homomorphism

σ: C(ί7)/C(O)(i7) s C(3t^ ̂  ^(U)/^^).

By Proposition 4.67 in [10], σ is an isometry, so Ran(σ) = Ran(σ) = ^(E/)/Jf (Jf^),
and σ is an isomorphism of C*-algebras.

(ii)As a consequence of (i), every element in $~μ(U) is of the form (IV.4). Since
j:Pμ(U)^C{dU)9j(Tf + K):=f[dU is a *-monomorphism of C*-algebras, it
follows from Proposition 4.67 in [10] that sup\f(ζ)\ £\\Tf + K\\. D

ζedU

Now we are in a position to prove Theorem III.5.
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Proof of Theorem III.5.

where αfc/eC. By (11.22)

| | f l | | = max j π(]

By (IV.5), the maximum

Let

Jci kn

and Theorems

is achieved at

>zll'--zknzlneP

III.2 and II.4,

zιΛ , sup Σ

\k,l
-zk

>

l +

"Zl"

•+knζh + -+ln ί

1 . Therefore

(IV.7

|f A | | —

|| π(a) ||. The claim follows. •

As a consequence of Theorems III.5 and IV.5 we obtain:

Corollary IV.6. The <C*-algebra Cμ(U) is a GCR algebra.

Let now Jf = /2(Z+) and let {fn}n^0

 b e an orthonormal basis for Jf. The
operator S defined by Sfn:=fn+Un^ 0, is called the unilateral shift [10]. Let <E*{S)
be the unital C*-algebra generated by S.

Theorem IV.7. Cμ(U) is isomorphic with <C*(S).

Proof. Let Em^5£{^) be defined by EmJp:=δnpfm. Then S = £ £ Π + 1 , Π and

π(f) = ^ {(n + l)μ/(l -f (n + l)μ)} 1 / 2£n + lf ϊI. It is clear that S - π(z)εJf(Jf). Conse-

= _ _

quently, C*(5) c π(Cμ(t/)) ̂  Cμ{V). On the other hand, since S + Ke<E*{S) (see
[10]), it follows that π(z)e<C*(S), i.e., π(Cμ(I/)) c C (S). D

V. The Action of 5t/(l,l)

In Sect. II we^constructed a group action Sl/(1,l)-> Aut(Cμ(ί7)). Under the identi-
fication Cμ(U)^^~μ(U), this action can be implemented by a projective unitary
representation of SU(1,1) on Jfv.

For A E C * : = C \ { 0 } we set Iog2:=logμ| + /argl, where - π < a r g i g π . If
y eS 1/(1,1), we let ay and by denote the matrix elements of y~ * as in (11.11). The
function [14]

where y1? ^ e S ^ l * 1)? C ^ ^ is independent of ζ (to see this, differentiate with respect
to ζ). We denote the value of (V.I) by λ{yl9y2). Furthermore, setting ζ = 0 it is easy
to see that λ(yuy2)e{-1,0,1}. In fact, the function λ: SU(191) x SU(1, \)-^Έ defines
a cohomology class in H2(SU(\91),Z), i.e.,

,y,) = 0Λ(y2,7 s) ~ Hϊi Ϊ2,7a) + HYU YIYS) ~ λ{y

(to see this, use the fact that (V.I) is independent of ζ). We set

σ(yl9y2):=Qxp{2πirλ(yuy2)}.

(V.2)

(V.3)
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For yeSU(l, 1) and φe3tfυ we define

(υγφ)(Q'.= (bγζ + aγr
rφ(y-ιζ)9 (V.4)

where (bγζ + α y )" r := exp{ - r l o g ^ ζ + dy)}. Then l/y is a unitary operator on jfy,
and

m 2 γ i l / w . (V.5)

Therefore, as a consequence of (V.2), γ -• t/y is a projective unitary representation
of 5(7(1,1).

Theorem V.I. T/ie SC/(1,1) action y^>pγon Cμ{U) is implemented byy-^ Uy.

Proof. We need verify that

py(z)=U7zUy-ι. (V.6)

Indeed, from (III. 11),

bζ + a

(H + ) ^ ( h K + )φ(ζ) ^
bζ + a bζ

as claimed. •

VI. Asymptotics of Products of Toeplitz Operators

In this section we show that, in a suitable sense, Cμ(U) is a quantum deformation

of the unit disc. To be more specific, we prove that for smooth / and g9 - [7}, T J

approaches its classical value, as μ -*• 0. ^
Let C°°(έ7) denote the Frechet space of smooth functions on U whose derivatives

extend to continuous functions on U. For f.geC^φ) we define

{/, g}(Q:= f(i - \ζ\2Wf(Qdg(ζ) - Sf(ζ)dg(ζ)i (vi.i)

the Poisson bracket of/and g corresponding to the Poincare symplectic form on

U, ω : = - ( l - \ζ\2)'2dζ A dζ. Obviously, {fg}eCc»φ). The goal of this section is

to prove the following theorems.

Theorem VI.I. LetfeCφ). Then

|| 7} 11^11/1| ^ H 7} | | + o(l),

as r-^ co. In particular, lim || 7V || = || /1 | ̂

Theorem VI.2. Let f, geC™{U) and let r be sufficiently large. Then:

(i) There exists a constant C (depending on f and g) such that

||r(Tf Tg- TIβ) + Γ ( 1 v \
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(ii) There is a constant C (depending on f and g) such that

i / ? 9 {
<Cr ~1/2 (VL4)

Remark. It should be remembered that the operators and the operator norms in
(VI.2-4) depend on r even though, for the sake of notational simplicity, this is not
explicit in our formulas. Estimate (VI.2) says that lim || TΛ = | | / | | , while estimate

μ-+0

(IV.4) says that lim
μ-+0 iμ

= 0. This shows that C (U) is a quantum

deformation of the unit disc in a sense close to RieffeΓs "strict deformation quantiza-
tion" [17].

Proof of Theorem VIA. The first inequality in (VI.2) is clear. To prove the second
one, we define yζeSU(l, 1), ζeU, by

\ - l / 2

Observe that yζ(0) = ζ, and

In particular, if | η \ < δ ^ 1/2, then

Lemma VI.3. IffeC(U),then

ζ 1

\η\

(VL5)

sup f(Q-(r-l)\f(7ζ(η))dμr(η)

(VI.6)

(VI.7)

as r—> oo.

We shall prove this lemma after completing the main line of the argument. Using
the reproducing property of the Bergman kernel, we write

f(ζ) = (r - 1) f y*f(η)dμr(η) + f(ζ) - (r - 1) f y*f(η)dμr(η)

= (r - 1) f K(θ, η)y*f(η)dμr(θ) + f(ζ) - (r - 1) f y*f(η)dμr(η)
u2 \ u

- (r -

where y*f{η):=f{yζ{η)\ and where φ 0 is given by (III. 10). As a consequence of
Lemma VI. 3,

su
ζeU

^ sup || T |
ζeU t

But, Γ,/. = l/κΓ/t/-1,with Un unitary, and so | | / | | β g HΓJ+o(l), as claimed.
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Proof of Lemma VI.3. Since / is continuous on a compact set, it is uniformly
continuous. Given ε > 0 , we take (5^1/2 so that \f(η) — f{η')\<ε/2, whenever
\η-η'\< 2(5. Then,

f{η) _ ( Γ _ l) J f(γζ(η))dμr(η) = (r- 1) J (/(yζ(0)) - f{yζ{η)))dμr{η)
u u

= J ...+ f - : = / 1 + / 2 .
\η\<δ δ<\η\<l

Now, using (VI.6),

\η\<δ

Furthermore,

1/21^211/IL J d/ιr(ι/) = 2 | | / | | G O ( l - 5 2 r 1 ,
δ<\η\<l

which is less than ε/2, for r sufficiently large.

Proof of Theorem VI.2. Obviously, (ii) is a consequence of (i) and (VI. 1). To prove
(i) we write

( 7 } 7 > , φ) = f K(ζ9 η)f(ζ)g(η)φ(η)φ(ζ)dμr(ζ)dμM (VI.8)
u2

where φ, φeJ^υ. In the ̂ -integral we substitute η = yζ0, where γζeSU(ί91) is defined
by (VI.5). Then

(TfTgφ, φ) = π~\r - 1) j f(ζ)g(yζθ)(U - ίφ)(θ)φ{ζ)(l - \ζ\2)-r/2dμr(ζ)dμr(θ).
u2 ζ

(VI.9)

This form of (VI.8) is suitable for asymptotic analysis. From Taylor's theorem,

-\ζ\2)dg(ζ)θ + (l-\ζ

z

+ (ί-\ζ\2)2ddg(ζ)θθ + G(θ,ζ), (VI. 10)
where Gφ, ζ) is the second order remainder. Let us assume for a moment that the
following fact is true.

Lemma IV.4. There is a constant C {depending on f and g) such that

\n'ι{r-\) J f(ζ)G(θ,ζ)(U φ)(θ)φ(ζ)(ί -\ζ\2Γrl2dμr(ζ)dμr(θ)\

ϊCr~3'2 II φ II II ^ ||. (VI. 11)

Substituting (VI. 10) into (VI.9) and using the fact that 0->(l/ _,<p)(0) is a

holomorphic function we find: c

(TfTgψ, φ) = $f(ζ)g(ζ)φ(ζ)ψ(ζ)dμr(ζ) + n~\
u

; | ( l / - < p ) « # ( 0 ( l - \ζ\2Γr/2 + 1\θ\2dμr(ζ)dμr(θ)
Oϋ yζ
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+ π'\r-\) J /(0(l - \ζ\2)2deg(Oφ(ζ)W)\θ\2dμr(ζ)dμr(θ)

π-\r - 1) f f(ζ)t - ζdg(Q + fr - I
t/2

where Λ denotes the remainder term which obeys the estimate (VI. 11). Observe that
the first term on the right-hand side is equal to (Tfgφ, ψ). Furthermore, using

and

(VI.13)

we write the second and third terms in (VI. 12) as

+ - J/(0(i - ICI2)2δ%(0φ(0^(0^(0.

Integrating by parts we see that this sum is equal to

We claim that the fourth term in (VI. 12) can be estimated by Cr~2\\φ \\
with C independent of r. We proceed as follows. Using (VI. 13) twice, we find that

I C I ) ^ { ( i I C I ) ^

We substitute this into (VI. 12) and use the fact that

π" V - 1) J \θ\*dμr(θ) = —*— (VI.14)

u r(r + 1)

Integrating by parts we write the integral as

1 [F(ζ)φ(ζ)φ(ζ)dμM
r(r + 1) u

with F(ζ) continuous and bounded on U. Finally, we estimate (VI. 15) by
r~ 2 sup|F(0| | |φ| | \\φ\\. This concludes the proof of (VI.3) up to the proof of

ζeU

Lemma VI.4. D
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Proof of Lemma VIA. We claim that G(θ,ζ) can be written as

G { θ , ζ ) = Σ 9 } { Φ (VI.16)

where gj90^j ^ 3, are smooth functions on U x U with the following properties:

(i) l<7;0U)l^

(ϋ)

(iii) 9j(θ,ζ)
dθ'

Indeed, we write

(VI. 19)

2V

4 Σ

~

and define

J/ o
(VI.20)

To verify that gj(θ9ζ) obeys (VI.17)-(VI.19) we carry out the differentiations in
(VI.20) according to the chain rule. Using the fact that for k ̂  1

dk

y(θ) = (-l)k

dθk ζ

as well as the inequality

ll+sfθΓ^ίl-J

we easily obtain the bound

(VI.21)

(VI.22)

which proves (VI. 17). Inequalities (VI. 18) and (VI. 19) follow from an analogous
argument for the derivatives of (VI.20).

Let us now estimate the contribution that each term in (VI. 16) gives to (VI. 11).
Let = 0. Using

0(1 - | 0 | 2 y- 2 = — (1 - | θ | 2 ) r " 1 , (VI.23)

and integrating by parts with respect to θ we find that

π-\r- 1) f f(ζ)go(θX)P(U ιφ)(θ)ψ(ζj(l - \ζ\2)-rf2dμr(ζ)dμr(θ)
1/2 Ύζ
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= -π~ι J/(ζ)(l -\θ\2)^-g0(θ,ζ)θ2(U _lΨ)(θ)ψ(ζ)(l-\ζ\2yrl2dμr(ζ)dμr(θ)
U2 VΌ γζ

- π " 1 lf(ζ)(l-\θ\2)g0(θ,ζ)θ2-(U ,φ)(θ)φ(ζ)(l-\ζ\2Γ'2dμr(ζ)dμr(θ).
C/2 00 γc

(VI.24)

The first term on the right-hand side can be estimated by

2π * sup |/(O I sup

1/2 f 1 1/2

ίCr-3l2\\φ\\\\ψ\\,

where we have used that

\\θ\\\-\θ\)-^dμr{θ)ύ0{\)r-\ (VI.25)

and
1 f 2 2 l . (VL26)

To estimate the second term in (VI.24) we first use (VI. 13) and integrate by parts
with respect to ζ. The result is

π " 1 J df(ζ)(l -\θ\2)g0(θX)θ2(U ιφ)(θ)φ(ζ)(l - | C | 2 Γ r / 2 + 1(l +ζθ)'1dμr{ζjdμr{θ)
u2 ί

+ π-1ί/(C)(l-|θ|2)^{(l-|ζ|2)-Vo(^O}
υ2 8ζ

Θ2(U _,φ)(W(0(l - | ζ | 2 ) " r / 2 + 2(l +ζθy1dμr(ζ)dμM
γ

Using (VI.22) (with s = 1) and properties (i)-(iii) above, we estimate each of these
terms by

Ί 1/2 f ^ 1/2

J U

This completes the proof for; = 0.
Let; = 1. Using (VI.23) and integrating by parts with respect to θ we find that

π-\r- 1) f f(ζ)gi(θ,ζ)θθ2(U ιφ)(θjψ{QQ ~ \ζ\Tr/2dμr(ζ)dμr(θ)
u2 γt

= -π'1

C/2



Quantum Riemann Surfaces 121

-\ζ\2)-"2dμr{ζ)dμM
U2

The first two terms on the right-hand side of this equation can be estimated in the
same way as the terms in (VI.24) in the case of/ = 0. To estimate the third term we
use (VI.23) (with r replaced by r + 1), integrate by parts with respect to θ (by doing
so we produce the missing factor of Oζr'1)), and use the Schwarz inequality as in
the analysis ofj = 0. The resulting bound is CV~~3/21| φ\\ \\ψ\\.

Let; = 2. We use

0(1 - | 0 | 2 Γ 2 = - ί - i ( l - \θ\2γ~\ (VI.27)
r—loθ

and integrate by parts with respect to θ to obtain

- 1) j f(ζ)g2(θ9ζ)θ2θ(U _ ^ ) W ( 0 ( l - \ζ\2Γr/2dμr(ζ)dμr(θ)
u2 yt

U Ί B iφ)(θ)φ(ζ)(l-\ζ\2rr'2dμr(ζ)dμr(θ)

- π 1 j / (0( l - \θ\2)g2(θ,ζ)θ(U tφ)(θ)φ(ζ)(l ~ \ζ\2Γ"2dμ,(ζ)dμr(θ).j
U2

Both terms on the right-hand side of this equation have a familiar structure and,
by the methods explained above, they can be estimated by Cr~3/2 \\ φ\\ \\ψ\\.

Finally, let j = 3. Using (VI.27) and integrating by parts with respect to θ we
obtain

π-\r- 1) j f(ζ)g3(θX)θ\U ,φ)(θ)ψ&){\ - \ζ\2yr'2dμr(C)dμr(θ)
u2 y ί

j - \θ\2)-^g3(θ,ζ)θ2(U ίΨ)(θ)φ(ζ)(ί - \ζ\2)--'2dμr(ζ)dμAΘ).
u2 oU yc

Again, as in the case oϊj = 0, this can be estimated by Cr~3/2 \\ φ \\ \\ φ ||. D

In conclusion, we notice that formula (VI.9) provides a systematic basis for
generating an asymptotic expansion of TfTg in powers of r~1. The methods we have
used to estimate the second order remainder in this expansion can presumably be
used to estimate the remainder of arbitrary order.
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