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Abstract. We prove that any solution to Moore and Seiberg's equations defines a
Projective Rational Topological Field Theory (PRTFT) using surgery presenta-
tions for decorated three-manifolds and Kirby's calculus.
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Introduction

In 1986, Friedan and Shenker cast the idea that in RCFT, a finite dimensional
Hubert space was associated with every orientable surface possibly with punctures
[1]. This space was nothing but the space of conformal blocks on this surface. They
are holomorphic functions on some Teichmύller space and the space of conformal
blocks is nothing but the space of holomorphic sections of a finite dimensional
bundle over moduli space of Riemann surfaces of genus g with n punctures.
Moreover, this bundle (Friedan-Shenker's bundle) is flat1 with respect to the
connection defined by the energy-momentum tensor of the RCFT. One can classify
projectively flat vector bundles over the moduli space by considering represen-
tations of the modular group M*(g,n) [2]. In RCFT, this representation arises
through the monodromies of conformal blocks around non-trivial cycles in the
moduli space 2. Moore and Seiberg have discussed precisely these representations
and they have found that a finite number of finite dimensional matrices entirely
defined all possible monodromies of any conformal block on any Riemann surface.
A complete set of relations (Moore and Seiberg's equations) ensures the modular
covariance3 and duality in any genus and with any number of punctures.
However, these spaces remained quite mysterious and the lack of understanding
them prevented any attempt at classifying these structures. *

Because of these problems, it became quite urgent to find an interpretation of
these data. A clever observation by Witten [3] in 1988 made it possible to interpret
these spaces as the Hubert spaces of states of a 3D field theory. In the case of WZW
models associated with a simply connected compact Lie group, the associated 3D
theory is the Chern-Simons theory associated with the same group. This mapping
has been more precise by many authors among which [4—7] and it suggests a much
more general pattern as was noticed in [3]. For instance, it became clear that
Moore and Seiberg's equations could be obtained from the requirement of
topological invariance [3, 8]: any RTFT defines a solution to Moore and Seiberg's
equations. Henceforth, it is tempting to assume that we should be able to
reconstruct the whole TFT from a solution to Moore and Seiberg's equations.

1 Indeed, it is only a projectively flat bundle, and therefore all the representations of modular
groups we shall consider in this paper are projective
2 Thinking of sections of a bundle as multivalued functions
3 Id est, that all defining relations of the modular group are satisfied
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The reconstruction of a 3D RTFT from a solution to Moore and Seiberg's
equations is the purpose of this paper. More precisely, we shall reconstruct the
algebraic structure of a RTFT. These algebraic aspects a la Segal are recalled in
Sect. 1. In this first section, we also recall some basic facts about Moore and
Seiberg's equations and present the plan of our reconstruction procedure. The
following sections are devoted to this reconstruction. In Sect. 2, we define the
Hubert spaces of states and indicate how to define partition functions of
boundaryless decorated manifolds using surgery presentations. Section 3 explains
how to prove the topological invariance of these amplitudes using Kirby's
calculus. Then, we will check in Sect. 4 that all axioms of PRTFT are satisfied and
indicate how to compute amplitudes of manifold with boundaries using Morse
theory. Finally, all technicalities concerning graph invariants in S3 have been
collected in Appendix B.

The interested reader should also read independent works on this matter.
Topological invariants were defined by Kontsevitch in the case of undecorated
closed manifolds [9] and also by Crane using Heegaard decompositions.
Reshetikhin and Turaev [10] defined RTFT using Kirby's calculus and Quantum
group which is an example of a modular Hopf algebra the representation theory of
which provides us with a solution to Moore and Seiberg's equations. Other
references have recently been brought to my attention at the "Rencontres
Mathematiques de TENS" in Lyon: [11,12] which seem to share the same spirit as
[10].

1. Position of the Problem

/./. Notation and Results

Before explaining our method and the proof, let us recall briefly some notation. We
shall also state precisely our final result.

We start from Moore and Seiberg's equations which arise in the context of
Rational Conformal Field Theories (RCFTs). In this paper, we shall omit this
aspect and we refer the reader to the original articles by Moore and Seiberg
[13,14, 8], the related work of Frohlich and his collaborators [15,4] and papers
by Rehren and Schrόer [16]. Here, we shall consider these equations in a rather
abstract manner. Several reasons led to this point of view: first of all, it is not clear
at all that any solution to these equations defines a RCFT; secondly, they do not
determine uniquely a RCFT 4.

Let us recall some notation. We are given a finite set of indices i called the line
indices among which is 0. ί-»ίis a given involutive permutation of these indices and
6 = 0. Together with these line indices, we have some vertex indices a. For i, j , k
fixed, we have Nujk possible vertex indices defining a set [i,j9 fe]. These numbers
are called the "fusion rules" and verify:

NiJfk is symmetric, NiJ0 = δuj. (1)

The involution is also defined on these indices and sends αe[ΐj,/c] on
όe [£,/,£]. It implies NUStjί = Nijfk. The image of a line or a vertex index by this
involution is called the conjugated index. A vertex index of [ij, fe] is conveniently

4 As one easily sees by tensoring with the Moonshine module
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represented as a labelled trivalent vertex with oriented ordered incoming external
lines ί, j, and k. Indices can be used to color trivalent graphs.

Definition 1. A coloring of a trivalent graph is an assignment of a line (respectively
vertex) index to each line (respectively vertex) of the graph together with an
orientation of the lines. Reversing the orientation and turning each index into its
conjugate is considered to give the same coloring. To any vertex with incoming lines
i,j, and k, we assign a vertex index αe[z, j , fc].

We also define the opposite coloring obtained by turning all indices into their
conjugates. If ̂  is a coloring of a given graph, the opposite coloring will be denoted
b y # .

Moore and Seiberg's data consist into a finite set of finite dimensional matrices.
These are the duality matrices F and B( ±) and the g = 1 modular transformation
matrices S(j) and T. In the context of RCFT, they represent various monodromies
of the conformal blocks understood as multivalued functions defined on some
moduli space. The F and B matrices mix the colorings of a genus zero graph with
four given external legs as indicated in Subsect. 2.1.

Let us now define the S and T matrices. Their matrix elements mix colorings of
a one loop diagram with one external leg. We have:

Here, j is the external line index, i is the loop index and a is the vertex index (idem
for/, Γ, and a'). We shall denote S(0) by S and Γ(0) by T. Of course, Λf-c/24 is only
defined up to an integer. Our notation is reminiscent from RCFT where ht is the
conformal dimension of a primary field and c is the central charge of the theory. As
we shall see in the next paragraph, it is indeed necessary to Γix ht modulo 2: the
B{ ±) matrices represent half-monodromies of the fields on the plane and therefore,
they produce squareroots of the phases exp(2πι/ιi) for the twisted lines. We impose
that ho = 0 (mod 2). F and S are supposed to be invertible. We are now ready to
write down Moore and Seiberg's equations.

We shall introduce here the Ω( ±) and Θ( ±) matrices which are some particular
cases of B( ±). Our notation follows Moore and Seiberg's one. They define Ω and Θ
in terms of B and isomorphisms σ 1 2 : Vect([ij, fc])->Vect([/5 f, /c]) (or any other
permutation of the indices). We refer the reader to their work for more details.
Ω( ±) and Θ( ±) can be computed using the conformal dimensions and F, B, S, and
T verify a finite number of polynomial equations:

• Ω and Θ matrices act on each Vect([fj, fc]) separately and each component is
denoted Ωijk(±) (respectively Θijk(±)5):

2ia)9 (2)

i J i 3 ( β ) . (3)

• Genus zero equations:
F2iFί2F23 = P2,FίZFί2, (4)

= {\®Ω(±))F{\®Ω{±)), (5)

(6)
5 The careful reader will have noticed that some signs can appear in Ω and Θ due to the symmetry
or antisymmetry of the vertices understood as intertwiners between representations of the chiral
algebra (in the context of RCFT). For the sake of simplicity, we shall not mention them in the rest
of this work
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• Genus one equations:

(7)

(8)

)). (9)

Here, P[t] denotes the projector on the space of colorings with loop

index i and external line index). We need some extra hypotheses:

• The following "reality conditions" hold:

• Fusing matrices acting on a block with an external line set to 0 are trivial. In
particular if tt denotes the unique 6 coupling in [iίO]:

(ID

• For all line indices i, SQ>0.

• Here is a technical hypothesis on F matrices:

These properties will be used in Appendix A to show some properties of F
from the equations. More precisely, we shall see that in a special gauge, the F
matrix has the so-called tetrahedral symmetry [17]. Note that:

Warning. In the rest of this paper, we shall assume that such a gauge choice has
been performed!

These data appear in Moore and Seiberg's review in a slightly different form.
They use the concept of a modular tensor category which was introduced by
Frenkel [18] and is believed to be an appropriate generalization of the
Tannakian category concept. However, we prefer to use the above presentation
and we shall speak of a solution to Moore and Seiberg's equations.

On the other hand, we define what we mean by tridimensional rational
topological field theory. This axiomatics has been developed originally by Segal
[19] in the context of CFT, [7, 20-23] in the case of TFTs. Let us recall the
definition of a TFT in d dimensions from this point of view.

We start from a category Ma the objects of which are d—1 dimensional
oriented manifolds. We define N by d(N x [0, l]) = iVuJV, it has reversed
orientation. If N is an object, N is also an object and 0 is an object. Morphisms
are d-dimensional parametrized cobordisms. An element of homMm(Nl9N2) is a
d-dimensional manifold with boundary N1uN2 together with / 1 > 2 parametri-
zations of Nt and N2 as submanifolds of M. Let M and M' be two manifolds with
parametrized boundaries, we suppose that NcdM and NcdM'. φ: dM\-^N and
φf denote the parametrizations of the boundaries. Then MΦgM' will denote the

We shall be sloppy about the order of external lines in this case
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manifold obtained by gluing M and M via g e Diff+(N): we identify P e dM with
P'edM' if and only if (g o φ) (P) = φ\P'). If g = lN, we shall omit it in # r This
defines our composition law # on morphisms. Finally, if M is a manifold such
that two copies of JV are present in its boundary, then Mm denotes the manifold
obtained by gluing these copies together, this supresses JVuJV of M's boundary. If
M is a morphism, JVΪ and MίN] are also morphisms. If JV and JV' are two disjoint
objects, JVuJV' is supposed to be an object. This property is also assumed for
morphisms. Finally, JV x [0,1] parametrized trivially at its boundary is a unit
associated with the object JV.

Finally, we can consider morphisms as isomorphic:

Definition 2. Let M and M' be two three-manifolds with boundaries isomorphic to JV.
An orientation preserving diffeomorphism fe Diff + (M, M') is an isomorphism from
M onto M' if and only if φ' °f\dM = φ where f\δM denotes the restriction of f to M's
boundary and φ: dM—*N and φ': dM'-+N are the parametrizations of M and M's
boundaries.

As we know from various papers [17], we shall consider decorated manifolds,
that is to say manifolds equipped with a decorating submanifold. We impose that
isomorphisms be compatible with this decoration: it must send one decoration
onto the other. In the three-dimensional case, decorations are φ3 colored and
framed graphs. Henceforth, an isomorphism has to respect colorings and
framings of these graphs. Following Reshetikhin and Turaev [24], we shall
consider each line as a small ribbon, which defines its framing. In our discussion,
Ma's objects are closed orientable surfaces with marked points and a non-zero
tangent vector at each point. Morphisms are interpolating three-manifolds,
decorated by a trivalent framed diagram interpolating between marked points.
When intersecting the boundary of a three-manifold, a ribbon defines a non-zero
tangent vector.

On the other hand, an algebraic category Sp is given. Its objects are Hubert
spaces and C is one of the objects. Obviously, homSp(H,H')C<Sf(H,H') and the
composition law is the ordinary product of linear operators. We assume stability
under tensor product for objects as well as morphisms. If H is an object
and H* its dual, it is also an object. Similarily, if wehomSp(i/, H'\ then
ufehomSp{H\H) and we also suppose that 1H is the unit associated with H.

This enables us to define a TFT based on these categories:

Definition 3. A Topological Field Theory is a contravariant functor Φ between Ma
and Sp such that, if for any object N and any morphism M of the first category Φ[JV]
is denoted by HN and Φ[M] is denoted by φ[M\ the following properties hold:

(13)

Hf,=(HN)*, φim=(ΦlMW, (14)

(15)

(16)

Moreover, HN only depends on the topology of N and if M and M' are isomorphic,

The theory is called rational when all Hubert spaces are finite dimensional
and in this paper, only Rational TFT (RTFT) are considered. When M is a
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boundaryless manifold, the associated operator is a number called the partition
function denoted by Z[M]

Closely related to this arises the notion of a projective topological field theory
(PTFT):

Definition 4. A Projective Topological Field Theory is a correspondance Φ between
Ma and Sp which associates HN with every object N of Ma and
φ[M]ehomSv(HA,HB) with every MehomMΛ(A,B), such that:

(18)

(19)

(20)

and HN only depends on N's topology and for M and M' isomorphic, φ[M~\ = φ[_M'~].
Moreover, for each pair of composable morphisms (Mί,M2), there exists
μ(M1,M2)eC satisfying:

Φ\M1 # M 2] = μ(Ml9 M2) x φ [M2] o 0[M J (21)

with the following compatibility condition:

t # M2, M3)μ(Ml9 M2) = μ(Mu M2 # M3)μ(M2, M3). (22)

Equation (21) is called "projective functoriality" and μ should be called a
cocycle. Axioms of a PTFT imply that μ satisfies the following equations:

It can easily be proved that a PTFT can be turned into a true TFT defined on an
extension Mae of Ma by C. I recall that a central extension of a category X by C7

has the same objects than X and for any morphism / of X we are given Lf~C
and, for each pair of composable morphisms (/, g), μ(f g) e horn (Lf x Lg, Lfg) such
that:

μ(f gh) o (1L/® μ(g, h)) = μ(/g, h) o (μ(/, g)® 1L J .

In the extended category, morphisms from A to B are pairs (fλ), where λeLf

and /ehomx(,4,£). Composition of morphisms is defined by:

Our aim is to clarify the relationship between Moore and Seiberg's equations
and 3D topology. We want to prove that these equations are indeed the
"equations of motion" of a 3D PRTFT. Indeed, we shall prove the following
result:

Theorem 1. Any solution to Moore and Seiberg's equations defines a Projective
Rational Topological Field Theory in 3 dimensions through the procedure described
by Wxtten in [3] and [17].

7 Or more generally by any abelian group...
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We shall come back later to the interpretation of the cocycle. Let us recall that
a TFT defines a true representation of modular groups of d—ί-manifolds
whereas a PTFT defines a projective representation of these groups. Interpreting
geometrically the cocycle μ(M1? M2) should provide us with a better understand-
ing of central extensions of all modular groups, in any topology.

1.2. Architecture of the Proof

Let us now describe the structure of our proof. All technical details will be
reported in the next sections of this paper and we shall only describe the main
steps in this part.

Our idea is to define a topological theory by matrix elements associated with
an arbitrary three-manifold. Our starting data will be a solution to Moore and
Seiberg's equations as described in the preceding subsection. We shall firstly
define the Hubert space associated with a surface of genus g and n punctures by
describing a basis of this space in Sect. 2.1.

The next step is to define matrix elements of the operator associated with any
three-manifold. The simplest case is provided by manifolds without boundary.
We want to associate with them a number.

In the case of the three-sphere with a trivalent framed graph K in it, we shall
use a transfer matrix method. We decompose the three-sphere by cutting it along
two-spheres. Between two cuts lies a vertex or a pair creation or pair annihilation.
With any such event, we associate a matrix acting on the appropriate Ho ns
and the partition function is defined as the product of these matrices. Our
procedure defines a topological invariant for framed trivalent graphs in S3. Such
a statement has been proved by Frόhlich [4] and in the context of quantum
groups, by Reshetikhin and Turaev [24]. We recall how it works in Appendix B.

In the case of a three-manifold with no boundary and different from S3, we use
a surgery presentation of M to go back to the case of a three-sphere [25]. Kirby
[26] and Fenn and Rourke [27] have described how two surgery presentations of
a given three-manifold are related. We adapt it to the case of a three-manifold
with a framed trivalent graph embedded in it. We define the partition function of
a surgery presentation and prove that it only depends on the underlying
decorated three-manifold in Sect. 3.

To define the matrix element of φ[M~\ between two vectors of bases defined in
Sect. 2.1, we consider the partition function associated with the closed manifold
obtained by saturating each connected component of M's boundary with the
handlebody associated with the vector we use.

As we shall see, the only non-trivial property is the projective functoriality of
our correspondence between manifolds and operators.

To prove this statement, we shall proceed in several steps. In Lemma 9, we
show that partial projective functoriality in S3 implies projective functoriality for
any three-manifold with no boundary and therefore for any three-manifold. In
the case of a splitting of S3 by a trivially embedded surface 8, Eq. (21) is proved by
a detailed computation of both sides using only functoriality along a two-sphere.
The latter property is known to be true in S3.

Finally, property (21) enables us to make contact with the generalized transfer
matrix method. This method is based on the use of Morse functions. Using this

8 That is to say, splitting S3 into two handlebodies
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technique, one can show that the gluing axiom is satisfied (see Proposition 4.4.3)
for the RTFT defined on the extended category Mae.

2. Building Blocks of RTFT in 3D

In this section, we shall describe how to define precisely the Hubert spaces of the
3D theory and the amplitudes.

2Λ. Construction of the HNs

We shall use these spaces in Sect. 4.1 to define operators associated with manifolds
with boundary. Let us consider N a two dimensional manifold without boundary.
For the sake of simplicity, we shall firstly assume that N is connected. More
precisely, N is of genus g and has n marked points. We consider then a trivalent
graph ^ of genus g and with n external legs, with fixed framing, embedded as a
1-skeleton of the genus g handlebody. Then we define HN as follows:

Definition 5. A basis of HN is indexed by the set of colorings of (3. We shall note
\Tg,&<gy the vector corresponding to the colouring c€. We define H0 = C.

We shall consider that these vectors are associated with genus g handlebodies
with ^ c embedded in it. This justifies our notation: \Tg9 &%}. When N is of genus g
with n punctures, we shall note HN as Hg n. The scalar product on this space is
defined following Witten [17].

π(\τ < * ° *'* ° (23)

where S is the matrix appearing in Moore and Seiberg's data and δmΛ9Γ] is a delta
function on the set of colourings of (S. lu ...,/„ are the indices of ^'s external legs.
( | 7^ ,^»^ is an orthogonal basis of HN.

In the case where N is not connected, let N= (J Nt be the decomposition of N
iel

into connected components. We define HN to be (x) HNi. This ensures that HNuN,
iel

= HN®HN,. Moreover, Hft = (HN)* can be imposed without any problem. Notice
that HN only depends on iV's topology.

We can change the basis by changing ^ into Ψ. Any two such graphs are related
by elementary moves F and B. Therefore, we define the change of bases associated
with such elementary moves by:

i h . d

" c Σ / M | α

P
—•-
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c,d

I
] V

7 *- ' ^ ^ -

where we have represented the part of the graphs that has been affected by the
moves. For a more general move, we decompose it into elementary moves and take
the product of the corresponding matrices. As proved in [14, Appendix B], the
result does not depend on the decomposition we chose. Henceforth we can write:

Σ
Note that the braiding and fusing matrices are unitary matrices, as checked in

Appendix A. Henceforth, the normalization of scalar products is the same for all ^
at given genus and number of punctures.

All this defines a set of vector spaces which verify all properties needed to be the
objects of Sp.

2.2. Graph Invariants in S3

Let us define the partition function of a framed φ3 diagram K embedded in the
sphere S3 following [17]. We can consider that KcR3CS3 by choosing a
particular R3 in S3. We then project on a plane and assume the projection to be
regular: nothing but crossings and vertices appear on the projection. Then, we
choose a Morse function on the three-sphere which separates these events (see
Fig. 1). S3 is sliced into two three-balls B3 between which lie several decorated
cylinders S2 x [0,1]. Let us denote them by (Cfe)fce<1 n>. Any of these contains one
event of the following type 9 :

that is to say, pair annihilations and creations, vertices and braidings (C_ and C+

respectively). Let us recall which operators correspond to these events. In the
following list, we suppose that the framing is normal. That is to say defined by
considering lines as ribbons pointing towards the reader10. The operator
corresponding to a decorated cylinder C will be denoted by φ\_C\ :H0 M->ifOm.

9 Arrows are omitted
1 0 Henceforth this notion is not intrinsic in opposition to the zero framing of a knot

Fig. 1. A Morse function for the trefoil knot



Protective Rational Topological Field Theory 469

Vertices. In this case, one line split into two and it introduces the fusing matrix:

i\ Ϊ2 U in-i

φ[ca] X t t t / \ = Σ
p,a,b

a\ an-2

k In-1 ίn\

fll a b CLn-2

The vertex carries index α and line ix is split into lines with indices j and k. We can
also fuse two lines and it gives.

ΦίC]

i2 j k in-\

°osr-lia

a\ a b an-2

U ii U
/SjoS

S

an-2

Pair Creation and Annihilation. These are defined by specializing ix = 0 in the above
definitions.

Using our technical hypotheses [Eq. (11)] and tetrahedral symmetry (see
Appendix A) the reader will easily find simple expressions for these events.

Crossings. Two possible crossings lead to two braiding matrices:

U i2 ii

Pi-1
ΦίQ]

p,a,b

Γ«(-l «ll

L α b]

ll+l l\

P

ci\ a b an-i
We define:

Definition 6. Let K be a graph in S3 with normal framing and:

[S3,K]=B3uC1v ...uCnuB3

be a decomposition of [<S3,K]. The partition function associated with this
decomposition is11:

S°o Π
k=ί

The SQ is due to the two three-balls B3 needed to close a cylinder into a sphere S3
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Let us now take the effects of the framing into account. We choose a
decomposition of the three-sphere. For each line / of the graph, the framing differs
from the normal framing by nx units. Let it be the index carried by line /. The effect of
changing the framing by one unit of a line carrying index j is to multiply the
partition function by Qxp(2πihj):

Z = ZL\\ exp(2πfnIΛ£l), (25)
/ line

where ZL is computed using a normal framing.
We may wonder to what exent these numbers depend on the way we slice S3.

Using an adaptation of the proof of Reshetikhin and Turaev in the context of
quantum groups [24], we explain in Appendix B how to prove the following result:

Lemma 1. The number defined by Definition 6 and Eq. (25) does not depend on the
decomposition of S3 we choose and therefore is a topological invariant for framed
trivalent graphs in S3.

Remark. We emphasize that operators φ[C] associated with decorated cylinders
in this section coincides with the ones we shall define in Subsect. 4.1. Moreover,
one can easily check that <#*!#*> = Z[S3, ̂  # #$]. D

2.3. Partition Functions and Surgery Presentations

In this section, we define a number associated with a surgery presentation of a
decorated three-manifold.

23.1. Surgeries. Let us define precisely the surgery operation around a framed link
L. The idea is to find tubular neighbourhoods of each component of the link, cut
them away from our initial manifold and reglue them back in a non-trivial way.
More precisely, a framed circle in N defines an embedding i of D2 x Sx in N. We
note C = i({0} xSJ. On D2xSu we have natural cycles (α)0 and (b)0. Before
surgery, they are glued on (a') and (C) drawn on d(N\ί(D2 x SJ). (C) is a curve
parallel to (C) which defines its framing as in Fenn and Rourke's work. Surgery is
defined by:

Definition 7. Performing a surgery on N along C consists into extracting i(D2 x SJ
and gluing it back with the identification:

In the case of a link, we perform surgery along each component of the link.
In the case of the three-sphere, a knot C has a privileged framing associated with

a Seifert surface. It is the n = 0 framing. On d(i(D2 x Sx))9 we draw the (a) and (b)
cycles by reference to this privileged framing. The corresponding cycles on
d(N\i(D2 x Sx)) are called {a') and (bf) as indicated on Fig. 2. If neZ denotes C's
framing, identification after surgery is given by:

( 2 6 )
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gluing

(a) (a)

Fig. 2. The (a) and (b) cycles on Tt and the corresponding (a'\(b') cycles on d(N\TJ. (C) which
defines an n = — 1 framing of this unknotted circle is shown on this picture

Lickorish proved in [25] that any three-manifold without boundary can be
obtained by surgery on S3 along a framed link L. It is quite clear that starting from
such a manifold M, equipped with a trivalent framed graph KcM, one can find K
C(S3\L) such that performing surgery on [S3 ?K] along L gives back [M,K~]. By
analogy with the preceding case, we say that [L, K] is a surgery presentation of

As explained by Kirby, there is a canonical way to associate a 4-dimensional
manifold bounding M with every surgery presentation L of M. We start from β 4

the boundary of which is S3, and given a tubular neighbourhood Tt for each
component of L, we glue D2 x £ 2 using L's framing. We define σ(L) to be the
signature of the intersection form on H2(WL9R).

2.3.2. Partition Function of a Surgery Presentation. Let us now define the partition
function of a surgery presentation [L, X] where L is a framed link and K a framed
coloured trivalent graph.

Definition 8. Let L be a framed link and K a framed coloured trivalent graph in S3,
we define Γ _,

Zs[L,X] = β- 2 π ^ L >/ 8 Σ Π ((e2πic/24TrS)°k \Z[S3,L^K1, (27)

where the sum is over all colorings of L and Lc# has framing zero12.
This definition is extended to the case L=0 by Z s[0,X]=Z[S 3,X].

3. Topological Invariance from Kirby's Calculus

In order to prove that the number defined by Eq. (27) is indeed a topological
invariant for decorated boundaryless manifolds, we shall determine when two
surgery presentations [L, K] and [L', K'~\ give rise to the same manifold. This is the
object of Subsect. 3.1. Then, in Subsect. 3.2, we shall prove that the partition
function ZS[L,K] only depends on the result of the surgery.

3.1. Equivalences Between Surgery Presentations

Kirby [26] and Fenn and Rourke [27] gave equivalence criteria in the case of
undecorated manifolds. We shall extend this to the case of decorated manifolds.
The equivalence notion we shall use is quite natural and can be expressed as:

1 2 We could as well have left the initial framing but we decided to take it into account through
{Tnk)%k

k for component k. This convention will hold all along this paper
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Definition 9. Two surgery presentations [L, K~] and [L', K'~\ are said to be equivalent
if and only if the decorated manifolds \_ML,K~\ ([Mv,K

f~\ respectively) they give
rise to are such that there exists FeDiff\ML,ML) sending K onto K' modulo an
isotopy and preserving the colorings and framings of these graphs.

We note [L,K]~[L' ,K'] . In particular, this implies the weaker notion of
equivalence used by Kirby:

Definition 10 (Kirby). Two framed links in S3 are weakly equivalent if and only if the
manifolds they produce by surgery are diffeomorphic: ML~ML,.

According to Kirby [26], the weak equivalence notion is tantamount to the
existence of a finite sequence of moves starting at L and ending at L (Kirby's
moves). In the case of a decorated manifold, we can describe the effect of these
moves o n X c S 3 . But this does not describe all [L', J^]s equivalent to [L, K~\. For a
fixed Lin S3, many graphs K' can be found with [L, K'~\ ~ [L, K~]. We must describe
them. Clearly, any [I/,K']~[L,K~\ can be transformed into a [L,K"~\~[UK\
through ^finite number of Kirby's moves. Therefore, the knowledge of all Kf such
that [L, K'~\ ~ [L, K] solves the equivalence problem.

Kirby's Moves on φ3 Diagrams. First of all, let us recall what are Kirby's moves in
the case where no trivalent diagram is present. We refer the reader to [26] and [27]
for details. Given two circles in S3, /(C, C") denotes their linking number.

Definition 11. Let C be an unknotted component of L with framing ε= ± 1 , the
K-move is defined by removing C from L and twisting the set of curves belonging to L
that pierce a disk with boundary C as indicated on Fig. 3. Moreover, the framing nt of
any component of L is shifted into nι — εl(C, C f)

2.

Kirby's basic result is:

Theorem 2 (Kirby). L and L are weakly equivalent if and only if one can pass from
one to the other by a finite number of K-moves and their inverses.

To define the effect of a K-move on [L, K], we construct a diffeomorphism from
ML to Mv. Let KcS3\L and let̂  (7JX6 < l w > be some disjoint toric tubular
neighbourhoods of the Cfs in S3\K. KcML clearly appears as K in 5r

3\(uί7])
because ML obtained from S3\(uf7^) by gluing back the Tjs via diffeomorphisms.
Henceforth, our diffeomorphism can be defined on NL = 5'3\(uί7]) considered as a
subset of ML and on the 7]s by taking care on the way they are glued to NL. This
construction provides us with a natural definition of K-moves when X=t=0:

Definition 12. Let Lbea framed link in S3 and K a framed φ3 diagram in S3. Let C
be an unknotted component of framing ε= ± 1. A K-move on [L,K~] is defined as
follows. We choose D a disk in S3 bounding C.

Fig. 3. Effect of a K-move: we remove the unknotted circle (C) with framing 1 (in this example)
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• The effect of the K-move on L is the same as in Fenn and Rourke's definition (cf
Definition ii).
Φ The effect of a K-move on K is to twist all lines that pierce D of — 2πε as if they
belonged to L.

Let us remark that K"s framing is well defined in this procedure13.

Equivalence between [L, K] and [L, K'~\. We shall now describe the set of graphs K'
in S3\L such that [L, K] ~ [L, K']. Surgery along L in [Sj,K] (respectively
[S3, K'~]) produces ML and K (respectively K'). [L, K] and [L, K'~\ are equivalent if
and only if K is isotopic to Kf. Obviously, we mean that the isotopy is compatible
with colourings of the graphs! If we consider ML as NL and the 7]s glued via
diffeomorphisms, we can decompose the isotopy in two phases:

• The isotopy takes place in NL.
• The isotopy goes through the glued tori.

The first case is not a problem: it can be translated into an isotopy in 53\u f7]!
Let us describe more precisely the second case.

We can suppose that during this phase, only one of the 7] is concerned and
nothing happens in NL. Let ίx and t2 be the initial and final times of this isotopy.
Consider K(ή the position of the φ3 diagram at time t and parts which move
between ti and t2. These can be located in a neighbourhood of the glued 7] because
we assumed only one torus is concerned. Vertices can be kept fixed during the
move. Henceforth, we study the deformation of a single line of the graph. At
t e] ί l 5 ί2D the intersection of this line with T is an open curve k(t). The reader is
referred to Fig. 4. k(tγ) can be continuously deformed into k(t2) by passing inside T
if and only \ϊk{ti)k{t2)~ι's projection on dTis nuU-homotopic in TA loop drawn
on a torus and homotopic to α{α) + β(b) with (α, β) e Z2 is trivial in πγ{T) if and only
if β = 0. Translated into NL, it means that the curve must be of the form: min^α')
+ (&')), where meZ. This describes an elementary step in the equivalence between
K and K': one of K's lines (say Cj) is brought near Q in S3\L, and we replace a little
segment of this line by one which follows a parallel curve to Ct. To describe the
change of framings of the lines we modified, we consider a curve γ parallel to C} and
examine its changes into the various moves we performed as depicted on Fig. 5.
This is the analog of the β-move introduced in Fenn and Rourke's paper and

Fig. 4. If k(ή denotes the position of the line we consider at time t inside T, fc(ίf), and k(tf) are drawn
on dT. The loop obtained by gluing these two paths has to be homotopically trivial in T

1 3 Lines are considered as ribbons
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(C),n=l

Fig. 5. Effect of a β-move on a framed line of K. The line should be considered as a ribbon: it is
dragged along a parallel curve to C

described originally by Kirby [26] as the Θ2 operation. The effect on the line as well
as on its framing is the same. We shall denote it as a /?-move performed on a line of
K. We have the following lemma:

Lemma 2. Two trivalent coloured framed graphs K and K' of S3\L are such that
[L, X] is equivalent to [L, K'~\ if and only if one can pass from K to K' by a finite
sequence of the following operations:

• Isotopies in S3\L.
Φ Performing a β-move on one line of K around one component of L or its inverse.

Equivalence Criterion. This gives us the complete set of moves which we need to
decide whether two surgery presentations [L, X] and [L', K'~\ are equivalent in the
sense of Definition 9. The theorem is:

Theorem 3. Two surgery presentations [L, K~] and [L', K'~\ are equivalent in the
sense of Definition 9 if and only if one can relate them by a finite number of
K-moves, isotopies in S3, β-moves on a line of K around a component of the surgery
link or their inverses.

To check that the partition function is invariant under these moves, we need the
effect of these moves on the number σ(L).

Effect of Kirbys Moves on σ(L). As explained by Kirby, and also by Fenn and
Rourke, adding an unknotted component C of L, unlinked with any line of L\C
(special K-move) induces the following changes on WL:

Q, (28)

C)9 (29)

where ε = ± 1 denotes C's framing. We simply perform connected sum of WL with
P2(C) or P2(C) depending on C's framing. When we delete C with framing ε, we get
σ(L') = σ(L) — ε! On the other hand, performing a /?-move along a component of L
does not change WL and it is obvious that performing such a jS-move on a line
belonging to K has no effect on WL. This will be enough to study the behaviour of
the partition function of our surgery presentation under various moves.
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3.2. Topological Invariance of the Partition Function

Let us check that the partition function associated with some surgery presentation
does not depend on the representative of an equivalence class in the sense of
Definition 9.

We shall examine the different cases successively starting from the isotopies in
S3, then studying the X-moves and finally looking at the case of /J-moves. The
influence of σ(L) will be discussed at the end.

Isotopies in S3. Let [L', K'~\ be isotopic to [L, K~\ in S3. As we notice in Appendix B,
Z[S3,L<e,K']=ZlS3,L'v,Kfl Clearly σ{L) = σ{L\ therefore:

Invariance Under K-Moves. Let us denote by Cε the unknotted component of L
with framing ε = ± 1 we would like to delete from L. We compute the following
expression:

box

where Cf] has color j_ and framing zero 1 4 and ^ is a colored φ3 diagram which
represents L\C and K. An isotopy in S3 has been used to carry \Cf\ &] into the
above form.

We assume that m lines are running through a disk with boundary C. We have
introduced a suitable basis of Ho 2 m :

abbreviated by i

The following expression can be inferred from functoriality in S3 along a two
sphere 5 2:

1;= Σ , P „

With our choice of a projection, it coincides with normal framing...
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By functoriality along S2 in S3, insertion of Cf] around a line colored by p is
equivalent to deleting line Cf] and multiplying the partition function by Sj

p/S% (see
formula 43 for details). With topological invariance in S3, it implies that:

Z[S3,

a a

o

Let us go back toour surgery computation. The partition function of the surgery
presentation [L, K~] is a sum over all colorings of L. We split it into a sum over C's
coloring and L\C's one. Let us assume that we have fixed a coloring of L\C and we
denote by ^ the union of K and L\C with their colorings. We are interested into:

Z=ΣAjX(TεS)(je2πiεcl24

We replace A-} by the expression obtained above and find:

p,a,β\\\Φp,a,β>\\
-2zίs3,

-2πiε(hv- —

(30)

where we used that S2 = C.
Now we turn on the case of L'. Using an isotopy in S3, we see that the graph

introduced above changes and the new situation is described by:

Z' =

box

TW ] .

The TW box contains the twist mentioned above. We call the new graph Ψ. Here,
framings are modified. To compute the partition function with a fixed coloring of
L', we introduce a two-sphere with 2m marked points to isolate the TW box from
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the rest. Henceforth, we only have to compute:

477

The framing of a line of L is the same outside the TW box as it was in L but inside
this box, each line should be considered as a ribbon turning around the other lines
as on Fig. 6. To compute Z', we first go back to the normal framing and this
introduces a phase

expf -

Then we compute the partition function by "de-twisting" near each vertex thanks
to the identity:

k

and the one obtained by changing the over-crossing into an under-crossing.
Finally, we find after an obvious computation:

Z' = Zxe-2πiεc/8. (31)

Comparing this with Eq. (30) shows that:

Lemma 3. Let [L, K] be a surgery presentation and [L', K'~\ obtained from by a
K-move on [L,X], then:

E/)-«r(L))c/8β (32)X β

We shall see in a while that the phase factor is indeed 1.

'"""•v.-.v.v.

Fig. 6. Shape of a line inside the TW box. It is considered as a ribbon to define its framing
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Invariance Under β-Moves on K. Let us denote by K' the φ3 diagram obtained by
performing a β-move on the line j around component / of L. We prove that
ZS[L,K~] = ZS[L,K'~\ using X-moves and isotopies. The proof is quite similar to
the proof that β-moves on L can be obtained from iC-moves in Fenn and Rourke's
paper [27]. More precisely,_it can be straightforwardly adapted by considering
that K- and β-moves act on K's lines as we explained above. We then use Lemma 3
to see that a phase factor exp(2πic(σ(L') —σ(L))/8) arises (ε= ±1 contributions
cancel). But in this case σ(L) = σ(L') and therefore, we have:

Lemma 4. // K and Kf are related by a β-move performed along some component of
L, then ZslL,K]=ZslL,K'l

Topological Invariance. To conclude, let us show that there is no phase factor in
formula (32). Exactly as in the previous subsection, we can compute the phase
appearing in a /?-move performed along a component of L: it appears to be zero
because σ(L) = σ(L). In the case of a special K-move, σ(L') — σ(L)=—ε and
therefore, the phase is one in this case. As special K-moves, Θ2 moves performed
along lines of K and L generate all X-moves, it proves that ZS[L,K] is invariant
under all Kirby moves:

Theorem 4. The partition function of a surgery presentation [L, K~] only depends on
the diffeomorphism class of [ML,X]. It is a topological invariant for boundaryless
manifolds decorated with a colored φ3 framed graph.

4. Checking the Axioms of RTFTs

In this section, we define the operator associated with manifolds with non-empty
boundary and we check that this correspondence satisfies all axioms of a projective
topological field theory.

4.1. Definition of Operators

Let us consider M a three-manifold with boundary dM interpolating between N
and N'. We would like to associate with it an element of J£(HN9HN). As we said
before, for each graph &, we have defined a basis of HN the elements of which are
indexed with disjoint unions of decorated handlebodies. We shall define:

where φt (φf respectively) denotes [7],3?i>ϊ(] ([7},^/,^] respectively)15. In order
this definition be consistent with Subsect. 2.1 we need to check that going from <$
to 'S' introduces the right matrix, that is to say:

Vu v) # M # (7>, <Sίt«,)], (33)

f,4/)}. (34)

1 5 These are orthogonal bases
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It is enough to check these formulas for F and B moves since any change from ^
to &' is obtained by a finite sequence of such elementary moves. Let us give the
argument for F moves, the other cases being treated in the same way. We can find
in 7] a three-ball B3 such that its intersection with (S'i and ^ looks as:

But functoriality along S2 holds in any closed three-manifold (see Lemma 13)
and therefore:

a p b

Explicitly evaluating the tetrahedron through the transfer matrix method gives
us:

where (q, c, d) are taken into account in (€i and (p, a, b) into cβ'b the only difference
between these two colorings being related to (q9 c9 d) and (p, a9 b). Performing such a
move on an outgoing state produces

=F*<la b\ '
and this proves our consistency formulas (33) and (34). We can then define:

Definition 13. Let \φt} and \φf) be two states belonging to HNand Hf

N respectively
which are associated with decorated handlebodies, then:

Before checking all properties of this correspondence, let us remark that φ\_M~]
is indeed a topological invariant object.

Let M and M' be two isomorphic manifolds. From the definition of φ\_M~\ and
φ[M']'s matrix elements as functions of boundaryless glued manifolds, it is clear
that 7]#M#7} and T ^ M ' * ? } are diffeomorphic. Gluing of handlebodies are
made via the parametrization of the boundary and the compatibility condition at
the boundary appearing in Definition 2 precisely ensures the possibility of
extending the diffeomorphism to the whole glued manifold! Therefore:
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Lemma 5. Let M and M' be two ίsomorphic decorated three-manifolds, then

4.2. Unitarity Axioms

Let M be a manifold interpolating between N and N' and M with the reversed
orientation, interpolating between N' and N. We compute <</>/|</>[M] |</>f>
= [7]#M#7>] and we have: {φi\φ\_M'] |(/>/> = Z[T / #M#7]] . We know that:

and therefore, we are led to computing Z[X~\ in terms of Z[X], where X is a
decorated manifold without boundary. Such a manifold is obtained from the
decorated sphere [S3, K] by surgery along some particular link L. Let us start from
S3 and perform a surgery along the link L obtained from L through an orientation
reversing symmetry and with the opposite framing. Let K denote the graph
obtained from K by an orientation reversing symmetry16 and turning its coloring
into the opposite, then [L,X] produces X: the orientation is reversed and the
coloring of the decoration has turned into its opposite. Moreover, it is clear that
σ(L)= -σ(L). We have defined:

\ ΠΠ ( ( e 2 π ί c / 2 4 T Γ S ) | 1 Z[_S^L*9 K],
*=i J

and our orientation reversing operation produces:

e2nic«(L)l8Σ[ ή {{e2nicl24TynkS)O 1 Z [ S 2^, X] .

But, from the definition of invariants in S3 (see Appendix B, Sect. B.2.1):

Moreover (TpS)J = ((T-pS)J)* and therefore, we find that:

/ 2 4 ^ ) " Π k S ) ^ l z[s 3 ,1»,Γ Π
which means that Z[X] = Z[X]*! Finally:

Lemma 6.

4.3. Projective Functoriality in any 3-Manifold

Let Mx and M 2 interpolating between JV and Nt and AΓf and N' respectively, we
would like to check projective functoriality. We check it on matrix elements which
is equivalent to considering that N = N' = φ. Taking this point of view shows that
the relevant objects are |M1> = 0[M 1 ] 1 and <M2| = </>[M2]. We thus have to
prove the existence of μ(Ml9M2)eC such that:

(35)

1 6 As for L...
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The sum over #'s colorings is a sum over the elements of a basis of HNi. Each
partition function that appears in this formula is to be computed using some
appropriate surgery presentation. As we shall see in Subsect. 4.3.2, there exist some
nice surgery presentations for M 1 # [ 7 ^ , ^ ] and [Tg99^]ΦM2 from which one
can deduce a surgery presentation for M1ΦM2. Then, we show that projective
functoriality holds if and only if it holds in S3 for special splittings, that is to say, a
decomposition of the form LS3,K] = [Tg,K^#[S3\Tg,K+] (see Subsect. 4.3.3).

4.3Λ. Surgery and Boundaries. For the sake of simplicity, we shall only consider
here the case Nt connected. Other cases can be treated in the same way. The genus
ofNi = Σ is denoted by g and we shall assume that Mx # M2's decoration intersects
Σ in n points.

We shall use the following lemma:

Lemma 7. Any three-manifold with boundary Σ can be obtained by surgery from

Proof. This lemma can be inferred from the existence of Heegaard splittings for
three manifolds with boundaries as described in [28]. The proof goes along the
same lines as [25] and we leave it as an exercise for the reader. •

We could as well have obtained a manifold with boundary Σ by surgery from Tg

as explained by the following lemma:

Lemma 8. 53\7^ is obtained by surgery from Tg along the (bj)je<ltg> with framing 0.
Tg is obtained by surgery from S3\Tg along the (a J ) j e < l f f > with framing 0.

Proof The proof proceeds in two steps. First of all, we build an isomorphism from
S3\7i onto the surgered handlebody. Then we make a recurrence on g by gluing
manifolds via a little disk. Both steps are elementary and left to the reader. •

Application to RTFT need to distinguish between in and out-coming
boundaries. This can be done quite easily as in this example: let M e homMa(Σ, 0) be
obtained from S3\7^ by surgery along the framed link L. Then if [Tg, L'] produces
[S3\7^,L] by surgery along C, M is obtained from tg by surgery along [L,C].
Clearly % e homMa(i;, 0).

4.3.2. Clever Surgery Presentations. In our case, we [M2, K2~\ is obtained from
lS3\Tg,K22 by surgery along L2. Therefore, [(T ί r,^)#(M 2,X 2)] arises from
[ S 3 , ^ > # J K 2 ] by surgery along L2 now considered as a framed link in S3.

Now, [M1?KJcomesfrom\Tg,K{\ by^urgery^alongLvTurningS3\Tginto Tg

using surgery along CC S^\Tg shows that lS3\Tg, K\~\ gives us [M l 5 K{\ by surgery
along [LUC\ where L\ (respectively K\) denotes L/s (respectively K^s)
antecedant in S^Tg. Henceforth [M1φTg9 Xi#^<#] is obtained from
[S3,K\ # # $ ] by surgery along [CL'J 1 7. Finally, we end up with the following
expressions:

f ^ " 2 π ί c σ i / 8 Σ

Π i <&,) (.Π ((e2πicl24TrS)° ι§ ̂ , (36)

Z\Tg#M2, ^ # X 2 ] = e~2πίcσ2/8 Σ ZIS3,9*#K2,L2.^J

(37)
1 7 §3

 c a n b e confused with S3 by taking care of its decoration: we have to change it by symmetry
through a plane. Our notation is slightly abusive
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Fig. 7. Various surgery presentations used to prove projective functoriality. The surface along
which we cut is shadowed

Figure 7 displays these various surgery presentations.

433. Proof of Functoriality. First of all, we sum over C's colorings X in formula
(36). Thanks to the above remark, we get:

Z [ Γ , # f r ^ 1 # ^ L 1 > V l ] = β-2" fc' ' 8 Σ Z [ S 3 > ^ ' 1 # ^ L ' 1 > , 1 , C ^ ] ft S%t,
* ί = i ( 3 8 )

where σg is the phase factor appearing in Appendix B when one goes from S3 to
Γ9# fg by surgery along C.

Now, we can sum over ^ using formula (65) to recover a partition function in S3

Putting all this together we find:

k=ί
Π. ((e 2 π ί c / 2 4 T)»^)° 2 | k ) ^ Π ( ( e 2 π l c l 2 4 T r S ) l J).Π (39)

Fortunately, [(L 1,L 2),K 1#K 2] is nothing but a surgery presentation for
[MuKί]φίM2,K2] and finally we get:

<M2|M1> = Z [ M 1 # M 2 ] e " 2 π i c ( σ i + f f 2 " σ i ' 2 ) / 8 , (40)

where_σ1>2 is the signature associated with the surgery presentation [(L1?L2),
Kx # X 2 j . Let us stress that partition functions on the left- and right-hand sides of
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this formula does not depend on the particular surgery presentations we choose
to compute them. This provides us with an "explicit" expression for the cocycle:

μ(MuM2) = e2πίciσί+σ2-σi'2)ί8. (41)

As we stressed before, this implies projective functoriality of our correspondence
between interpolating 3-manifolds and operators acting on the HNs. To prove it
precisely, it is convenient to go back to our definition of operators associated with
manifolds with boundaries.

We consider Mγ and M 2 interpolating between N and Nt and Nt and N'
respectively, then let T9 T, and T{ be decorated handlebodies used to cap M1 ) 2 's
boundaries, we have1 8:

Z [ Γ # M 1 # M 2 # f / ]

IIIT JOI I 2 (42)

the number μ(T#M1,M2#ff) apparently depends on T and T"s decorations.
However, to compute it, we use signatures of manifolds bounding
T φ M 1 # M 2 # Γ ) T # M 1 # ί ; , and 7 ] # M 2 # T regardless to their decorations.
Henceforth it does not depend on T, T"s decorations. This enables us to consider
Eq. (42) as a down to earth expression of the following lemma19

Lemma 9. Let Mx and M2 interpolate between N and Nt and JVf and N' respectively,
then there exists μ ( M 1 , M 2 ) e C such that:

Ψ[M 1 #M 2 ]=μ(M l J M 2 )xψ[M 2 ]oψ[M 1 ] .

Cocycle condition on μ is clearly satisfied. Let us now explore some
consequences of this important property.

4.4. Consequences of Functoriality

We shall examine two consequences of Lemma 9. Namely, we explain how to
compute partition functions using Morse functions, topology changing ampli-
tudes and a projective representation of modular groups Diff+(iV)/Diff+ 0(JV) in
HN. We also discuss the relation with the one that arise in Moore and Seiberg's
work and the relation to the phase appearing in Sect. 3. Let us warn the reader that
we do not have clarified this point completely and we shall therefore be quite
sketchy in this section. We only intend to describe the main problems. Finally, we
prove in Sect. 4.4.3 that the gluing axiom is satisfied.

4.4.1. Morse Theory Computations. Let us consider M a boundaryless decorated
3-manifold, we choose a Morse function / which separates not only M's singular
points but also singularities of its decoration. We decompose M into slices Mk with
fce<l,JV>. Mk=f~1{[tk, tk+ί]) where tk is a regular value of / and
M = MίφM2Φ...#MN. Thanks to Lemma9, we can compute M's partition

1 8 In this formula X * means that T/s decoration is colored by J
19
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function as Z[M~\ = φ[MN] o... o φ[M{\. Indeed, it is possible to choose / in such
a way that one has some well-defined slices near /'s critical values. Moreover, if
between two regular values of/, there is no singular value of/, then initial and final
sections of these slices only differ by a diffeomorphism. We are thus led to
computing the action of diffeomorphisms and topology changing amplitudes.

Let us focus on diffeomorphisms. Any PTFT provides a projective representa-
tion of the modular group

on the Hubert space HN. Here, we have constructed a PRTFT based on a
geometric category the objects of which are orientable closed surfaces with some
marked points and a non-zero tangent vector at each point. A PTFT based on this
category defines a projective representation of M*(g, n) (the modular group of a
genus g surface with n punctures and a coordinate at each puncture) on Hg „.

This group is generated by all non-trivial Dehn twists. For example, Dehn
twists around one of the punctures, around non-trivial cycles (which generate the
usual modular group). The interested reader can find a description of a complete
set of generators of M*(g, ή) in the work of Birman [29]. The idea is to define the
action of the S modular transformation on Hltl and the action of Artin's braid
group on H0A. Thanks to Birman's work, this defines the action of M*(g, n) on Hg n

as soon as we know the cocycle.
In a topological field theory, any element / of the modular group can be

represented by a particular manifold M(f) the gluing of which defines the action of
/ This manifold is defined as follows: if we want to define the action of
fe ΌiS+{N)/ΌiS+f0{N) on HN, then M(/) has to interpolate between N and N. In
order to define Af(f), one can consider a cylinder N x [0,1] with parametrization
ψ at one end and /° φ at the other end, such that M1 # M(f) # M2 is isomorphic to
M1φfM2 for any manifold Aί l f 2 with NcdM1>2. To illustrate this point, we
compute the action of S on # l t l 5 the action of a Dehn twist around one puncture
and the action of half a Dehn twist around two punctures in the case of the four-
punctured sphere.

• Let us take 5 the modular transformation of the torus which sends (α) on (b) and
(b) on — (α). We denote φ[M(s)] = 5. Let (|χ/fβ»ifiJ fα be the usual basis of Hlt 1? we
have:

] .

Thanks to Moore and Seiberg's equations, we find:

(43)

where S(j) is the modular transformation matrix.
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Fig. 8. Representation of half a Dehn twist on two points P and P' located in a disk D by a cylinder
in which lines associated with these points are braided

• The action of a Dehn twist oilπn performed along a simple curve around P but
trivial in Σ — {P} is represented by a cylinder Σ x [0,1] where the line passing by P
has a framing twisted by n units. Therefore, any vector where the line passing by P
carries an index i is multiplied by exp(2πm/zί). This is exactly the action of a Dehn
twist around a point as it appears in Moore and Seiberg's paper.
• Next, let us consider two points P, P' in a disk D2 C Σ. We perform half a Dehn
twist on these two points as indicated in Fig. 8. This diffeomorphism of the surface
is associated with the cylinder H in which the lines passing by P and P' are braided
as indicated in Fig. 8. On the four punctured sphere, we consider \φ(p,a,b)}
defined by:

J

\φ(p,a,b)) =

i—•• l

Of course, the braiding can be performed in two different ways giving rise to
H±. Then after a short computation:

ιαc*
Bp,p'\J-

It coincides with Moore and Seiberg's expressions.
It remains to check that in the case of a general surface and with any element of

the modular group, the same phenomenon occurs. Indeed, Moore and Seiberg
have defined a projective representation of the modular group M*(g,ri) on Hgn

using the F, B, S, and T matrices. Let us suggest why the representation arising
from our PRTFT and Moore and Seiberg's work coincide.

We shall prove coincidence for a generating set of M*(g9 ή). We shall not
describe here all technical details, the computations being mostly quite simple and
similar to the ones carried out in [23, 8]. Cocycle problems will be analysed in the
next section.

The case of Dehn twists around one puncture is clear. We only need to look at
the modular group M(g, n) of a surface with n punctures but no coordinates at the
puncture. We have the following exact sequence:
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A set of generators of M(g, ή) is given by monodromies of the points on the surface
and a set of generators of the ordinary modular group. The monodromies are
closely related to the braid group on the genus g surface. The following exact
sequences hold:

For

For g = l , n>\ or g = 0, n>2:

where CBn(g) is the set of colored n-braids on a closed orientable surface of genus g
defined as the fundamental group of the configuration space:

Moreover, if we denote Artin's braid group by Bn and Bn(g) the uncolored braid
group of the genus g surface, we have:

where the kernel of each homomorphism is the normal closure of the image of the
previous homomorphism.

To describe the arrow from CBn(g) to M(g, n\ let us consider γ e CBn(g) and
associate with it fy e M(g, n) defined as in [29]: if γ(t) is the position of our n points
at time ί20, we can define a path t\->Ft in Όiϊϊ+{Σ'g) such that Ft sends y(0)
on y(t) (Σg is a genus g surface with no punctures). fy = F1 is considered as a
diffeomorphism of Σ" with n marked points. Obviously, it is trivial in Mg. The
manifold M(fy) is easily constructed: it is a cylinder Σ"g x [0,1] with the image of γ
in it. Computing φ[_M(fy)~\ is quite simple: we only need to compute it for special
braids: namely, the liftings of generators of Artin's braid group in Bn(g\ and braids
obtained by driving one point along a generator of π^Σ"). The first case has
already been analyzed on the four punctured sphere. Thanks to projective
functoriality, the result is obtained on any surface. Let us now turn to the second
case; the fundamental group n^Σ") is generated by the (aj) and (bt) cycles. We only
have to drive one of the points around a non-trivial cycle of I"'. More complicated
cases can be obtained by composing such elementary moves and using Artin's
braid group. Thanks to projective functoriality, we are led to considering the two
punctured torus. We use projective functoriality to cut our manifold into pieces.
This gives the result for the particular elements of M*(l,2) we consider. We are
thus able to find expressions for any representative of a lifting of (π1(2'r/))/I into
M(g, n) and of an embedding of CBn into M{g, n) both via CBn(g). The expressions
we find are identical to the ones appearing in Moore and Seiberg's analysis up to
powers of exp(2πιc/24).

Finally, let us study the action of the modular group Mg. This group is
generated by Dehn twists around non-trivial loops of Σ". More precisely, Mg is
generated by Dehn twists around the (αf), (c,-), and (frf) cycles. We leave it to the
reader to compute matrix elements of operators representing these diffeomorph-
isms. Using projective functoriality, one easily sees that the case of (αf) and (&f)
cycles reduces to the similar case on the torus where the result is easily shown to be
true by direct computation in the case of the (a) cycle, and by using the 5 modular

2 0 A braid is nothing but an isotopy class of paths in a configuration space
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transformation in the case of the (b) cycle. A direct computation in the case of (Cj)
cycles gives the result.

Finally, both projective representations coincide on a generating set of M*(g, ή)
up to powers of exp(2πιc/24). The cocycle in both cases is also a power of this
number. Let us now turn to cocycle problems.

4.4.2. About Projectίvity.... Associated with projective representations arising
from our PTFT and Moore and Seiberg's work is a series of cocycles belonging to
H2(M*(g, n), Z). First of all, we can wonder whether these cocycles coincide or
not. Another question would be to find a nice interpretation of them. Answering
this second question in a sufficiently powerful way should provide an answer to
the first one.

As we indicated before, a PTFT is nothing but a true TFT defined on a central
extension if Ma by an abelian group2 1. It would be nice to find a geometric
interpretation of this integer valued degree of freedom, that is to say, to build a new
geometric category Ma' = Mae on which the TFT could be defined naturally.
Witten originaly argued [3, 30] that the corresponding degree of freedom is the
framing of the three-manifold, that is to say the isotopy class of trivialization of
TMφTM, where TM is M's tangent bundle. This idea has been explored by
Atiyah [31]. It is however not so easy to define the framing of a three manifold with
boundary. Nevertheless Atiyah has defined a cocycle for all modular groups Mq

and has shown the existence of a universal cocycle. We refer the reader to his paper
for details. Such a notion also appears in Harer's paper [32, Sect. 5]. Let us state a
natural conjecture.

Let (/, h) be two diffeomorphisms of a genus g surface without punctures, we
define μ(fh) to be μ(M(f\M(h)): it clearly defines a 2-cocycle on the modular
group Mg. We conjecture that:

Conjecture. // A denotes the generator of H2(Mg9Z) defined by Rarer, then it
coincides with AtiyalrCs universal cocycle and moreover:

(44)

However I do not know any precise investigation of these matters in the
framework of RTFT. Clearly, a serious and explicit look at central extensions of
the tower of Teichmuller modular groups is needed. I hope to clarify these
problems sooner or later. This is clearly related to the phase we have introduced in
Sect. 3: this arbitrary although natural phase fixing is at the origin of the
projectivity of our TFT and fixes the form of the cocycle for modular groups.

4.4.3. Gluing Axiom. The gluing axiom is a consequence of functoriality and
topological invariance:

Proposition. Given two categories Ma and Sp as in Subsect. 1.1 and a functor Φ
between these categories such that:

and HN only depends on the topology of N and Φ is topologically invariant, then it
defines a TFT.

2 1 Z in our case
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Proof. We consider M a manifold interpolating between N1 and JV2. We suppose
that two connected components of Nί (N2 respectively) are isomorphic to N: N
CNί and NcN2. We can glue together these components building M[Ny As
usual, we directly check the gluing axiom on matrix elements. Therefore, we
assume M to interpolate between JV and JV. M[N] will be denoted by M. We want
to show that Z[M]=Tr(φ[M]). One can choose a Morse function on M as
indicated on Fig. 9. Using this presentation is equivalent to considering a
manifold M interpolating between NnN and 0. But φ[_M~\ and </>[M]'s matrix
elements are related by:

Henceforth:

(45)

(46)

M is obtained from M by gluing to it a cylinder N x [0,1] as indicated on Fig. 9.
We denote by P the manifold we glue. It interpolates between 0 and NuN.
Topological invariance and φ[N x [0,1]] = 1HN implies:

Finally, thanks to the orthogonality of our basis,

- y r

- J Σ
. 1 which is Z [ P # M ] = Z[M].But this expression is nothing but

Henceforth: Z[M]=Tr(φ[M]). Π

In our context, we have shown that all axioms of a PRTFT were satisfied. Thus,
one builds an extension Mae and a functor from Mae to Sp which verifies the
axioms of a TFT except the gluing axiom. Proposition 4.4.3 shows that indeed it
does and therefore this proves that in a projective TFT we have the following
property:

ΦiM^ccΎT^φlM}). (47)

Conclusion

To conclude, Witten's conjecture about the interpretation of Moore and Seiberg's
equations as the equations of motion of RTFT is verified. Nevertheless, this does

Fig. 9. A particular choice of a Morse function to compute
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not seem to illuminate the classification of RCFTs. Several questions remain
unsolved:

• Various results about representations of modular groups remain to be collected
in a single place and the relationship of all that stuff with TFT remains to be
definitively clarified. This should give a clear interpretation of the phase
exp(2πίc/24).
• Given a solution to Moore and Seiberg's equations, find a RCFT the conformal
blocks of which define the same representations of all modular groups M*(g, n). Let
us remark that the solution, when it exists, is far from being unique! Tensoring by
any holomorphic CFT at c — 24 leaves all monodromies invariant and therefore
does not change the representation of the modular group. The unicity problem is
thus connected to the classification of all holomorphic CFTs at c = 0 (mod 24). The
existence problem involves a kind of Riemann-Hilbert problem 2 2 constrained by
certain positivity and integrality requirements 2 3 . This problem is deeply rooted in
number theory and remains unsolved. Finally, one has to reconstruct a chiral
algebra, the representation theory of which will provide us with conformal
blocks!
• Classify all solutions to Moore and Seiberg's equations. It has appeared that the
representation theory of Quasitriangular Hopf algebras (among which are
quantum groups) automatically built solutions to these equations. Moreover,
Moore and Seiberg, using a reconstruction theorem of Deligne [34,14] have
proved that in a certain limit, solutions to Moore and Seiberg's equations were
classified by representation theories of compact groups. However, such a program
has not been completed in the general case mainly because any powerful
reconstruction theorem a la Tannaka-Krein-Deligne is still lacking.
• A recent work by Baulieu and his collaborators [35] exhibits very exciting and
mysterious relations between TFTs ind,d + l, and d + 2 dimensions. Starting from
3D Chern-Simons theory and quantizing it by stochastic quantization naturally
leads to considering Witten's topological field theory in 4 dimensions [22, 36]. A
similar connection also exists between 2D quantum gravity and 4D topological
gravity. It would be extremely interesting to clarify this from an algebraic point of
view. This would connect 3D topology to 4D geometry in a rather amazing way.

Unfortunately, none of these questions is solved at present time.
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Note added. While correcting the proofs of our paper, we had an interesting discussion with
D. Altschuler and A. Coste about their recent work [37] on topological invariants that arise from
quasi-quantum groups related to orbifolds of holomorphic CFTs. As can be expected from our
work, since c = 0 (mod 8) in these CFTs, representations of modular groups that arise from their
construction are not projective as they have checked in particular cases. It is an interesting exercise
to compare their results for partition functions of lens spaces with ours in some simple cases. Both
approaches coincide as one would expect.

2 2 Given monodromies, find functions which precisely have these monodromies
2 3 The reader will remember these problems in the context of the quest for modular invariant
partition functions [33]
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A. Technicalities around F Matrices

The purpose of this appendix is to prove some technical properties of the F
matrices such as their tetrahedral symmetry and their unitarity.

A.I. Tetrahedral Symmetry of the F Matrix

Let us define:
Γc <Π_1/SWOSΌ \C d\

" q\_a b\~ S°o "'"la b\'

where i,j, k, I are the external legs of the block considered here. Our aim is to show
that W has the tetrahedral symmetry 2 4 . Let us introduce the following notation
for the edges of a tetrahedron:

We know from Moore and Seiberg [14] that:

F p "la P'ql*i3(b) σ13(α)J f

Γ l
p'qlσ23(a) σ 1 2(i)J'

(48)

(49)

which represent W's symmetry under (12) and (34) permutations. To go further, we
start from the pentagonal identity P23^i3^12 = ̂ 23^12^23 acting on a block with
external legs f,ΐ,j, k, I and we project on the sector with q1 = 0:

Pi

j *

Pi

b

t j

u k
— < —

v I

US

Using the fact that F matrices with one external line set to zero act trivially gives
25.

We know that Fp< 0 ' / = 0 when a φ S. We shall now fix a gauge in such a

2 4 In R T F T , it will become the expectation value of a tetrahedron
2 5 In the rest of this appendix, we shall be sloppy about the vertex indices, denoting by a the vertex
σ{a)
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way that:

while preserving the S matrix and the value of F matrices an external line of which
is set to 0. Reporting Eq. (51) in (50) gives W's symmetry under the 3-cycle (124).
But is is clear that the group generated by (12), (34), and (124) is the full
permutation group Σ4 and therefore W has the full tetrahedral symmetry.

Let us show that we can perform the previously mentioned gauge choice. We
recall that Moore and Seiberg's equations are invariant under a rescaling of chiral-
vertex operators:

[: ί]
< 5 3 )

tf=T-S<J%$K (54)

Aa>

Γ=T9 (55)

under the ακ->/lαeC* gauge transformation. Preserving 5(0) implies that λt. = λtQ.
17 k I

We fix λt0 to be 1 by convention. Then, if F <. > is the F matrix acting on blocks

with external legs set to i,j, k and /, we see that:
j \ = F \ i

θ fcj [0 k
c ^ i— —i

The only non-zero entries of Fp 0 < Λ are the Fp_ 0 ' i . We can there-

fore choose the λas in such a way that

-4.2. Unitarity of F and B Matrices

We prove that the F matrix is unitary, that is to say that:

-*«<*>*'»,• (56)

From the relation between F and B and the hexagon, one obtains

from which B(ε)B(-ε) = l and by replacing J5(ε) by (Ω(-ε)®l)F(l(x)ί2(ε)) in this
identity, we find:
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and using the tetrahedral symmetry

c dλ_ YS Δl Yb al*

la bΓF«*l6 iΓF'"lc d\ '
we obtain (56). L J L J L J

The relation between F and B together with Ω(εy = Ω(ε)~1 = Ω(-ε) imply £(ε)'s
unitarity. Hence:

Lemma 10. The F and B(±) matrices acting on Ho 4 are unitary.

B. Graph Invariants in S3

In this appendix, we shall recall how to define topological invariants for framed
trivalent colored diagrams embedded into the sphere S3. We shall firstly recall how
to prove that we define topological invariants in S3. For this purpose, we adapt a
method used by Reshetikhin and Turaev in the case of Quantum Groups [24].
Then, we prove some useful properties of these invariants, namely, partial
projective functoriality in S3.

B.i. Topological Invariance in S3

We define topological invariants in S3 as explained in Subsect. 2.2. The basic idea
is to use a transfer matrix method. Transfer matrices are defined in Subsect. 2.2.
The partition function of a trivalent graph with normal framing is defined by
Definition 6. The case of another framing introduces some phase factors described
in Subsect. 2.2. Indeed, we want to prove Lemma 1: the number associated with a
decomposition of the three sphere into cylinders sandwiched between two three-
balls does not depend on the decomposition but only on S3's decoration.

In a recent work, Reshetikhin and Turaev [24] explained how to generalize
Reidemeister moves to the case of a framed trivalent graph in <S3. We shall firstly
consider the case of graphs with a normal framing, also called homogeneous
graphs. In this case, one can forget about it and say that K and K' are equivalent if
and only if there exists an isotopy which sends K onto K' and which is compatible
with the colorings of the graphs. That is to say, a line (a vertex respectively) is
brought on a line (a vertex respectively) with the same color. Following the
terminology of [24], we only consider homogeneous colored directed ribbon
graphs (HCDR). The HCDR category is defined in [24]. It is generated by some
particular graphs as explained in [24]. These generators obey some relations as
expected from the case of links and knots26. In [24], a complete set of relations is
given for generators of the category HCDR. We recall these relations in Fig. 10.
We have to check that our assignment of operators with these generators is
consistent with these relations. This will prove that we have defined a functor from
the category HCDR into a category Sp' defined as follows: its objects are the
spaces27 H^n for neN and its morphisms are linear operators between these
spaces. The composition of morphisms is the composition of linear operators. We
define F by its action on morphisms and objects as follows:

Action on Objects. As explained in [24], HCDR's objects are finite sequences of
distinct points in R2 labelled with line indices and signs [(Pfc, ;k,εk)fe]. The empty set

2 6 The reader will recall the celebrated Reidemeister moves
2 7 We recall that [ £ ] denotes a coloring of the external lines which are assumed to be incoming
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Fig. 10. Defining relations of category HCDR. Relations 1 to 5,8,9, and 11 are called Reidemeister
relations and can be used to define knot and link invariants. Relation 5 is the celebrated Yang-
Baxter relation. All other relations involve vertices. Relations 12 and 13 describe compatibility
between crossings and changes of framings. On our figure, the arrow describes the sense in which
the framing is turning. It is supposed to be normal, pointing towards the reader before the arrow
which indicates how it rotates around the line we consider. Beware that on all our drawings lines
have not been oriented because any change of orientation can be obtained by turning a coloring
into its opposite. Remember also that wherever a crossing appears, a similar relation holds
exchanging over- and under-crossings. Invariance of Moore and Seiberg's equations under
permutation of B( + ) and B(—) makes their considering irrelevant

0 is also considered as an object. Let n be the cardinal of the set considered here, F
associate with it Hψ$k\ where lk=jk or jk according to εk = l or —1.

Action on Morphίsms. HCDR's morphisms consists into trivalent graphs included
in R2 x [0,1] interpolating between two objects located in boundary planes of
R2 x [0,1], ^'s coloring should be compatible with the boundary indices. More
precisely, the color of a line arriving at point Pk is jk and the line is oriented
accordingly to εk. For example, when ε k =l, the line has to be oriented by a
descending arrow. Given such a morphism, we decompose it into generators Λk as
explained before and the transfer matrix computation enables us to define F[^]
by: m

&JlAm-k, [R 2 χ[0, i] ,^]=# f e e <o, w >A. (57)

Among all relations between generators, we can separate Reidemeister
relations which involve no vertex and the other ones. This distinction is already
made on Fig. 10. It is quite easy to check that Reidemeister relations are satisfied.
Indeed, relation 3 is implied by Yang-Baxter's equation on B(±) which is a
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consequence of Moore and Seiberg's equations as was shown in [14]. Let us sketch
a proof of the other relations.

Relations <5,7. We slide a line across a vertex. Relation

Fl3Bί2(±) = B13(±)B12(±)F23

proves relations 6 and 7. This relation is a consequence of Moore and Seiberg's
equations obtained by combining the pentagon and the relation between F and
B(±). We also have to use the tetrahedral symmetry of F.

Relations 8.9. We proceed in two steps. First of all we prove the identities
illustrated on Fig. 11. We use, one more time, the tetrahedral symmetry of F. Then,
from B( + )B(—) = 1, we deduce relations 8 and 9.

Relations 10, 11. These identities can be checked quite trivially and we do not need
really any deep Moore and Seiberg identity.

Relation 12,13. These identities do not appear under this form in the work of
Reshetikhin and Turaev [24] but our identities imply relation 8 of their paper.
Moreover, relations 12 and 13 shows that twisting the framing of a line carrying
index; introduces a phase factor exp(2πι7zj). Obviously, the left-hand side of our
relations are topologically equivalent to twistings of line's framings by +1 unit.

To prove this relation, let us compute in the transfer matrix formalism the left-
hand side of relation 12 as on Fig. 12. This gives:

ΣBpupl(+)\aί Ί ^
P2

a\ an-2
(58)

Fig. 11. Intermediate relations needed to prove relations 8 and 9

Fig. 12. Morse description of the left-hand side of relation 12
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Note that α's external legs are pl9 i2, p. The extra-hypotheses we made on F and our
suitable gauge choice together with the relation between F and B provide us with:

( 5 9 )

and reporting this into (58) gives:

X

12 H In-I In

a i a2 an-2

(60)

However, let us stress that:

is nothing but the matrix element of B23(+)Bί2( + )B23(+) between the states:

Pi

Pi 12

0
and

m
— • —

Px ii

q
— • -

a\

and we shall now use Yang-Baxter's equation. The matrix element of

between the states we considered is:

It can trivially be computed and we find:

Finally, all this shows that:

Σ §-ΛuPι{-)\X ϊ\=δx,aiexp(-2iπhi2), (62)

and performing the same computation with an undercrossing produces the
opposite phase. This proves our relations.

This completes our analysis in the case of homogeneous graphs. Let us consider
the case when the framing is not normal. A twist in the framing of a line carrying the
index; by n units multiplies the partition function by exp(2πm/iJ). When proving
relations 8 and 9, we have seen that this interpretation was indeed consistent with
isotopies in S3 because we can always untwist the framing of a line by introducing a
suitable crossing as on relation 12. Finally, our prescription defines topological
invariants for framed colored φ3 diagrams in S3.
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B.2. Properties of these Invariants

First of all, we study the behaviour of these invariants under an orientation
reversing symmetry and a reversing of the coloring. Then we show that they satisfy
functoriality when S3 is cut along a two-sphere S2 and projective functoriality
when one uses a genus g surface with an arbitrary number of punctures embedded
in a trivial way. We shall also prove that any line carrying an index 0 can be
deleted.
B.2Λ. Changing the Orientation of the Graph. Let us start from a framed graph K
colored by JΓ. We define K to be the graph obtained from K through an
orientation reversing symmetry28. The framing itself is affected by this symmetry
and turned into its opposite. We claim that:

Lemma 11. With the above definitions:

Proof We compute Z[S3, K#\ using a projection plane JL First of all, using
isotopy, X's framing can be chosen to be normal. Henceforth K is obtained from K
by symmetry through Π. It has normal framing. Its projection on Π differs from X's
one by turning over (respectively under) crossings into under (respectively over)
crossings.

From Eq. (10) and the relation between F and B matrices, we find:

Moreover, a famous expression of S in terms of B and F matrices can be inferred
from Moore and Seiberg's equations:

«->*<-»4:: fl*

and it shows that Sj = (S/)*. In particular SQ = SQ and is real. Therefore, through the
use of the transfer matrix method, it is obvious that:

Z[S3,^]=Z[S3,X j r]. D

B.2.2. Functoriality along S2. We consider KcS3 a trivalent graph, framed and
colored in S3. We are given ΣOtK a two sphere embedded in S3

2 9. We assume that K
is cut into two pieces K± by this surface and no vertex belongs to K+nK_.
Therefore, we can decompose [S3, X] into cylinders in order to compute Z[S3, K]
in such a way that ΣOn is the frontier of one of the cylinders. The graph 9 we use is
the so-called multiperipheral graph and using suitable Morse decompositions for
^ to compute Z[_S3,%%%K+~] shows that:

Amusingly, this is nothing but functoriality in this particular case.

2 8 Such as a plane symmetry, no matter which plane we choose thanks to topological in variance
2 9 n is the cardinal of KnIOn
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B.23. Other Bases of Ho „. Let us show that it is possible to build many useful
bases ofH0n for n^4. These bases are related by duality transformations (i.e. by
the F and B matrices) and will be used in the proof of functoriality for g ^ 1.

Let us be given a genus zero φ3 diagram ^ with n external legs. Any other genus
0 trivalent graph with n labelled external legs Ψ is related to ^ by a finite sequence
of F and B moves defined as in Subsect. 2.1.

As in Subsect. 4.1, we shall see that our formalism is covariant. P(^,^') is
defined as in Subsect. 2.1. We prove that formula 64 holds with any graph ^ by
recurrence.

Let us assume that formula (64) holds for a given graph (S. We shall prove that it
holds for any graph Φ related to ^ by an elementary move F or B(±). Then,
finiteness of the duality complex implies that the formula is true for any tree-level
graph ^ with n external legs.

To perform the recurrence step, we consider ̂  and 9' differing by an F-move.30

We can find two three-balls B± i n S 3 s u c h t h a t ( ^ # K + ) n £ + and(X_
look as on the following figure:

I

and changing'S into Ψ is performed by replacing B+ by the following three-balls:

Using the transfer matrix method and cutting along β± 's boundaries shows
t h a t :

c,d

c, d

Γc
\_a

where (p,a,b) and (q,c,d) are contained in
unitarity, we see that:

=Σ

and <£" respectively. Using F's

The case of 5-moves is treated in the same way
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and this proves formula (64) for <§' deduced from ^ by an F-move. Hence, this
formula is true for any genus 0 graph ^, with n external legs.

This proves the following lemma:

Lemma 12. Functoriality holds along a two-sphere in S3:

for any tree-level graph <S with n external legs.

It is then obvious to infer from that the following result:

Lemma 13. Functoriality holds along a two-sphere in any closed three-manifoldl

Proof. Let M = [M1 ? JSCJ # [M2, K2~\ be a three-manifold cut along a two-sphere.
Kx # K 2 denotes its decoration. As Lemma 7 shows us, M can be obtained by
surgery from S3 along [(L l5L2), (Kl9K2Y\, where (LUK^) and (L2,K2) are
separated by a two-sphere S2 which corresponds through the surgery to the one
used to cut M. Functoriality along S2 in S3 makes clear that we only have to worry
about phase factors.

Here comes the work of Atiyah [31] who showed that σL is indeed proportional
to the integral of the first Pontryagin class of the tangent bundle on WL. Additivity
properties of Pontryagin classes imply that σ(L1 nL2) = σ(Lx) + σ(L2) when Lι and
L2 can be separated by a two-sphere. Therefore we end up with functoriality along
S2 in any three-manifold:

( Π ((̂
i

Π
1

«2 \ _

fe = i 2>JJ

Partial Projectίυe Functoriality for g ^ l . O u r strategy will be to prove
formula (65) for g = 1 and then prove it for any genus. Before going into details, let
us examine precisely our problem.

Instead oϊΣ0tΛ9 we consider Σgn a genus g surface embedded in S3 which
intersects K in n points, none of which is a vertex. This surface splits S3 into two
connected components. We assume that one of these components can be viewed as
a genus g handlebody Tg and the other one as S3\Tg. Let us however stress that an
embedding of Σg in S3 does not necessarily split it into a handlebody and its
complementary which is diffeomorphic to a handlebody. This is why we only prove
a partial projective functoriality theorem which is the only thing we need in
Subsect. 4.3.3.
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The property we want to prove is the following:
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(65)

[ 3 , ^ + ] is a partition function in S3 and can be computed using the
transfer matrix method. On the other hand, Z[Tg^Tg,K_ #&<%] must be
computed using a surgery presentation of Tg # Tg. Let us now prove (65), first in
genus one, then in any genus.

Case of Genus One. We shall here study the case g = n = l. In this case, we can
homotopically transform K± as indicated on Fig. 13. This singularizes the
homotopically non-trivial lines of K_ in Γx and of K+ in S3\TV We shall make an
intensive use of the previous lemma and of topological invariance of all partition
functions. This result is proved in Sect. 3.2 without using more than functoriality
along S2 in S3! Therefore, it can be used safely.

For the sake of simplicity, we shall firstly consider the case depicted on Fig. 13
where only one line is circulating in the loop of Tγ (S3\T1 respectively). The usual
basis of H1 x can be denoted as (|χ/,β»it</,β where a labels the vertex, f̂ he loop-line
and j the incoming external line. Let us compute Z[M+ Φ(fuχ

J

k 5)] and

(i
• The first partition function gives:

,J? + ] , (66)

where Jέf + is the graph depicted on Fig. 14. To obtain this, we have cut along a two-
punctured sphere. This operation is allowed thanks to the preceding result.
• Gluing two genus one handlebodies produces S2 x Ŝ  which can be obtained
from S3 by surgery along an unknotted circle of framing zero. It is an easy exercise
to check that yt depicted on Fig. 15 naturally arises as the antecedent of the graph
lying in S2 x S1# The partition function is then:

Fig. 13. Graphs K+ CS3\T! and K-CTV B± contains their homotopically trivial parts
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Fig. 14. Auxiliary graphs JSP+ and J&?_; we have p'=j and p=j

Fig. 15. Graph (K+ # ^ ) c S 3 : the sphere along which we cut is slightly shadowed

Using Lemma 13 we get after a short computation:

Γ 1 ?ZU)*M_]= δj-pe™1 ZCS3,if_]<χ{αlχ^> (67)

and if _ is depicted on Fig. 14.
Putting Eqs. (66) and (67) together to compute <M+ |M_> produces precisely

This is easily proved by cutting S3 along a two-puncture sphere to isolate the
"bulbs" of K+ and K_ from the rest. Cutting again along a two-punctured sphere
separates these bulbs, thus leading to the result.

Let us have a look at the more complicated case where several lines run into the
non-trivial loops of Tx and S3\Tt. The idea is to go back to the preceding case by
cutting along suitable spheres to get rid of these lines. Let us consider
Z\_M+ # (f1? χJ

kbJ] for example. We can find a 2m-punctured sphere which contains
the m homotopically non-trivial lines of M+ as indicated on Fig. 16. We then use a
suitable basis of Ho 2 m introduced in Subsect. 3.2 to compute Z[M + # (fl5 χ{t b)] by
cutting along the 2m-punctured sphere. Consequently, this partition function is a
linear combination of partition functions in S3, the coefficients of which are
independent of (j,k,b). The same manipulation can be performed on
Zί(Tuχi,b)*Λ^-] because these manipulations commute with the surgery used to
pass from S3 to Tx # t v Finally, we are back to the case where only one line is
running in the homotopically non-trivial loops of Tx and S3\Tlβ These show that
<M+ |M_> is expressed as a double linear combination of partition functions in
S3. But, the coefficients that appear here can be recovered from Z[S3, K] by cutting
along punctured spheres that contain the homotopically non-trivial lines in M+.
Hence, this proves formula (65) in this case.
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Fig. 16. By cutting along the 2m-punctured sphere S2, we go back to the case where one line is
running along the non-trivial loop of S3\TV The sphere along which we cut is slightly shadowed

Fig. 17. We show (K+ #&v)cS3 and the auxiliary graphs obtained by cutting along punctured
spheres in S3. These spheres are slightly shadowed

Lemma. Projective partial functoriality along a one-punctured torus holds in S3

Higher Genus and g = 1, π ^ 2 . The result simply follows from the previous lemma
and suitable splittings of the manifolds we consider.

We first look at the case where only one line runs along each non trivial cycle of
M+. We choose a particular graph ^ which is shown on Fig. 17. The main
restriction on its shape is that the line running along a non-trivial loop in Tg has
only one vertex. On this figure, Bo contains the connection between the loops and
the external legs of 0, that is to say, a tree with n + g external legs. Z[M+ # (71,0)]
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is a partition function in S3. We then cut along suitable two-spheres to isolate the
linked lines i'l9kt (see Fig. 17). This gives us:

Π
1=1

(68)

where JQ + is shown on Fig. 17 and χ{ι

u0Lι and χjί( a> are linked as indicated on the
same figure.

Using functoriality along S2 in any three-manifold (Lemma 13), we cut TgΦ Tg

as indicated on Fig. 18 and this gives:

ZίTg#Tg,^ΦK_] = Z[S3,Jfn Π ̂ Z Ή Φ ^ j d L φ χ f c J , (69)

where χlι

ιΛι and ^ a i are linked in Tγ # Ti = S2 x Sj as indicated on Fig. 18 and JΓ^~
is depicted on the same figure.

Putting formulas (68) and (69) together and using (65) in the cases g = 0 and
g = n = l shows that:

2πigcσΛ/8

π
1=1

(70)

Fig. 18. (^^ and the auxiliary graphs used in the computation of
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Fig. 19. Direct computation of Z[S3iK+ # K _ ] by cutting along punctured spheres to isolate
K + ( W #K_ > M from the Jfts. Knj + φKHt _ is obtained by gluing B+ using their external legs. In the
same way, S£χ is defined by closing the graph inside the /-th shadowed ball on our figure with a
single line

where Kn + and JS?_ are defined on Fig. 19. We remark that σg = gσί and cutting
J] along suitable two-spheres which isolate K+'s bulbs Kn ± from the iff.

n ±

shows that the right-hand side of (70) is nothing but Z[M+ # M_], All this proves
(65) when one line is running in each homotopically non-trivial loop of M+.

In the general case, more than one line runs through along the (a) cycles in S3\Tg

or (b) cycles in Tg. The method is exactly the same as in the previous case and the
interested reader will check it in detail: we can go back to the situation where only
one line runs along each cycle, and we prove that:

9,n-
Theorem 5. Projective partial functorialίty holds in S3 along any surface Σ{

B.2.5. Miscellanea. Let us prove that any line carrying a 0 index can be forgotten.
We consider K c S3 a trivalent framed colored graph a line of which carries the
index 0. Two possibilities are available:
• The line is a connected component of K. In this case, let us consider a tubular
neighbourhood of this line Co in S3 which does not intersect K\C0. We then cut
along £ 1 > 0 prove that one can delete Co: Z[53,X] = Z[53,K\C0].
• The line is not a connected component of K. At least one vertex connects it to
the rest of K. Indeed, the basic situation is depicted on the following figure:
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Of course, the ij indices can also be 0. In this case, we use a four-punctured sphere
to see that one can replace the preceding configuration of lines by:

J

This is obtained using functoriality along S2 and proving that:

0
- • -

= ΦίB3,

by explicit computation.
Henceforth, any line carrying the index 0 can be forgotten because we can first

of all delete all isolated loops and then any line which relates two vertices. This step
being completed, we may have created some isolated loops with index 03 1. Then,
we iterate this process and by induction over the number of line indices equal to 0,
it is possible to forget about all lines carrying index 0!
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