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Abstract. In [33], we studied the constraint problem for two-dimensional quantum
gravity in the conformal gauge. In this gauge, we proposed an ansatz for the grav-
itational sector. Using this ansatz, we established a striking connection between the
matrix models and continuum 2D gravity. We also announced several results on
semi-infinite homology of the Virasoro algebra with coefficients in a suitable class of
positive energy modules. In this article, we will provide details of the proof of the
announced results.

I. Introduction

1.1. Motivation

The Liouville theory has been the focus of a number of recent discussions in the
contexts of two-dimensional quantum gravity and non-critical strings [14, 35, 42,
II, 10]. When c < 1 matter is coupled to 2D gravity, certain aspects of the theory -
critical exponents, string susceptibilities, correlation functions - have been extensively
studied via both the continuum and matrix-model approaches. There is, however, one
fundamental aspect of the theory which lacks the same level of understanding - what
are the basic building blocks of the physical state space?

If we consider 2D gravity coupled to a conformal field theory (matter) in the
conformal gauge, then gauge fixing results in the Virasoro constraint [11]

TCFT(z) + Tφ(z) + Tbc(z) ~ 0, (1.1)

where TC F T(z), Tφ(z), Tbc(z), are the stress-energy tensors of the CFT, the Liouville
field φ, and the conformal ghosts respectively. Tφ(z) has the form [11, 42]

(1.2)
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where ξ is a parameter of the theory. Since (1.1) is a first class constraint, a natural
way to quantize the theory is the BRST procedure. Thus it is clear that the basic
building blocks of the physical state space, in the presence of a matter CFT, should
be the BRST homology classes. These homology classes depend on the choice of the
matter and on the representation of the Virasoro algebra in the Liouville sector. We
will begin with the minimal models as matter. A natural class of representations in
the Liouville sector is given by the free field realizations of the Virasoro algebra [8, 9,
22], also known as the Feigin-Fuchs modules. The importance of these modules has
been demonstrated both in physics (see for example [20]) and in mathematics [18].
In our previous announcement [33], we determined exactly which of these modules
lead to non-trivial BRST homology. In this article, we provide details of the proof.
Our ansatz for the gravitational sector has also been used for studying c = 1 boson
coupled to gravity [34]. The c — \ theory was shown to be substantially different
from the c < 1 theory.

We begin by briefly reviewing the BRST formalism. In addition to the Feigin-
Fuchs modules, two other classes of Vir representations - the Verma modules and
their irreducible quotients - arise naturally in our discussion. In fact in our earlier
announcement, some key results concerning all three classes of modules were stated
(Theorems 1-3 of [33]). Here, we will devote Sects. 2 and 3 to the proofs of these
results. We then conclude with a few remarks and some preliminary results on super-
gravity. More detailed discussions can be found in [31].

We thank A. Rocha for helpful discussion. We especially thank C. Crnkovic and
G. Moore for numerous valuable discussions during the course of this work.

12. The BRST Formalism

For a mathematical review of the BRST theory of graded Lie algebras, see [17, 21,
32, 31]. The content of 2D gravity coupled to matter in the conformal gauge has the
form

Liouville <g> Matter <g> Ghosts. (1.3)

This system has a first class constraint given by the algebra Vir Θ Vir. For simplicity,
we will focus, throughout this article, on the left-handed part of theory.

Upon quantization, the Liouville sector is represented by the Feigin-Fuchs modules
Fξ η. They are the free-field representations in which the Virasoro algebra, Vir, acts
by:'

TL(z)=lϊ'.j(z)2:+ξdj(z) (1.4)

with central charge

cL = l-12ξ2. (1.5)

The space F^η is the linear span of the vectors

3nxjn2'"3nkV^η Π\ < Π2 < . . . Πk < 0 . (1.6)

The modes of j(z) satisfy

[jnjm] = nδn+mt0 , ~ ~

JnVξ,η = (ξ- η)δnfiVζtη n>0.

A natural class of matter to be coupled to gravity consists of the conformal field
theories (CFT). Associated with each CFT is a collection of modules M over Vir.



Semi-Infinite Homology and 2D Gravity. I 563

Thus there is a stress-energy TM(z) which operates on each M, with central charge
CM- We will primarily focus on the case when M is a minimal model representation
[3]:

M = L(cPiq,Δrf8), (1.8)

6(p - a)2

CM = Cp,g = 1 - ^ y ; , (1.9)

where p, q, r, s are positive integers with gcd(p, q) = I, pr > qs, q > r, p > s.
The Liouville sector and matter together do not constitute the full quantum state

space; neither do they necessarily contain all the physical states. Gauge-fixing of 2D
gravity naturally leads to the ghost sector and the BRST constraint, by which physical
states are determined.

According to the prescription of BRST quantization, there is, associated with the
constraint algebra Vir, a Clifford algebra W defined by the relations:

{ε(x'\L(y)} - (x',2/) x' € Vir', y G Vir. (1.11)

There is also a representation of Vir, {Λ<χ> ̂ (Vir/Cc),^}, given by

η(x) = Σ :ε(L'm)L([Lm,x]): + (β,x) (1.12)
m

with β = — Z/0 — 26c'. In more familiar notations, we write

cgh = - 26, 6n = i{Ln), c n = e(L ;_n), (1.13)

L f = ry(Ln) - ^ ( m - n ) : c _ m 6 m + n : - δn , (1.14)

6(z): , (1.15)

C(Z) = Σ CnZ~n+l , K^) = 5 Z &n^" n"2; (1.16)

c(z), b(z) are respectively the ghost and anti-ghost fields. The spaces Λoo+Hc(Vir/Cc)
in which the ghosts act are spanned by vectors of the form

&n 1 . . .6n<Cm i . . .Cm jW 0,

n\ < - < Πi < 0, πi\ < < πij < 0,

where wo is the vacuum vector carrying ghost number zero.

Now the full quantum state space should be the —chain complex:

C-+,(Vir, Cc; M ® F^) = M® F ξ ? r ? 0 Λ-+,(Vir/Cc). (1.18)

The full gauge constraint to be imposed is

TM(z) + TL(z) + Tgh(z) - 0. (1.19)

In order to get any state to obey (1.19), we must at least have zero total central charge:

CM + c L + c y Λ = 0. (1.20)
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The BRST operator is given by

d = Yμϊ + L™)c.n - I ]Γ(n - m):c_nc_m&n + m: - Co . (1.21)

It can be written as

^j{z)dz, (1.22)

J(z) = : (TM(z) + TL(z) - b(z)dc(z))c(z): . (1.23)

The energy operator in each sector is given by the zeroth component of its stress-
energy field. Thus the total energy operator is

Lo^Lξ + Lξf + L**1. (1.24)

This operator is BRST exact:

{d,6o} = £o (1.25)

Therefore, the subspace annihilated simultaneously by bo and LQ is stabilized by d.

This subspace is the —complex relative to Viro = CLo + Cc:

= {ω e M <g> FξiV ® Λ <*>+*( Vir/Cc) | Loω = 0 = 60CJ} . (1.26)

This is the main object of our study in this article. We will return to the complex (1.18)
later. The homology groups, iϊoo+^Vir, Viro;L(cM,Z\ r )S) 0 Fξ,η)> of this complex
are called the semi-infinite homology groups relative to Viro.

Problem 1. Given p, q, r, s, classify the Feigin-Fuchs modules Fξ^η for which

# ¥ + *(Vir, Vir0; L(cp,q, Δr,s) <g> F^η) φ 0.

This is the equivalent to determining all free field representations of the gravitational
sector which result in non-trivial BRST invariant states, in the presence of conformal
matter L(cp,q,Ar,s).

Theorem 3.1 (Theorem 3(a) [33]). For η e C, #<*>(Vir, Vir0; L(cPίq, Δri3)®Fξiη)φ0

iff
(2pqt H- pr + ε2qs)

for some t G Z, ε\, ε2 = ± 1 .

If we interpret the zero mode j 0 as the center-of-mass momentum variable, as one
does in the free bosonic string theory, then Problem 1 really amounts to diagonalizing
the momentum operator j 0 in the space of physical states. Thus it is reasonable to
ask for the multiplicities of the eigenvalues.

Problem 2. Determine the exact number of BRST invariant states in each case, i.e.
calculate dim #<χ>+*(Vir, Vir0; L(cp^ Ar,s) ® F^η).

Theorem 3.3 (Theorem 3(b) [33]). For V^ξ = ~ , y/^η = *
2pq

r, Vir0;

where dη is given by Eq. (3.55).
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The next two chapters will be devoted to proving the two theorems above. Several
examples of the results are illustrated in Figs. 1-4 at the end of Sect. 3.2.

2. Irreducible and Verma Modules

Our first step toward solving Problem 1 is to first classify the highest weight irreducible
modules L(c, Δ) which afford non-trivial homology:

# f +*(Vir, Vir0; L(cp,q, Δr,s) <g> L(c, Δ))φO. (2.1)

The next few sections are devoted to this question. We will return to Problem 1 in
the next section. The problem of characterizing (2.1) involves the knowledge of the
structure of Verma modules over the Virasoro algebra [18, 19, 28, 39].

2.1. Structure of Verma Modules

Recall that for c, Δ e C, the Verma module M(c, Δ) is the largest highest weight
module with highest weight (c, Δ). Given another M(d,Δ'), we can ask whether
there is a non-trivial module map

M(d,Δ')-+M(c,Δ). (2.2)

Note that if it exists, this map is an embedding. Obviously, the map exists only if
c — d. Since M{c, Δ') is generated by a single highest weight vector vΔι (we suppress
c from the notation, and assume that c is fixed) the map (2.2) is clearly determined
by the image of vΔ/. Because vΛ> is singular

LnυΔι=0, n > 0 , (2.3)

so is its image under (2.2). Thus, that the map (2.2) exists implies that M(c, Δ) has a
singular vector of weight Δ' (we call Δ' a singular weight of M(c, Δ)). Conversely,
if M(c, Δ) has a singular vector u of weight Δf, then C/(Vir) u is a highest weight
submodule in M(c, Δ). By universality of M(c, Δ), there is a unique (injective) map

M(c, Δr) -> M(c, Δ) (2.4)

with vΛ> H-> u. Thus the knowledge of the embeddings among Verma modules is
equivalent to knowing the singular weights in every Verma module. If Δ' is a singular
weight of M(c, Δ), we write

Δ -> Δ' (at c). (2.5)

Thus (2.4), (2.5) are two equivalent statements. We will also use

Δ ±> Δf (2.6)

to mean that Δ —> ΔI but Δ φ Δί (again at a given c).

Theorem 2.1 (Feigin-Fuchs). Every submodule ofM(c, Δ) is a sum of Verma modules.
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Theorem 2.2 (Feigin-Fuchs). The following are the only possible diagrams of the
embeddings among Verma modules:

: M(c, Δo) -» M(c, Δ\) —> M(c,Δ2) —>

\ X X

///_ : M(c, Z\o) <— Λf(c, Aγ) <— M ( c , 4 2 ) <- -&f(c,^3) . . .

\ X X
M ( c , Z \ _ i ) <— M ( c , Δ - 2 ) <— M(c,Δ-3)...

M(c,Δ0)-> M(c,Δχ) -» M(c,Z\2) -* M(c,Z\3) ...
M(c,Δo) *-M(c,Δ\) <— M(c,Δ2) <- M(c,^3) . . .

// : M(c, A)) <— M(c, Z\O

/ : M(c,Z\0)

Each arrow represents a unique map (up to multiple). Every Verma module M(c, A)
belongs to a single such diagram. The diagram containing M(c, A) also contains all
the Verma modules related to M(c, A) by non-zero maps.

As mentioned earlier, an equivalent description of a map between two Verma
modules is an arrow relating their highest weights. The following terminology will

be handy later. If A —• A'{A -ί A'), we call A' a (proper) descendent of Δ\ A an

(proper) ancestor of Ar. If A -^ A' and there is no A" such that A -ί A" -ί Z\', we
call Z\7 an immediate descendent oϊ A\ A an immediate ancestor of Af. \f A —> A',
we define the distance between them

d(Δ, A') = c/(^;, Z\) = max length of chain A-^ Δx ^ ... ^ An ^ Δf. (2.7)

Thus d(Δ, A) = 0 for any A, d(Z\, Z\;) = 1 if zi' is an immediate descendent of A.
Feigin and Fuchs proved the two theorems above by studying the geometry of the

roots of the Kac determinant formula [28, 18]. Moreover, they gave an algorithm for
computing all the ancestors and the descendents of any given A. For example, in the
(p, q) minimal models, we have

c = cVΛ , A = ΔriS. (2.8)

The diagram of ATjS is of type ///_ [39]:

(2.9)

M(c, α 0) <— M(c, &i) <— M(c, αi) . . . ,

where

\
M(c, α0)

(2Pqt

u (Zpqt

X

+ pr

+ pr

M(c,b

+ qs)2

4pq

-qs)2

X
1) < -

- ( P -

- ( P -

M(c,aι) ...

9) 2

, (2.11)
4pq

for t e Z.
The following is consequence of the theorems of Feigin-Fuchs.
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Lemma 2.3. ch M(c, Δ) = Σ °h ^(c> ^')> i e

Δ->Δf

(I if Δ -> Δ'
[M(c,Δy.L(c,Δ')} = { J

 Ί .
(̂  0 otherwise .

Feigin and Fuchs discovered yet another remarkable fact about Verma modules. It
turns out that

M(c, Δ!) ^ M(c, Δ) iff M(26 - c, 1 - Δ1) *-> M(26 -c,l-Δ) (2.12)

("reflection principle"). Thus given a diagram D in Theorem 2.2, the new diagram l),
obtained by replacing every M(c, Δ) in D by M(26 - c, 1 — Δ) and reversing the
arrows in D, is also an embedding diagram. We call D the reflection image of D.
This will be a useful way to get new embedding diagrams.

2.1.1. Structure of Irreducible Highest Weight Modules

Proposition 2.4. Every irreducible L(c, Δ) has a resolution by Verma modules. In
particular, there is an exact sequence

> M2 -» Mi -» M o -> L(c, Δ) -> 0, (2.13)

where Mi is either zero or a direct sum of Verma modules M(c, Δ') with d(Δ, Δ') = i.

Proof The special cases c = 0,1,25,26 were considered by Rocha-Wallach [41],
and c = cPjq, Z\ = Δr^s was considered by Feigin-Fuchs [19] and Rocha [39]. For
later reference, we will give a uniform treatment here.

Case 1. Δ has no proper descendent. This means that M(c, Δ) is irreducible. So

0 -> M(c, Δ) ^ L(c, Δ)->0 (2.14)

is exact.

Case 2. Δ has a single immediate descendent M(c, Δ'). This means that M(c, Δf) is
the maximal submodule of M(c, Δ). Thus

0 -> M(c, Δ') ^ M(c, Δ) -> M(c, Δ)/M(c, Δf) = L(c, Δ) -> 0 (2.15)

is exact.

C α ^ 3. Z\ has two immediate descendents Z\i, Δ\.

Step 1. Let

(2.16)

Define f\\M\ —> M o by
/) = ^ - ^ / (2.17)

for x G M(c, Z\i), x' e M(c, Δ\). Then Im fx = M(c, Δ\) + M(c, Δ\) is the maximal
submodule of Mo. So

Mi ^> M o -> L(c, Z\) -^ 0 (2.18)

is exact with Ker/i = {(x, x) \ x G M(c, Z\i) Π M(c, ^ j)} .
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Step 2. We now proceed inductively. According to Theorem 2.2, there are now two
possibilities: either Δ\, Δ\ have a single common immediate descendent Δ2 in which
case we let f2 :M2 —» M\ be as follows:

M2 = M(c,Δ2), (2.19)

f2(x) = (x,x), xeM2. (2.20)

Clearly, f2 is injective. Since M(c,Δ2) is the maximal submodule of M(c, Δ\) and
M(c, Δ\\ we have M(c, Δ2) = M(c, Δx) + M(c, Δ\). Thus

0 -> M 2

 fΛ Mγ ^ M o -> L(c,Z\) -> 0 (2.21)

is exact, and we are done; or, Δ\, Δ\ have two common immediate descendents Δ2,
Δ2, in which case we let f2:M2 —• Mi be as follows:

M2 = Af (c, ^ 2 ) θ Af (c, ^ 2 ) , ( 2 22)

f2(x, xf) = (x-x',x- xf). (2.23)

Clearly, Im f2 = {(y, y) \ y G M(c, Δ2) + M(c, ̂ ) } . Since M(c, Δ2) + M(c, Δ!2) is
the maximal submodule of M(c, Δ\) and M(c, Δ[), we have M(c, Z\2) + M(c, Δ2) —
M(c,Z\i)nM(c,Z\;). Thus

M 2 ^> Mi ^> Mo -^ L(c, Zl) ^ 0 (2.24)

is exact with Ker f2 = {(x, a;) | x G M(c, Z\2) Π M(c, Z\2)}. We can repeat Step2 all
over again (with (Δ2, Δ2) playing the role of (Δ\, Δ[) etc.). Continuing this way, if
the process terminates, we get a finite exact sequence:

0 -> Mi -> > Mo -+ L(c, Δ)^0 (2.25)

Otherwise, we get an infinite exact sequence

> Mi -+ > Mo -> L(c, Z\) -> 0 . (2.26)

In any case, L(c, Z\) has a resolution. D

Corollary 2.5. The formal character of L(c,Δ) in each case is given as follows:
(a) In Cases 1 and 3 above,

n>0 Δ->Δ'

(b) /ft Case 2 above,

ch L{c, Δ) = ch M(c, Δ) - ch M(c, Δ1).

When one has knowledge of the irreducible characters, there is a useful tool for

detecting non-trivial — -homology - namely, the Euler characteristic. Let V be a

positive energy Vir-module. Define

Eul(V0 = Σ ( - 1 ) 7 1 d i m H f +n(Vir, Vir0; L{cVΆ, ΔΓ)S) 0 V). (2.27)

By the Euler-Poincare principle,

^ Z \ r , s ) ( 8 ) y ) . (2.28)
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Lemma 2.6. For any positive energy Vir-module V, we have

Eul(V) = ] Γ [V :L(26 - cP)(?, 1 - bs)] (# descendents of 1 - bs)
sez

- 2 ^ [V:L(26 - cVΆ, 1 - as)] (# descendents of 1 - as).

Proof. It is enough to restrict to V in which c acts by the scalar c = 26 — c p ^. Let
Ϊ7 be the ghost number operator. By Eq. (2.28),

Eul(V) = ] Γ (-l) n dim[Λ¥+n(Vir/Vir

f (Vi= [tΓΛ

Π a - 9")""1 Σ (-
n > 0 n > 0 ZXr s-^ ^

x^[^:I(c,4)]c/ιI(c,/\)]

V(g6 t-gα t) JT(l-ςn) V[y:L(c,.
n>0 Z\ ς

where []qo means the coefficient of q°. In getting the last expression, we have used

diagram (2.9). Now using Corollary 2.5, it is clear that those Δ £ {I — α t , l — bt}tez
will not contribute to EuKF). Thus we can write EuKF) as

Eul(F) =
t L\-bs->\-br

[V: L(c, 1 - bs)]q-ar - Σ [ V : L ( c ' 1 " a

V:L(c, 1 - 6 . ) ] -
\-as->l-bτ

\V-Mc,l-b.)]- ^ [V:Uc,l-as)]
1 — 6 S — > 1 — a r l-as^l—ar

= 2_^[V:L(c, 1 - fcs)](# descendents of 1 - bs)
sez

— V^ [F:L(c, 1 — as)] (# descendents of 1 — a

sez

We now return to the resolution of L(c, Δ) given by Proposition 2.4. Using the
resolution, we can construct a spectral sequence {En}n>o according to Proposition
A.2. This spectral sequence has

E^b = Hf+b_a(Viτ, Vir0; L(cp^ Δr,s) ® Ma), (2.29)

^b = Ha(Hf+b_a(Viτ, Vir0; L(cp,q, Δr,8) ® M*), 9), (2.30)
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and it converges finitely to a graded object associated with

#*(Coo+!(:(Vir, Vir0; L{cPΆ, Δr,s) ® M*), d + d)

= #<χ>+*(Vir, Vir0; L(cp,q, Z\r?s) 0 L(c, Z\)). (2.31)

Of course, it is the right-hand side of (2.31) that we ultimately want to compute. Note
that we only need to worry about the case when

c = 26 - cPΆ . (2.32)

So from now on, c will assume this value.
Our first step is to compute EQ. By definition of the Mα, we have

+6-α(Vir, Vir0; L{cPΆ, Δr,s) 0 M(c, Δ')). (2.33)

0 here means summing over the Verma modules appearing in Ma. This reduces the
problem to studying the right-hand side of (2.33).

2.1.2. Computing /Γ~+slt(Vir, Vir0; L{cPA, ΔΓyS) 0 M(c, Δ')). By the Reduction The-

orem (Theorem 2.13 of [32]), this homology reduces to

#<χ>+*(Vir, Vir0; L{cPΆ, Z\r?s)(g)M(c, Δ')) ^ H™^(V\τ+, L(cPΆ, Δr^)\_A,. (2.34)

Recall that

Λ¥+/cVir_ = Span of the 6_ n i 6_ n 2 . . . 6_nfcl- , (2.35)

Λ¥_/cVir+ = Span of the C-nχc-ni... c_nfc 1+ . (2.36)

Thus there is a non-degenerate bilinear pairing

(, ) : Λ<χ>+* Vir_ x A~_,Vir+ -> C (2.37)

such that
(1_,1+) = 1, bl = b-n, cl = c-n. (2.38)

Also we know that L{cPΆ, Z\r,s) has a non-degenerate bilinear form with

(vΔr,8, VΔr,s) = 1, Ll = L_n . (2.39)

Note that both forms are non-degenerate on each eigenspace of Lo. Thus the tensor
product of the two forms gives a non-degenerate pairing on the total eigenspaces of
Lo:

with
(1_ 0 VΔrtSi 1+ ® VΔrs) = 1, d_ = d+ , (2.41)

00

where d± are the respective —--differentials on the two complexes. This pairing

induces an isomorphism on homology

i7oo+*(Vir_, L{cp^q, ΔriS))\ = [iίoo_ϊ)c(Vir+, L(cp^q, Δr^s))χ]# . (2.42)
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Here [ ] # means the space of linear functionals on []. Thus Eq. (2.34) becomes

# f +*(Vir, Vir0; L{cPΆ, Δrt8) ® M(c, Δ'))

2\Γ | β))1_^/]# . (2.43)

Since we know the embedding diagram of M(cp,q, Δr,s) (diagram (2.9)), we can
use Proposition 2.4 to get a resolution of L{cVΆ, ΔriS):

^ ^ ,q, Δrt8) -> 0, (2.44)

Mi = M(CptQ, α_0 0 Af (cp>g, α 0 ) , (2.45)

M2 = M(cp>g, 6-i) Θ M{cp,q, &i), etc.

i-zV, d-We want to use it to compute the homology of {Coo+5|5(Vir_, L(cp,q, ^\r,s

Once again, Proposition A.2 tells us that we have yet another spectral sequence

{En}n>0 With

Mu)γ_Δ,, (2.46)

E^v = Hu(Hoo+υ_u(Vir_, M * ) ! _ ^ , 8), (2.47)
2

and which converges finitely to a graded object associated with

iί*(Coo+H<(Vir_, M*)i_z\/, cL + <9) = ϋίoo +>lc(Vir_, L(cp Q) Δr S))\-A' (2.48)
2 2 '

By definition of M u and Eq. (2.46),

δv,uδ\-A',Δ"CΆ" (2.49)
u

Δr,8->Δ"

We note that the semi-infinite homology of Vir_ coincides with the ordinary Lie
algebra homology of Vir_. Since the module M(c, Δ") is free over Vir_, the homology
space is zero except at degree zero. Equation (2.49) immediately implies that the
spectral sequence collapses, i.e.

E£υ = E%>υ * δυ,u 0 δltΔ,+Δ,,CΔ,,. (2.50)
d(A" ,ΔriS)=u

Since {En}n>o converges to a graded object associated with (2.48), we have

6ιiΔι+Δ»CΔn. (2.51)

d(A",Ar,s)=v

Returning to Eq. (2.34), we have



572 B. H. Lian and G. J. Zuckerman

Proposition 2.7. For any Δ\

Hoo+υ(Vir, Vir0; L(cVΆ, Δr,s) 0 M(26 - cVΆ, Δ!)) =

d(Δ",Δr,s)=-v

Δr,s-*Λ"

Corollary 2.8 (Theorem 1 [33]).
(a) Hf (Vir, Vir0; L(c M , Δr,s) 0 M(26 - cVΆ, Δ')) φ 0 iff Δr,s -+1-Δ'.

(b) For Δr,s -+1-Δ',

dim i7^+ n(Vir, Vir0; L(cVA, Δr,8) 0 M(26 - cVΆ, Δ')) = 5n+d(ilr>8>1_ iΔ/) jo .

2.2. Computing ir~+#(Vir, Vir0; L(Cp,g, Z\r,s) 0 L(c, ^ ) )

We are now ready to return to Eq. (2.33). Combining Proposition 2.7 and Eq. (2.33),
we get

0 δi,Δ'+Δ>'CΔ». (2.52)
d(Δ" ,Δr,s)=a-b

Δr,s^A"

Theorem 2.9 (Theorem 2(a) [33]). iJ^(Vir, Vir0; L(cp,q, zl r j S)(8)L(26-cp,q, Zi)) ̂  0

Proof. Suppose that the homology is non-trivial. Recall that {En}n>0 converges

finitely to a graded object associated with (2.31). Thus

dimiLχ>+6(Vir, Vir0; L ( c M , ΔTt8) 0 L(26 - cp,q, Δ))

+:ic(Vir, Vir0; L{cPA, Δr,s) 0 M*), d + d)

Σ Σ ^ ̂ ' + ^ (2 53)

The third sum ranges over the highest weights Δ1 appearing in the αth term, Mα,
of the resolution of L(26 — c p ? g, Δ) [see Eq. (2.33)]. In particular, these Δ' must be
descendents of Δ. By assumption, the left-most term of (2.53) is nonzero. So the right-
most term must be nonzero too. Thus there must be a descendent Δ' of Δ(Δ —> Δ')
and a descendent Δ" of Z\r jS(Z\r?s -> Δ"), such that Z\/; = 1 - Δ'. This means that
Δr,s -* 1 - ZV (at Cp5q). By the reflection principle (2.12), Z\ -^ Z\7 (at 26 - Cp,g)
implies that (1 - Δr) —> (1 - Δ) (at cp ? g). Combining this with Δr,s -+ (1 - Z\') (at
cP,q), we get zArjS —> (1 — Z\) (at cp > ς), proving the first half of our claim.
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Conversely, for ΔTiS —> 1 — Δ, i.e. Δ = 1 — at or 1 — bt, Lemma 2.6 gives

Eul(L(c, Δ)) = Σ [L(c, Δ):L(c, 1 - ba)] (# descendents of 1 - ba)

fe Δ):L(c, 1 - αa)] (# descendents of 1 - α8)

= ^ 6Δ,ι-bs(# descendents of 1 — bs)

s

— ^^ δΔ,ι-αs(# descendents of 1 — αs)
s

= ±(# descendents of Δ)

which is non-zero. This completes the proof. D

We conclude this section with a more quantitative statement about the above ho-
mology. From now on assume that Δr^s —> 1 — Δ at cp,q. In this case, Eq. (2.52) can
be written as

Eoh= Θ Θ δhΔ'+Δ»CΔ». (2.54)
d{Δ",Δr,s)=α-b d(Δ,Δf)=α

Δr,s^Δ" Λ^Δ>

Recall that En+\ is the homology of the complex:

> E%b -+ ̂ α-n-1,6-1 _> _ . (2.55)

We claim that En+X = En for all n > 0. Consider n = 0. Using Eq. (2.54) and the
reflection principle, we get

' = j ^ ^Δ',Δ"

d(\-Δ,Δ')=α,Δ'->\-Δ
d(Δ",ΔriS)=α-b, Δr,s-*Δ"

d(l-Δ,Δf)=α, d(Δf,Δr,s)=α-b
Δr,s->A'^1-Δ

Note that if Δr)S -> Δ' -> 1 - Z\, then

Z\ r, s). (2.57)

Thus (2.56) is zero unless

d ( l - A A ,*) = 2 α - & . (2.58)

In particular, we have

dimE^b φ 0 => dim JSQ " 1 > 6~ 1 = 0. (2.59)

This means that (see sequence (2.55))

EI=EQ. (2.60)

By the same argument, we see that

En = EOy n > 0 . (2.61)
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So Eq. (2.53) becomes an equality:

dimiϊ<χ>+6(Vir, Vir0; L(c p , ς , Δrt8) <g> L(26 - cVΆ, Δ))

= Σ Σ i ( 2 6 2 >
α d(l-^,2\;)=α, d(Δ',Δr,s)=a-b

Ar^A'^l-Δ

Proposition 2.10 (Theorem 2(b) [33]). For Z\r>s -• 1 - Δ,

dim # f + b ( V i r , Vir0; L(cp,q, 4 r , s ) 0 L(26 - c M , Z\))

r , s , 1 - Δ)
ΔΌD)

0 otherwise

Proof. Let's abbreviate the left-hand side of Eq. (2.63) as B^ and write k =
1 — Δ). From the conditions of the summation in Eq. (2.62), it's clear that for B\> φ 0,
we must have

k > d(l - Δi Δ!) = a > 0, (2.64)

k > d(Δ', Δr,s) = a - b > 0 . (2.65)

They imply that
\b\<k, (2.66)

which proves half of Eq. (2.63). Assume the inequality (2.66). Equation (2.62) says
that Bb φ 0 implies that 2a — k + b is even. Let's assume so. Then Eq. (2.62)
becomes

Bb~ ' ' ' ' 2 if |b|<fc. D

3. Original Problems

3.1. Returning to Problem 1

We are now ready to determine exactly which Fξ^η affords non-trivial homology.

Once again, the balance of central charge fixes y/^Λξ to be

(3-D

Theorem 3.1 (Theorem 3(a) [33]). For η e C, Hψ(Viτ, Vir0; L{cVΆ, Δr,

iff

r— (2pqt + pr + ε2qs)
η — v—l£i for some t G Z,εi,ε2 = ± 1 .

Proof. Computing the formal character of Fξ)V, we get

JJ
n>0

ί(η2-ξ2)). (3.2)
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Suppose

(3.3)

This gives

l2(V2-ξ2)=\ ]~T ί £ = +] (3.4)
2 { 1-bt if ε = -l.

Using this to compute the Euler characteristic, we get

if e = + l

= e. (3.5)

In particular

fff (Vir, Vir0; L(cp,q, Z\r,s) ® F ξ i , ) / 0. (3.6)

Conversely suppose (3.6), i.e. Fξ^η affords homology. This implies that Fξ^η has
a composition factor that affords homology, i.e.

Hf(Vir, Vir0; L(cp^ Ar,s) 0 L(26 - cp, ς, A)) φ 0 (3.7)

for some A with

[ F ξ i ί ? : L ( 2 6 - c P ) 9 , Z \ ) ] ^ 0 . (3.8)

By Theorem 2.9, (3.7) implies that

Δr,s-^(1-Δ) at cp,,. (3.9)

By Eqs. (3.2) and (3.8), we have

[M(26 - cp,,, i (r?2 - ξ 2 )): i(26 - cPιq,Δ)] φθ. (3.10)

This means that (Lemma 2.3)

\{η2-ξ2)^Δ at 26-cp,q (3.11)

or, by the reflection principle (2.12),

(1 _ 4 ) - > (1 - I fo2 - ξ2)) at c M . (3.12)

Combining (3.9) and (3.12), we have

Δr,s^(l-lϊ(η2-ξ2)) at cp,g. (3.13)

This means that (diagram (2.9))

1 - ^ (η2 - ξ2) = at or bt for some ί . (3.14)

Solving this gives us Eq. (3.3). D

Theorem 3.1 answers Problem 1.
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3.2. Multiplicities of Physical States (Problem 2)

oo
In the last section, we had quite a bit of success in computing — -homology, when

the coefficients involved only irreducibles or Verma modules. Those computations
relied heavily on constructing resolutions. In turn, constructing a resolution requires
the knowledge of the coefficient module structure. Now in Problem 2, we are dealing
with

Hoc ̂ (Vir,Viτo;L(cp,q,Δr,s)®Fξ,η) = ? , (3.15)

where

^ ^ ϊ i2pqt+%L+εqS\ σ,ε = ± M € Z . (3.16)

We can try to resolve L(cVΛ, Ar,s) by Verma modules as before. But then we would end
up with something like fίoo+;(:(Vir+, Fξiη). Computing this directly requires knowing
the structure of F^η to a great extent. There is, fortunately, a slicker way to do (3.15).
There exists yet another object that resolves L(cPΆ, Δr,s). It is known as the Felder
resolution [20]. It is a chain complex {Fξ/^, δ} consisting of Feigin-Fuchs modules

. . . __> p -U F —> F — ) • • • • Π 1 7 Ϊ

with

2pgt' + pr — ps
»7-2f = J - , (3.18)

2pqtf +pr + qs ,

J2pq

and having homology that is isomorphic to L(cP)<7,Z\rjS):

Hn(Fζ,,ηt,δ) Sέ δnβL(cP:q, A-,.). (3.19)

We now apply this resolution to study the homology (3.15). By Proposition A.2, there
is a spectral sequence {En}n>o with

¥ i r , Viro; Fe>r)a ® Fξ,η), (3.20)

E\'b = Ha(Hf+b_a(Vir, Vir0; Fe>ηt ® Fξ,η), 8), (3.21)

and which converges finitely to the graded object associated with

# * ( C f +*(Vir, Vir0; Fξf^ ® Fξ ) T ?), d + d)

* Hf +#(Vir, Vir0; L(cp,q, Δr,s) Θ F ξ ? r ? ) . (3.22)

(d is the map induced by Felder's map δ.) Of course the right-hand side of (3.22) is
what we eventually want to know. But we must first study the spectral sequence.

3.2.1. Computing EQ. At first sight, we seem to have made matters worse by intro-
ducing the resolution (3.17), because we have ended up with (3.20), which involves
the uncanny object FgiVa ®Fξiη\ However, this tensor product module over Vir turns
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out to have a remarkable property: it is invariant under the group SΌ(2, C). In fact,
for any ξ, 77, £', rj G C and

{Jig

we have a canonical isomorphism of Vir-modules

Ferf ® FξtV = Fμ,y ® Fμt1/, (3.23)

where

V ?
μ) \-i9 f) \U ( 3 2 4 )

U ) = V—î  / ) V T7 ) '

This symmetry was observed by one of us [43] in studying the problem of computing
iJoo+s(:(Vir, Viro; V(p,μ)), where V(p,μ) is the usual bosonic Fock space with fixed
momentum p in the D-dimensional string theory. The Virasoro algebra operates in
V(p,μ) by a deformed stress-energy:

T(z)=±:j(z)'j(z):+μ.dj(z), (3.25)

where ]{z) is the D-dimensional bosonic field with j 0 = p. Observe that for D — 2,
V(p,μ) is canonically isomoφhic to (3.23) with v = μ— p.

Equation (3.23) will be our key to computing Eo [Eq. (3.20)]. It is well-known
that at generic values of μ, i/, the Feigin-Fuchs module Fμjlf is isomorphic to the
Verma module M{\ — 12μ2, ^ (y1 — μ2)). In this case, both modules are irreducible.
But what we have is Fξ/iηa S Fξ,η, where the parameters are given by Eqs. (3.16),
(3.18). Neither factor of the tensor product is generic. Thus we hope that we can use
an element of 50(2, C) to rotate this tensor product [according to Eqs. (3.23), (3.24)]
to Fμιy 0 Fμil,, such that both new factors become generic. If such a rotation exists,
then computing EQ becomes possible:

Ef - tf¥+6_α(Vir, Vir0; Fξ,iVa ® Fξ,η)

^ Hf+b_a(Viτ, Vir0; Fμ,y ® FμiV)

* Hf+b_a(Vir, Vir0; M(l - 12μ/2, \ (ya - μa)) 0 M(l - 12/i2, \ (y1 - μ2)))

* i ί ¥ + 6 _ α (Vir + , M(l - 12/Λ \ {y12 - μa)))χ_ i^2_μ2) (Reduction Thm)

^ [i/¥ + α_6(Vir_, M(l - 12μ/2, \ (y12 - μa)))fχ_ , ( i / 2 _ μ 2 ) (taking dual)

= δa,bCS l(l//2_μ/2)> i_ 1 ( l /2_μ2) (3.26)

Therefore, we must determine whether or not the above rotation exists.

Proposition 3.2. Let

H P-Q , 2pqtf +pr + εfqs
ζ = ^ = ( 3 2 7 )

^ . 0.28)
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Then there exists

( 4 */)eS0<2,C)
such that on the right-hand side of Eq. (3.23), both Fμ/y, Fμ^v are irreducible.

Proof. Note that the statement would be false if we had chosen a different sign for
y/^ϊη (see below). Choose / to be a transcendental number. We will show that Fμ^
is irreducible. The argument is the same for Fμιv>.

Recall that Fμ^ is irreducible iff the corresponding Verma module M(l — 12μ2,
j (y2 — μ2)) is irreducible. But the latter is determined by whether the Kac determinant
has a zero. This determinant is the product of expressions of the form

φQtβ(c, Δ) = Batβ(μ, v) £_α,_/3(μ, i/), α, β G N , (3.29)

where
c=l-12/i2, A=\{v2-μ2),

(a - β)2 ( 3 3°)
Ba,β(μ, v) = (aμ ~ v) (βμ ~ v) ^

To show that M(c, Δ) is irreducible, it is enough to have

Baiβ(μ, v)φ§ for all integers α, β. (3.31)

By Eq. (3.24) and a simple calculation, we get

Batβ(μ, v) = Baiβ(-igξf + fξ, -igηf + fη)

B^βiξ^η'), (3.32)

where
A = 2aβξfiξ + lη'iη - (a + β) (ξ'iη + rfiξ). (3.33)

For the given values of parameters ξ\ η\ ξ, η, it is obvious that Baiβ(ξ^η),
Ba,β(ξ',v') and A are rational whenever a,β G Z. Suppose

Ba,β(μ, v) = 0 for some a, β G Z. (3.34)

We wish to get a contradiction. Since / is trancendental (hence, so is g), Eq. (3.32)
implies that

Ba,β(ξ,η) = 0, (3.35)

Ba,β(ξ',η') = 0, (3.36)

Λ = 0. (3.37)

Substituting the (3.28) into (3.35), we get

pa + qβ- ^s/ΐpqiη = 0, (3.38)

or pβ + qa- Λ/2pqiη = 0. (3.39)

Substituting (3.27) into (3.36), we get

pa-qβ- y/2pqη' = 0, (3.40)

or pβ - qoί - y/Tφqη' = 0. (3.41)
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Case 1. Equations (3.37), (3.38), (3.40) hold. Solving for β, we get

2qβ =-(η'- iη)y/2pq

= -(2pqtf -f pr + e'qs + 2pqt + pr + eqs). (3.42)

The right-hand side is not divisible by 2q (because gcd(p, q) = 1, 0 < r < q), while
the left-hand side is, which is a contradiction [Eq. (3.42) would have been all right if
iη had a different sign!].

Case 2. Equations (3.37), (3.38), (3.41) hold. Then substituting the given ξ, ξf and

pa + qβ, (3.43)

η'= pβ - qa (3.44)

into (3.37) and simplifying it, we get

{pL-<?){a-β)2 = 0, (3.45)

which implies

a = β. (3.46)

Combining (3.43), (3.44), (3.46), we get

(p - q)iη = (p + q)ηf. (3.47)

Using (3.28), we get

V (pq<t + H) + pr + ε-^ qs) = q (pq(t - t') + ^ ^ qs\ . (3.48)

Once again, the right-hand side is divisible by q while the left-hand side isn't.

Case 3. Equations (3.37), (3.39), (3.40) hold. Just like Case 2.

Case 4. Equations (3.37), (3.39), (3.41) hold. Just like Case 1.

In any case, Eq. (3.34) is impossible. This completes the proof. D

We now return to Eo [Eq. (3.26)] for ξ, η, ξf, η1 given by Eqs. (3.27), (3.28).
Proposition 3.2 tells us that Eq. (3.26) holds. By (3.24), it is easy to check that

z/2 + v1 = η

a

 + η

2 , (3.49)

μ'2 + μ2 = ξ'2 + ξ2. (3.50)

Thus Eq. (3.26) becomes (with η' = ηa)

Recall that we defined the distance function d(Δ, Δ') for Δ, Δf belonging to the same
Verma module embedding diagram. Let's try to rewrite Eq. (3.51) in terms of this
function. It is easy to check that

1 — 1 9 £ / 2 — r

( b k if k even (εf = -1)

2 k I a k+i if Jb odd (ε1 = 1)
^ ~^r (3.52)

1 - 12£2 = 26 - cPjq ,

— at if ε = 1
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Thus

f -It if ε = - 1

~ { -2t-l if ε = 1

iff

iff

KΛ 'f i ( 3 ' 5 3 )

; , & o ) i f ε = - 1
- s i g n ( ί ) c ? ( α t , & o ) i f ε = l

The last part follows from the reflection image of diagram (2.9) and Eq. (3.52). Let's
write

π(η) = sigfl(-y/^Λη) = sign(ί), (3.54)

dη = d(±(η2-ξ2),l-b0). (3.55)

Then
^1, l ( r 72+ r 72_e2_ξ/2) = δk+πWdηfl • (3-56)

Now Eq. (3.51) becomes

' ^ 6 ^ ( ) d θ C . (3.57)

This completes the computation for E^b (3.20).

3.2.2. Returning to Ho°+*(Yiτ, Vir0; L{cVΆ, Δr,s)®Fξiη). Equation (3.57) immediately

implies that the spectral sequence {En}n>0 collapses, i.e.

^ S = ^ 0 ' — δa,bδb+π(.η)dη,θC (3.58)

Now, the spectral sequence also converges finitely to the graded object associated
with

tf*(C¥+*(Vir, Vir0; Fξ,^ 0 F^η\ d + d). (3.59)

Therefore

Hn(Cf^(Vir, Vir0; Fξ,^ ® Fξtη), d + d)^ δn+7τ{η)dη^C . (3.60)

Using Eq. (3.22), we get

ff¥+n(Vir, Vir0; L(cp,q, Δr,s) ® Fξ)T7) £* (5n+π(77)dτ?,0C . (3.61)

+ pr +eqs
Theorem 3.3 (Theorem 3(b) [33]). For yf^lξ =

+n(Vir, Vir0; L(cp,g, Z\r?s) 0 F ^ ) ̂  ίn+7r(77)dr?,0C . (3.62)

Proof. We established Eq. (3.61) using Proposition 3.2, which holds only for σ — — 1.
For σ = 4-1, observe that there is a canonical isomoφhism of Vir-modules,

F^η ^ Fj!_η (restricted dual of Fξ^η). (3.63)

This means that there is a non-degenerate bilinear pairing

(, ): Cf +n(Vir, Vir0; L(cp^ Δr,s) 0 F^η)

xCf _n(Vir, Vir0; L(cp,,, Z\r,s) 0 F^,^) -> C (3.64)
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such that eft = d. This induces a similar pairing on homology. Thus

Hf+n(Vir, Viro; L(cp,q, Δr,s) ® FξtV)

581

_n(Vir, Vir0;
ξ,_„)*. (3.65)

But now Fξf-η corresponds to σ = — 1, for which Eq. (3.61) holds. So Eq. (3.65)
becomes

#<χ>+n(Vir, Vir0; L ( c M , 4 r ,a ) ® Fξ,η) ^ δ-n+π(-η)d_η,0C 2έ δ-n-π{η)dη7oC . D

Theorem 3.3 answers Problem 2. The diagrams below show a few examples of BRST
invariant states with y/^ϊη > 0. Each dot represents a single BRST invariant state
whose (α;, 2/)-coordinates are the "quantum numbers," (\/2pq iη, —gh#), corresponding
to that state.

3_

2_

1-

o _| 1 1_
10 20

~1 1—
30

-i h
40

Fig. 1. (p, q) = (3,2) Pure gravity

-\ 1 1 1 1 1
10 20 30 40

-I h
50

-I h
60

Fig. 2. (p, q) = (5,2) Yang-Lee edge singularity

10 •vn 30 40
-1 1 1 1

50 60

Fϊg.3.(p,ςr) = (4,3)Ising

70

70

3.

0 "i (-
10 20

Fig. 4. (p, q) = (5,4) Tri-critical Ising

30 40
-1 1 1 1 h

50 60 70

3.3. Formula for the BRST Invariant States

oo
In the last section, we computed the —-homology by getting a double complex from

Felder's resolution. We then applied a rotation symmetry to show that the resulting



582 B. H. Lian and G. J. Zuckerman

spectral sequence collapses at E$. This led to the isomorphisms [Eqs. (3.22), (3.60)
with π(η) = — 1]

= tfn(Cf+*(Vir, Vir0;

^ Hso +n(Vir, Vir0; L(c

d)

(3.66)

Because of the degenerate nature of the homology of the double complex {Coo+5|c(Vir,
Viro; Fg^ Θ -F ĵT7), d + 9}, there is a trick in homology algebra which allows one
to get a formula for a non-trivial d-cycle (i.e. non-trivial BRST invariant state). It is
known as the "zig-zag method" [2], and it goes as follows.

^focyf I 7)7" I fπ Q

We will illustrate the case in which iη = σ , σ = — 1. The case
V2V2pq

σ = 1 has a similar argument. Recall that [Eqs. (3.20), (3.51), 3.57)]

H f + k ( V i τ , V i r 0 ; F ξ , t m ® F ξ i V ) *έ C δ k t O δ i i W a e = C δ k o δ (3.67)

An arbitrary state in the complex C<χ> (Vir, Vir0; Fgj7Jl 0 Fξ^η) is a linear combination

of basis states

j-rλ ..j-rzv&im (8) j _ β l . . . j-SuVξ,η (3.68)

with total energy zero (remember the condition LQ01 = 0):

+ W - ξ2) + (ni + +- i + \(vϊ -
+ (mi + + πij) + (n + + r t) + (si + + su) = 0. (3.69)

By Eq. (3.67), a d-cycle will be a trivial d-cycle, unless all the m, n, r, 5, are zero,
and

(3.70)= dη = N.

This means that among all the d-cycles in any of the spaces

{Ceo +jfc(Vir, Vir0; Fe^ 0 Fξtη)}{ktl)eZxZ

there is a single non-trivial d-cycle:

(3.71)

(3.72)

tt;υ

di

dϊ

Fig. 5. Zhe zig-zag method
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which occupies the (0, iV)th space. Let's put the spaces (3.71) in an integral lat-
tice on the (&, 0-plane. Each integral point (k,l) is occupied by the (&, 0 t h space
Coo+fc(Vir, Viro; Fξ/jηι ® Fξ,η) The maps that intertwine two adjacent spaces are the
(horizontal) BRST differential d, and the (vertical) Felder differential d [induced by
Felder's map δ in (3.17)]. By construction, these two differentials anti-commute:

{d,d} = 0. (3.73)

Assuming that N > 0 (the case N = 0 is trivial), we now begin the zig-zag walk on
the plane, starting from (0, N). First

ddw0 = - ddw0 = 0, (3.74)

i.e. dwo is a d-cycle in the (0, N — l) t h space. By (3.72), it must be trivial, i.e.

dwo = dw\ for some w\, at (1, N — 1). (3.75)

Once again dw is at (1, N — 2), and

ddwi = - ddwι = - d2w0 = 0 (3.76)

implies that

dw\ = dw2 for some w2 at (2, N - 2). (3.77)

Continuing this way, we end up with

dwN-ι = dwN for some WN at (N, 0). (3.78)

Clearly dw^-i £ Kerdo, where do is 9 restricted to the spaces in the zeroth row of
Fig. 5. We claim that WN can also be chosen to be in Ker <?o By definition, this d is
induced by Felder's map

δo .F^-tFz,^. (3.79)

This means that

Ker do = C^+N_λ (Vir, Vir0; Ker δ0 Θ F^η). (3.80)

Now the truncated Felder resolution

0 _> Ker£o ^ Fξ,m % F^η_λ -> . (3.81)

is exact, by construction. But we already know that each Fgim in this sequence has
no BRST homology because I = 0, - 1 , . . . all differ from N '= dη [Eq. (3.70)]. This
means that Kerόo* in the exact sequence above, cannot have any BRST homology
either, i.e. any d-cycle in the BRST complex (3.80) is trivial. In particular,

ddwN-ι — — ddwM-\ = 0 => dw^-i = dwjy for some w^ G Kerdo . (3.82)

To summarize: we have obtained a sequence of states wo, u>i, . . . , WN with the
properties:

Wi is in (i, N - i)th space, (3.83)

dwi = dwi+ι i<N, (3.84)

dwN - 0. (3.85)
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p + Q \2pQt + pr -f- εqs\
Theorem 3.4. For iξ — . iη = J L, the homology space Hoo+dy/ϊpq y/2pq 2 η

/pq /pq
(Vir, Viro; L(cPA, Ar,s) <g) i^ j77) has a representative of the form

wN = [(d~ιd)Nw0 + Im d] e Ker d/ Im d.

The homology class of w^ is independent of the choices of inverse images under d.

Proof. First, w^ is a d-cycle (BRST invariant):

dwN = d(d~ιd)N~ιw0 + Im<9 = 0(mod I m ^ ) . (3.86)

Suppose wjy is trivial, i.e.

WN = — dUAr, for some UN G Ker d at (AT + 1,0). (3.87)

Then

WN + duw = 3UN-\ , for some UN-\ at (iV, 1) => dii;^ = — du^-i. (3.88)

Combining (3.84) (for z = iV - 1) and (3.88) gives

wτv_i + duN-ι e Ker9 at (N - 1,1). (3.89)

By exactness of Felder's resolution (away from dimension zero), we have

WN-I + duN-ι = dujsf-i , for some -UJV-2 at (iV — 1,2). (3.90)

Continuing this way, we get

w\ + du\ = duo , for some UQ at (1, iV). (3.91)

Now wo is the lowest energy state in the space Coo(Vir, Viro;i^/^ηN <g> FξjV) with
L^wo = 0, gh#w0 = 0. So there is no other independent state w in this space, since
w would have higher energy, implying that L^w φ 0. But by (3.91), u$ is in this
space and has gh#u0 = — 1. Thus u0 must be zero. Since dwo = dw\, Eq. (3.91)
means that

dw0 = dwι = - d2ux = 0. (3.92)

By exactness of Felder's resolution and Eq. (3.92),

= Wgh <S> Vξ^ηN <g> Vξiη

= d(wgh (g) v ® fξ j7?)

(3.93)

for some υ G Fξ/ r ? N + 1 , having the same energy, |(ry^ — £ / 2), as Vξ/ηN. But this is

impossible because the lowest energy in Fξ^ηN+ι is \{η2

N+ι — ξ'2) and yet

W+i"ί/2)> W-ί'2)- (3-94)

This contradiction shows that the supposition (3.87) is false. Thus WN is indeed a
non-trivial d-cycle.

We now show the last statement of Theorem 3.4. Suppose that WQ, W[, . . . , w'N
is another sequence satisfying (3.83)-(3.85). Then as before,

= dw\ = dw[ => w\ — w[ = dw" for some w'[ . (3.95)
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This gives

dw[ — dw\ = — ddw'( = dw'2 — dw2

=> w2 — w2 + dw'[

= dw"

for some w" . (3.96)

Once again, we get

dw'2 -dw2 = - ddw" . (3.97)

Continuing this way, we end up with

w'N-wN + dw"N_x = dw"N . (3.98)

Projecting onto the quotient space

:C f + 7 V (Vir, Viro;Fξ,)r?o (8)Fξ)7?) -> Cf

f r , Vir0; L(cp^ ΔTi9) ® Fξj77) (3.99)

we get
w'N-wN = dw%. (3.100)

It follows that ΰ ^ , U>ΛΓ are two equivalent d-cycles in Coo+7V(Vir, Viro; L{cp,qi 2UΓjS)0

F^>r7). This completes the proof. D

3.4. Computing # ¥ + *(Vir, Cc; L(Cp>g, ATi8) ® F^)?7)

In Sect. 1, we formulated our problems in terms of the relative complex

Coo +#(Vir, Vir0; L(cpι9, Z\r,s) ® ^ ) 7 ? )

d= {w e L(cptq, Δr,s) 0 Fξtη 0 Λ¥+*(Vir/Cc) | L™w = 0 = bow} . (3.101)

We now examine the full complex

Cf+*(Vir, Cc; L(cp,,, Δr,a) 0 i^ϊT7)

d= L(cp,g, Δri8) 0 F ξ,^ 0 Λ f +*(Vir/Cc). (3.102)

As before, we need only to consider the case when the total central charge is zero

1 - 12ξ2 + c M - 2 6 = 0. (3.103)

Since L^ is BRST exact,

RW = ί (3.104)

any d-cycle w with non-zero LQ01 eigenvalue λ, is trivial:

λw = L^w = (dbo + bod)w = db$w => w = — db$w . (3.105)
Λ
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Thus

Hsf+t(Vir, Cc; L(cp,g, ΔTtS) ® F^η)

= H*(Cf +ί(Vir, Cc; L(cPί<!, Ar,s) ® Fξtη)
Lo',d). (3.106)

Using &o = 0 and definitions (3.101), (3.102), we can easily show that

0 -+ C¥+,(Vff,Vffo;L(Cp,,,A.,s)®F€,.,)

-> C~+,(Vir, Cc; L ^ , , , Δr>s) ® Fς,v)
LT

( ~^>C f +* + 1 (Vir , Vir0; L(cp,g, Z\r>s) ® F ξ ; ί ; ) - 0 (3.107)

is an exact sequence of complexes. Thus we have a long exact sequence

> # ¥ + n ( V i r , Vir0; L(cp^ Δr,s) 0 Fξ,η)

-* #~ + n (Vir, Cc; L(cp,q, Z\r,s) ® F^η)

n + 1 (Vir, Vir0; L(cp, ς, Z\ r, s) O i^.T,)

Z \ r , s ) 0 F ξ , r ? ) ^ . . . . (3.108)

Note that we have used Eq. (3.106) to get rid of H*(C™+*(Viτ, Cc; L(cPiq, Λr^s) ®

Fξ,η)
Lo , d) from the sequence.

Theorem 3.5. For ^f^ϊξ = ?j=L,

(a) Hψ(Vir, Cc; L{cVΆ, Δr,s) 0 F^η) φ 0 iff y/^ϊη = σ ^^ L - ^ , ί G Z,
4P#

(b) For the special values of(ξ, η) given above,

# ¥ + n ( V i r , Cc; L(cp,g, Δr,s) ® F^^) ^ ^n + 7 r ( r 7)^,oC Θ W ( ^ , - i C ( 3 1 0 9 )

/. For fixed (ξ,η), it can be easily shown that the sequence (3.108) terminates
on both ends. If

^ ϊ 2 P q t + ^ + ε q S , t ε Z , σ,ε = ± l , (3.110)

then by Theorem 3.1, we have

Hf+*(Wir)Viτ0;L(cp^Δr,s)®Fξ,η) = 0. (3.111)

By exactness of (3.108), we get

tf¥+*(Vir, Cc; L(cp^ Δr,s) 0 Fξ,η) = 0. (3.112)

Conversely, if

^Ίη = a2pqt+^-+εqS,teZ, a,e = ±l, (3.113)
V2PQ

then letting k = — π(η)dη, we get from Theorem 3.1,

Hf +n(Vir, Viro;L(cp,q,zAr,s) 0 F ξ,η) ^ (5n,fcC . (3.114)
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Substituting this into (3.108), we get

0->iJ^ + n (Vir,Cc;L(c P 5 g ,Z\ Γ j S )(8)F ξ ) T 7 )^0 for n φ fc, k - 1,

0 -* C -> Hf+k(\ir, Cc; L(cp,q, Δrt8) <8> FξίV) -> 0 ,

0 -> Hoc +fc_!(Vir, Cc; L ( c M , Z\r,s) 0 i ^ ) -> C -> 0.

This proves part (b) and the second half of part (a). D

3.5. Discussions

A discussion of gravity would be incomplete without mentioning supergravity [13].
As anticipated, the formulation of the problems studied in [33, 34] and this paper has
natural super extensions. To make our discussion more focused, let's restrict ourselves
to the c < 1 case.

The quantum state space of 2D supergravity has the same form as (1.3). The grav-
itational sector is now given by the super Liouville theory with the Neveu-Schwarz
algebra VirNS, or the Ramond algebra VirR, being the underlying symmetry. This
symmetry is generated by the stress energy T and its superpartner G:

T = - Udψf + iξdφ + l-dφφ +^z-2, (3.115)
Z Z o

G = iφdφ + 2ξdψ , (3.116)

where χ = 0(χ — \) gives the Neveu-Schwarz (Ramond) algebra. Here φ is the spin
0 Liouville field and φ is its spin \ superpartner. Equations (3.115), (3.116) define a
super extension of the Feigin-Fuchs module.

We will restrict ourselves to the case in which the matter sector is one of the super
minimal models. The (p, q) model has central charge

2(P~Q)

pq

where eitherp, q G 2N-1, gcd(p, q) = 1 orp, q G 2N, ̂ — - G 2N-1, gcd ( | , | j =

1 (we follow the conventions of [40]). The primary fields Φ r > s in this model have
conformal dimensions

(pr-^-fe-g) v
Spq 8

v

8

l<r<q-l, l<s<p-l, r-sβ2χ + 2Z. (3.119)

The representation spaces of the model are the irreducible modules L(cp,qi Δr^s) over
y j^ίs o r yjrR ^ o t e m a t m e notations we use here are the same as those used in the
bosonic case.) Finally, the ghost sector is generated by the (super) conformal fields
(6, c), (/3,7) of dimensions (2, —1), ( | , — ̂ ) respectively.

Now the super versions of Problems 1 and 2 (Sect. 1) can be easily formulated
by replacing Vir by VirNS (or VirR), the minimal model representations and Feigin-
Fuchs modules by their respective super extensions, as discussed above. Recall that
in Sects. 2 and 3, we relied heavily on the embedding structure of Verma modules
over Vir, in order to solve Problem 1. To our knowledge, the full embedding structure
of Verma modules over Vir^ (or VirR) has not been worked out (see [40]). But one
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should anticipate that the super versions of Theorem 2.1 and 2.2 will hold. Actually,
one can answer at least half of Problem 1 in the super case without knowing the full
embedding structure. Namely (cf. Theorem 3.1) if

(3 120)

γ t e Z , εuε2 = ± 1 ,

then
Λ * Z\r?s) ® Fξtη) φ 0, (3.121)

A similar statement holds for VirR. The proof requires the use of Rocha's character
formulas [40] for L(cVΆ, ΔrjS). Problem 2 in the super case also requires some further
work. One should first construct Felder's resolution for the super minimal model
representations L(cPiq, Δri3). One can then apply our rotation trick to compute the
BRST homology exactly just as we did in the bosonic case (Sect. 3).

We can also compute the scaling dimensions of those physical states (3.121) cor-
responding to the super Liouville charges (3.12). Imitating the arguments in [33], we
obtain a gravitational dressing equation for each non-trivial BRST invariant state:

^ Q ) = 1 - , (3.122)

where a = i(ξ - η), Δ e {au bt}teZ,

(2pqt + pr + qs)2-(p-q)2 χ

S P \ 8\ 2

 8 (3.123)
(2pqt + pr - qsy - (p- qy , X

When A = 60, Eq. (3.122) reduces to the one obtained by [13]. From (3.122) and
applying Seiberg's condition, we obtain the dressed dimensions

A = 1 - — = \2pqt + pr + εqs\ - mPiq

p + q - mp,q

where t £ Z, ε — ±1 and (r, 5) range over (3.119). Here vnPΆ is the minimum value
of \pr - qs\ as (r, s) range over (3.119).

This completes our discussion of supergravity in the conformal gauge. We now
turn our discussion to a different problem.

In Sect. 3, a key step for computing iϊoq+:)c(Vir, Vir0; Fξ>η ® L(cp^q, ΔrjS)) was to

consider (Eq. (3.26))

H™ +*(Vir, Vir0; F^η <g> i*V)T/) =? , (3.125)

where ξ\ 77', £, 77 satisfy certain conditions. In our earlier work on c = 1 gravity,
we also encountered the same problem (3.125). This problem can be generalized
mathematically to the case when £', 7/, ξ, 77 are completely arbitrary. The solution to
this problem may eventually be useful for studying c > 1 matter coupled to gravity.
Thus it is interesting to work out (3.125) in complete generality. It turns out that our
rotation trick (Proposition 3.2, Sect. 3; Proposition 2.1 [34]) works equally well in the
general case. Specifically, the BRST homology is completely determined by values
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of the two fundamental SΌ(2, C)-invariants: the symmetric and the anti-symmetric
2-forms.

Proposition 3.6. Let ξ', η', ξ, η e C. (a) If ξ2 + ξ'2 φ - 2 , then

tf ¥ + n(Vir, Vir0; Fξtη ® FξW) = 0 (3.126)

for all n.
(b) Ifξ2 + ξ/2 = -2, then

tf ? + n (Vir, Vir0; Fξtη ® F ξ W )

* %+n(Vir, Vir0; F_iVϊ^(ξηHfηf)/2 ® ̂ ^ r / - ^ ) ^ ) ( 3 1 2 7 )

/or α// n.

Note that in case (b), the right-hand side of (3.127) has already been calculated
explicitly (see Corollary 2.3 and Theorem 2.5 in [34]).

Appendix A. Resolutions

In this appendix, we illustrate how to compute semi-infinite homology using reso-
lutions and spectral sequences. Throughout this appendix, let 3& be a Z-graded Lie
algebra, ^ c 3^o be a subalgebra which acts semi-simply on 3& via the adjoint
action, and Vi, V, V, V" be Z-graded J^Γ-modules in which ^ acts semi-simply.
Moreover, assume each %n, Vn etc. is finite dimensional.

Proposition A.I. The functor C™+*{3&,^&', V\ <S> —) is exact. That is, if

0 -> V' -> V -> V" -> 0

, ̂  Vi 0 V') -> C f + * ( ^ , ^ , Vi

sequence of cΛαm complexes.

Proof. Recall that

C f + * ( ^ , ^ ; Vi ® - ) = (- ® Vί ® Λ ¥ + ^ ^ > ) ^ , (A.I)

where Λ s o ^ ^ ^ ^ denotes the subspace of Λoo+s(:J^ annihilated by all L(X), ϊ E . i .
Now

0 -> Vr 0 Vi (8) Λ ~ + ^ t C / ί ί ) -> V (8) Vi 0 Λ f +

0 (A.2)

is clearly exact as a sequence ^-modules. Now by assumption, each term in (A.2)
is semi-simple. This immediately implies that the sequence of ^-invariants

0 -> {V ® Vi ® Λ ¥ + + ^ ^ } } ^ ^ {V (8) Vi ® Λ ¥ + * ^ ^ ^ } ^

-> {V/r ® Vi ® Λ f + * ^ ^ } } ^ -> 0 (A.3)

is also exact. D
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Let AT be a ^-module. An exact sequence of J^-modules:

... _> M l tx M o t% N - 0 (A.4)

is called a resolution of TV. In this case, one has

K e r φi-ι = I m φ { i>0, (A.5)

N^Mo/Ίmφi. (A.6)

Thus the truncated sequence

> Mx h Mo -> 0 (A.7)

is also exact except at the zeroth dimension. By (A.5), (A.6) this sequence is a chain
complex {M*,0*} with homology

>*)^<Sn,oiV. (A.8)

By abuse of language, we will also call the sequence (A.7) a resolution of TV. More
generally, given a sequence of J^-modules

... ^ Mχ % MQ H M_! -> (A.9)

with

Ker φi = ϊmφi+ι, % + 0, (A. 10)

(A.ll)

^ i , (A. 12)

we called {M*, φ*} a (2-sided) resolution of the J^Γ-module N. Our goal is to make

use of this extra structure of N, to study the —-homology

By Proposition A.I, the functor Coo+^(,%\ ~&\V\®—) preserves exact sequences.

Let's abbreviate it by

C ¥ + # - - C ¥ + * ( ^ , ^ ; Vi <8) - ) . (A. 14)

Thus given a resolution (A.9) of AT, we get a sequence of vector spaces for each r,

> Cf+rMι

 ΦX Cf+rM0 ^ C ¥ + r M _ i -> (A.15)

which is exact except at the zeroth dimension. It clearly remains so if we replace the
induced maps φ\ by

Since the φ[ are induced by the module maps φi, they commute with the —

differential d. Thus by (A. 16), we get an anti-commutative diagram

d

CM CM

( A 1 7 )
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This means that {Coo+s)cM*, d+d} is a double complex. Let's calculate the "vertical"

homology of (A.17), iJ*(Coo+ rM*, d). But this is just the homology of (A.15):

2

Once again, by the exactness of C™+*—, we have

+ r M 0 -> C - + r M _ i ) 9* C ~ + r Ker</>0 ,

+ r M j -> C f + r M 0 ) ^ Cf +r Ίmφι,

and

M*, d) - δn,0

= <Sn,0C<j+rN. (A.20)

Now consider the double complex (A. 17). Recall that Co°+*M* is a Z(deg)-graded
space with deg d — deg d = 0. So, we can restrict to a deg-homogeneous subcomplex
{Coo+;)<M*[m], d + d}. We make the following assumption: for fixed m,

CooMs[m] = 0 for all s sufficiently negative. (A.21)

In all of our applications, this assumption will hold. Now associated with the double
complex are two standard filtrations:

Cf+rMs[m], (A.22)
r+s=n

r<p

2F
p(CfM[m])n= φ Cf+rMs[m\. (A.23)

r+s=n
s<p

Using the assumption (A.21) and that we are holding m fixed, one can easily show
that both filtrations are finite. Thus [25] we have two spectral sequences (ιEn[m])n>o,

n>o which converge finitely to the graded objects associated with

H*(Cs»M[m

Proposition A.2. Let

• —> Mi —> Mo —> M-\ —>

be α (possibly 2-sided) resolution of \% -module N satisfying assumption (A.21). Then
for each m, there is a spectral sequence (En[m])n>o such that

Eg>q[m] = Hf+q_p($f, Λ; Vx 0 Mp) [m],

E\>q[m] = Hp(Hf+q_p($ϊ, Λ\ Vι 0 M*), d) [m],

and converges finitely to the graded object associated with H*(C2oM[m],d + d)

(induced by the filtration {2Fp(CQoM[m])}p(Ξz). Moreover,

, j&\ Vx 0 N) [m].
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Proof. Take (En[m])n>o to be (2En[m])n>o above. Computing the first two terms

[25], we get

f q p , j&\ Vι <8> Mp) [m],

E*'* = Hp(Hf+q_p(β£, Λ; Vi ® M*), d) [m].

To get the third claim, we use {ιEn[m]}n>o:

iΈ%'q[m] = f r ς _ p ( C ¥ + p M * [ m ] , a )

[m].

This immediately implies that the spectral sequence {\En[m]}n>o collapses:

AT) [m].

But this spectral sequence converges finitely to the graded object associated with

ffp(CcsM[ra],d + 0). Thus

Hp(C°oM[ml d + d)^ Hψ+p(^^; Vx (8) N) [m]. D
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