On the Solvability of Painlevé II and IV

A. S. Fokas ${ }^{1}$ and Xin Zhou ${ }^{2}$
${ }^{1}$ Department of Mathematics and Computer Science, Institute for Nonlinear Sciences, Clarkson University, Potsdam, NY 13699-5815, USA
${ }^{2}$ Department of Mathematics, Yale University, New Haven, CT 06520, USA

Received December 6, 1990; in revised form October 18, 1991

Abstract

We introduce a rigorous methodology for studying the RiemannHilbert problems associated with certain integrable nonlinear ordinary differential equations. For concreteness we investigate the Painlevé II and Painlevé IV equations. We show that the Cauchy problems for these equations admit in general global, meromorphic in t solutions. Furthermore, for special relations among the monodromy data and for t on Stokes lines, these solutions are bounded for finite t.

1. Introduction

Flaschka and Newell [1] and Jimbo, Miwa, and Ueno [2] have introduced a powerful approach for studying the initial value problem of certain nonlinear ODE's: They have shown that solving such an initial value problem is essentially equivalent to solving an inverse problem for an associated isomonodromic linear equation. This inverse problem can be formulated in terms of monodromy data which can be calculated from initial data. Fokas and Ablowitz [3] have shown that the inverse problem can be formulated as a matrix, singular, discontinuous Riemann-Hilbert (RH) problem defined on a complicated contour. Hence techniques from RH theory can be employed to study the solvability of certain nonlinear ODE's. The above method, which is an extension of the inverse scattering transform method, is called inverse monodromic transform (IMT), and can be thought of as a nonlinear analogue of the Laplace's method for solving linear ODE's.

The six Painlevé transcendents, PI-PIV, are the most well known nonlinear ODE's that can be studied using the IMT method. P II has been studied in [1,3], a special case of P III in [1], P IV and P V in [4]. We refer the interested reader to [4] for a historical perspective on the Painlevé equations. Here we only note that these equations: (a) have the Painlevé property, i.e. their solutions are free from movable critical points [5], (b) possess particular solutions which are either rational or can
be expressed in terms of certain classical transcendental functions [6], (c) are intimately related to nonlinear PDE's solvable by the inverse scattering transform [7], (d) appear in a wide range of physical problems [8-17]. In particular it has been shown recently that Painlevé equations play an important role in two dimensional quantum gravity [18-20].

In this paper we introduce a rigorous methodology for studying the RH problems appearing in the IMT. For concreteness we investigate P II and P IV, however similar results can also be obtained for other nonlinear equations. We will show that the Cauchy problems for P II and PIV in general admit global meromorphic in t solutions. Furthermore, for special relations among the monodromy data and for t on Stokes lines, these solutions have no poles. It should be noted that although the inverse monodromy problem was formulated as a RH problem in [3,4] the question of solvability of this RH problem was left open. In this paper, in addition to simplifying the formalism introduced in [3, 4], we are able to investigate the above question. Actually, the proof of the existence of meromorphic solutions (which is the first such proof using the isomonodromy approach) is quite more transparent than the original proof of Painlevé. Also, for the first time in this paper, a method is introduced using RH theory for finding those monodromy data (and hence those initial data) for which the solution is free from poles.

The RH problems associated with the IMT have several novelties. For example, in connection with P II one needs to reconstruct a sectionally holomorphic function $m(z ; t)$ with the following properties: (a) $m(z ; t)$ has certain jumps on the contour defined by $\operatorname{Re}\left(\frac{4 i z^{3}}{3}+i t z\right)=0$, (b) $m(z ; t)$ tends to the identity for large z off the contour, but it oscillates on the contour, (c) $m(z ; t) \sim \hat{m}_{0}(z ; t) z^{\theta \sigma_{3}}$ as $z \rightarrow 0$, where \hat{m}_{0} is analytic at $z=0, \sigma_{3}=\operatorname{diag}(1,-1)$ and θ is a constant parameter. The situation for PIV is similar but now the contour is defined by $\operatorname{Re}\left(\frac{z^{2}}{2}+t z\right)=0$ and $m(z ; t)$, in addition to being singular at the origin, has also a singularity of the type $(1 / z)^{\theta_{\infty} \sigma_{3}}$ on the contour. To study a RH problem of this type we first study a RH problem which is formulated on a new contour, obtained from the original one by: (a) inserting a circle around the origin, (b) performing a small clockwise rotation. The new RH problem is analytic both at the origin and at infinity and hence can be studied by standard methods, in particular is equivalent to a certain Fredholm integral equation. Having established the solution of the new RH problem it is straightforward to establish the solution of the original one.

The matrices defining the jumps on the relevant contours have an explicit analytic dependence on t. This has important implications: (i) The associated Fredholm integral equation depends analytically on t, and since it is solvable at $t=0$ (which follows from the direct problem), it has solutions meromorphic in t [21]. (ii) It is possible to introduce a quadratic from of the type $m h m^{\dagger}$, where h is piecewise constant, as opposed to the standard form mm^{\dagger}. Here ${ }^{\dagger}$ denotes Schwarz reflection, i.e. $f^{\dagger}(z)=f(\bar{z})^{*}$, where $*$ denotes complex conjugation and transposition. Using this form it follows that for certain constraints on the monodromy data and for t on Stokes lines the homogeneous RH problem has only the zero solution (i.e. there exist a vanishing lemma). Alternatively, it is possible to define an equivalent RH problem on fewer contours and then use the standard quadratic form mm^{\dagger}. In the case of P II,

$$
\begin{equation*}
y_{t t}=2 y^{3}+t y+\theta \tag{1.1}
\end{equation*}
$$

for real t, one finds the constraints

$$
\begin{equation*}
b=\bar{b} \quad \text { and } \quad|a-\bar{c}|<2, \quad|\operatorname{Re} \theta|<\frac{1}{2}, \tag{1.2}
\end{equation*}
$$

where the monodromy data a, b, c are related via [1]

$$
\begin{equation*}
a+b+c+a b c=-2 i \sin \theta \pi \tag{1.3}
\end{equation*}
$$

The special cases

$$
\begin{equation*}
a=\bar{c}, \quad \theta=0 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
a=c=i \alpha, \quad|\alpha|<1, \quad \theta=0 \tag{1.5}
\end{equation*}
$$

were suggested by Its and Novokshenov [22] who have studied the large t behavior of Painlevé equations. These authors have formally shown that if the monodromy data satisfy (1.4) or (1.5) then the solution of P II for real and large t has no poles. They have also noted that one of the two cases corresponds to y being purely imaginary (see also [26,27]).

In proving some of the above results we choose the parameters of the given Painlevé equation in such a way that the singularities at zero and at infinity are integrable. However, this is without loss of generality since there exist Schlessinger transformations [4] which shift by an integer or by a half integer all the parameters of a given Painlevé equation.

In Sect. 2 we review the direct problem (see [1,4]) and we also show that it is not necessary to consider the connection matrix as part of the monodromy data. In Sect. 3 we prove the uniqueness and existence of global solutions meromorphic in t. (Such a result does not exist for integrable PDE's). Furthermore, we note that for t in a bounded region in \mathbb{C}, if the absolute value of the monodromy data is sufficiently small then the relevant operators are always invertible. In order to give sharp estimates one would need to calculate certain operator norms on a complicated contour. This is beyond the scope of this paper; however it appears that the technique of decomposing the complicated RH problem to a series of simple RH problems [3] could be useful in this respect. In Sect. 4 we derive the vanishing lemmas for PII and PIV, i.e. we find certain constraints on the monodromy data which guarantee the solvability of the associated RH problem without the small norm assumption. These constraints imply, in principle, certain constraints on the initial data. For example, we show that if y, the solution of P II, is purely imaginary these constraints are always satisfied.

2. The Direct Problem for P II and P IV

2.1. P II

The P II equation (1.1) can be written as the compatibility condition of the following system of equations:

$$
\begin{align*}
& Y_{z}=A Y, \tag{2.1a}\\
& Y_{t}=B Y, \tag{2.1b}
\end{align*}
$$

where

$$
\begin{equation*}
A=-i\left(4 z^{2}+t+2 y^{2}\right) \sigma_{3}+\left(4 z y-\frac{\theta}{z}\right) \sigma_{1}-2 y_{t} \sigma_{2}, \quad B=-i z \sigma_{3}+y \sigma_{1} \tag{2.2}
\end{equation*}
$$

the Pauli matrices $\sigma_{j}, j=1,2,3$ are defined by

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{2.3}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{rr}
0 & 0 \\
1 & -1
\end{array}\right)
$$

and $Y(z, t)$ is a 2×2 matrix valued function in $\mathbb{C} \times \mathbb{C}$.
The essence of the direct problem is to establish the analytic structure of Y with respect to z, in the entire complex z-plane. It should be pointed out that, in contrast to the analogous problem in the inverse scattering transform (see the discussion in [3]), this task here is straightforward: Equation (2.1a) is a linear ODE in z, therefore its analytic structure is completely determined by its singular points. Equation (2.1a) has a regular singular point at the origin (if $\theta \neq 0$) and an irregular singular point at infinity.
(i) Analysis near $z=0$. It is well known that if the coefficient matrix of a linear ODE has a regular singular point at $z=0$, then the solution in the neighbourhood of $z=0$ can be obtained via a convergent power series. In this particular case

$$
\begin{equation*}
Y_{0}(z)=\hat{Y}_{0}(z) z^{\theta \sigma_{3}}, \quad \text { as } \quad z \rightarrow 0, \quad \theta \neq \frac{2 n+1}{2}, \quad n \in \mathbb{Z} \tag{2.4a}
\end{equation*}
$$

where $\hat{Y}_{0}(z)$ is holomorphic at $z=0$ [23]. The dominant behavior near $z=0$ is characterized by $Y_{0_{z}} \sim-\theta \sigma_{1} Y_{0} / z$; thus $\hat{Y}_{0_{z}}(z) \sim-\frac{\theta}{z}\left(\sigma_{1} \hat{Y}_{0}(z)+\hat{Y}_{0}(z) \sigma_{3}\right)$ and

$$
\begin{equation*}
\sigma_{1} \hat{Y}_{0}(0)+\widehat{Y}_{0}(0) \sigma_{3}=0^{z} \tag{2.4b}
\end{equation*}
$$

(ii) Analysis near $z=\infty$. The solution of Eq. (2.1a), for large z, possesses a formal expansion of the form $Y \sim \widetilde{Y}, \widetilde{Y}=\hat{Y}_{\infty} \exp \left[-i\left(\frac{4 z^{3}}{3}+t z\right) \sigma_{3}\right]$, where \hat{Y}_{∞} is a formal power series. However, because $z=\infty$ is an irregular singular point, the actual asymptotic behavior of Y changes form in certain sectors of the complex z-plane. These sectors are determined by $\operatorname{Re}\left[i \frac{4}{3} z^{3}+i t z\right]=0$; thus for large z the boundaries of the sectors, Σ_{j}, are asymptotic to the rays $\arg z=\frac{i \pi}{3}, 0 \leqq j \leqq 7$. Let S_{j} be the sector containing the boundaries Σ_{j}, i.e. if $z \in S_{1}, 0 \leqq \arg z<\frac{\pi}{3}$, etc. Then, according to the Stokes phenomenon, if $Y \sim \tilde{Y}$ as $z \rightarrow \infty$ in $S_{1}, Y \sim \tilde{Y} G_{1} G_{2} \ldots G_{j}$, as $z \rightarrow \infty$ in S_{j+1}, $1 \leqq j \leqq 6$. The matrices

Fig. 2.1

$G_{j}, 1 \leqq j \leqq 6$ are triangular and are called Stokes multipliers. Alternatively, for the formulation of the RH problem it is more convenient to introduce different solutions $Y_{j}, 1 \leqq j \leqq 7$ such that Y_{j} is asymptotic to \widetilde{Y} in S_{j}. Then $Y_{j+1}=Y_{j} G_{j}$, $1 \leqq j \leqq 6$; also it can be shown [24] that $Y_{1}(z)=Y_{7}\left(z e^{2 i n}\right)$. Thus the nonsingular matrices Y_{j} satisfy:

$$
\begin{equation*}
Y_{j}(z) \sim \widehat{Y}_{\infty}(z) e^{Q^{(z)}}, \quad \text { as } \quad z \rightarrow \infty, z \in S_{j}, Q=-i\left(\frac{4}{3} z^{3}+t z\right) \sigma_{3}, \tag{2.5}
\end{equation*}
$$

where $\hat{Y}_{\infty}(z)$ is piecewise holomorphic (relative to the contours of Fig. 2.1) at $z=\infty$, with asymptotic expansion of the form $\widehat{Y}_{\infty}(z) \sim I+0(1 / z)$ as $z \rightarrow \infty$. They are related by

$$
\begin{equation*}
Y_{j+1}(z)=Y_{j}(z) G_{j}, \quad 1 \leqq j \leqq 5 ; \quad Y_{1}(z)=Y_{6}\left(z e^{2 i \pi}\right) G_{6}, \tag{2.6}
\end{equation*}
$$

where the Stokes multipliers are given by

$$
\begin{array}{llll}
G_{1}=\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right), & G_{2}=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right), & G_{3}=\left(\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right), \\
G_{4}=\left(\begin{array}{ll}
1 & \hat{a} \\
0 & 1
\end{array}\right), & G_{5}=\left(\begin{array}{ll}
1 & 0 \\
\hat{b} & 1
\end{array}\right), & G_{6}=\left(\begin{array}{ll}
1 & \hat{c} \\
0 & 1
\end{array}\right) . \tag{2.7}
\end{array}
$$

We note that although $Y_{1} \sim \tilde{Y}$ as $z \rightarrow \infty$ on $\Sigma_{1}, Y_{1} \sim \tilde{Y} G_{1}^{-1}$ as $z \rightarrow \infty$ on Σ_{2}, similarly $Y_{2} \sim \tilde{Y} G_{2}^{-1}$ as $z \rightarrow \infty$ on Σ_{3}, etc.
(iii) Connection between Y_{0} and Y_{1}. Since both Y_{0} and Y_{1} satisfy (2.1a) they are related by a constant matrix,

$$
Y_{1}=Y_{0} E_{0}, \quad E_{0}=\left(\begin{array}{ll}
\alpha & \beta \tag{2.8}\\
\gamma & \delta
\end{array}\right), \quad \operatorname{det} E_{0}=1
$$

The condition on the determinant follows from the fact that we have normalized Y_{j}, Y_{0} to have unit determinant.
(iv) Symmetry Relations. For a complex matrix function f we denote

$$
\begin{equation*}
f^{\sigma_{1}}\left(z e^{i \pi}\right)=\sigma_{1} f(z) \sigma_{1} \tag{2.9}
\end{equation*}
$$

Equations (2.2) imply that the A and B of Eqs.(2.1) satisfy

$$
\begin{equation*}
A^{\sigma_{1}}=-A, \quad B^{\sigma_{1}}=B . \tag{2.10}
\end{equation*}
$$

Hence

$$
\begin{equation*}
Y_{z}^{\sigma_{1}}=A^{\sigma_{1}} Y^{\sigma_{1}}, \quad Y_{t}^{\sigma_{1}}=B^{\sigma_{1}} Y^{\sigma_{1}} . \tag{2.11}
\end{equation*}
$$

Equations (2.11) and the fact that $Y, Y^{\sigma_{1}}$ have the same asymptotics at $z=\infty$ imply $Y=Y^{\sigma_{1}}$,

$$
\begin{equation*}
Y_{j+3}\left(z e^{i \pi}\right)=\sigma_{1} Y_{j}(z) \sigma_{1}, \quad j=1,2,3 . \tag{2.12}
\end{equation*}
$$

Equations (2.12) imply

$$
\begin{equation*}
G_{j+3}=\sigma_{1} G_{j} \sigma_{1}, \quad j=1,2,3, \quad \text { i.e. } \quad \hat{a}=a, \hat{b}=b, \hat{c}=c . \tag{2.13}
\end{equation*}
$$

Furthermore Eqs. (2.12) also imply [for an appropriate choice of $\left.Y_{0}(z)\right]$ the important relationship

$$
\begin{equation*}
-E_{0}^{-1} \sigma_{3} e^{-i \pi \theta \sigma_{3}} E_{0}=G_{1} G_{2} G_{3} \sigma_{1} . \tag{2.14}
\end{equation*}
$$

Indeed, the equations

$$
Y_{4}(z)=Y_{1}(z) G_{1} G_{2} G_{3} \quad \text { and } \quad Y_{4}\left(z e^{i \pi}\right)=\sigma_{1} Y_{1}(z) \sigma_{1}
$$

yield,

$$
\sigma_{1} Y_{1}(z) \sigma_{1}=Y_{1}\left(z e^{i \pi}\right) G_{1} G_{2} G_{3} .
$$

Using $Y_{1}=Y_{0} E_{0}$, and $Y_{0}=\hat{Y}_{0} z^{\theta \sigma_{3}}$, this equation becomes

$$
\begin{equation*}
z^{-\theta \sigma_{3}} \hat{Y}_{0}^{-1}(z) \sigma_{1} \hat{Y}_{0}(z) z^{\theta \sigma_{3}}=e^{i \pi \theta \sigma_{3}} E_{0} G_{1} G_{2} G_{3} \sigma_{1} E_{0}^{-1} \tag{2.15}
\end{equation*}
$$

Let $F \doteqdot e^{i \pi \theta \sigma_{3}} E_{0} G_{1} G_{2} G_{3} \sigma_{1} E_{0}^{-1}$; using Eq. (2.4b), it follows from the limit of (2.15) as $z \rightarrow 0$ that $(F)_{\text {Diag }}=-\sigma_{3}$. By Eq. (2.4a), $\theta \notin \frac{1}{2}+\mathbb{Z}$. If $\theta=0$, or if $\theta \notin \mathbb{Z}$, then $F=F_{\text {Diag }}=-\sigma_{3}$, and Eq. (2.14) follows. If $\theta \in \mathbb{Z} /\{0\}$, then F in general is upper (lower) triangular for $\operatorname{Re} \theta>0(\operatorname{Re} \theta<0)$; however, it follows from Eqs. (2.4a) and (2.8) that it is possible to choose a $Y_{0}(z)$ such that the corresponding F is also diagonal.

We note that, since $\sigma_{1} G_{1} G_{2} G_{3} \sigma_{1}=G_{4} G_{5} G_{6}$, the square of Eq. (2.14) yields

$$
\begin{equation*}
E_{0}^{-1} e^{2 i \pi \theta \sigma_{3}} E_{0} \prod_{j=1}^{6} G_{j}=I \tag{2.16}
\end{equation*}
$$

This equation is a consistency condition (see [1]). The trace of Eq. (2.14) implies

$$
\begin{equation*}
a+b+c+a b c=-2 i \sin \theta \pi \tag{2.17}
\end{equation*}
$$

(v) The Monodromy Data. In previous investigations the components of the connection matrix E_{0} were taken as part of the monodromy data. This is not necessary since E_{0} can be determined from (a, b, c). Here we call monodromy data the set (a, b, c) defined on the algebraic variety (2.17). Since $\operatorname{det} G_{1} G_{2} G_{3} \sigma_{1}=-1$ and $\operatorname{tr} G_{1} G_{2} G_{3} \sigma_{1}=-2 i \sin \pi \theta$, it follows that $G_{1} G_{2} G_{3} \sigma_{1}$ has eigenvalues $-e^{i \pi \theta}$ and $e^{-i \pi \theta}$. Also $\theta \notin \frac{1}{2}+\mathbb{Z}$, thus these two eigenvalues are unequal and $G_{1} G_{2} G_{3} \sigma_{1}$ is diagonalized to $-\sigma_{3} e^{i \pi \theta \sigma_{3}}$. Therefore there exists a matrix E_{0}, with $\operatorname{det} E_{0}=1$, such that Eq. (2.14) is valid. For the inverse problem we will define a RH problem for the matrices Y_{j} defined in Eqs. (2.5) and (2.6), where Y_{1} satisfies $Y_{1}=\hat{Y}_{0}(z) z^{i \theta \sigma_{3}} E_{0}, \hat{Y}_{0}(z)$ is analytic at $z=0$, and E_{0} is any matrix obtained from Eq. (2.14) $\left(\operatorname{det} E_{0}=1\right)$. We note that the equation for Y_{1} is well defined. Indeed, if \hat{E}_{0} is another solution of (2.14), then $E_{0} \hat{E}_{0}^{-1}$ is diagonal and Y_{1} satisfies a similar equation with $\hat{Y}_{0}(z)$ replaced by $\hat{Y}_{0}(z) E_{0} \hat{E}_{0}^{-1}$. Therefore, the different choices of E_{0} do not affect Y_{1}, \ldots, Y_{6}.

If y evolves according to P II, then the monodromy data (a, b, c) are time independent. To show this we note that if Y satisfies (2.1a) and y satisfies P II, it follows that Y_{i} satisfies

$$
\begin{equation*}
Y_{i}=B Y+P Y \tag{2.18}
\end{equation*}
$$

where B is defined in Eq. (2.2) and $P=P(t)$ is some matrix independent of z. If $Y=Y_{j}, j=1, \ldots, 6$, then $e^{Q} P e^{-Q}$ must vanish as $z \rightarrow \infty$ from two adjacent sectors, which implies $P=0$. Therefore Y satisfies Eq. (2.1) and hence $G_{j}, j=1, \ldots, 6$ are time independent.

2.2. PIV. The P IV equation

$$
\begin{equation*}
y_{t t}=\frac{1}{2 y} y_{t}^{2}+\frac{3}{2} y^{3}+4 t y^{2}+2\left(t^{2}-\alpha\right) y+\frac{\beta}{y}, \tag{2.19}
\end{equation*}
$$

is associated with the Lax pair (2.1) with

$$
\begin{gather*}
A=(z+t) \sigma_{3}+\frac{\theta_{0}-v}{z} \sigma_{3}+F+\frac{G}{z}, \quad B=z \sigma_{3}+F, \\
\alpha=2 \theta_{\infty}-1, \quad \beta=-8 \theta_{0}^{2} \tag{2.20}
\end{gather*}
$$

where

$$
F=\left(\begin{array}{cc}
0 & u \tag{2.21}\\
\frac{2}{u}\left(v-\theta_{0}-\theta_{\infty}\right) & 0
\end{array}\right), \quad G=\left(\begin{array}{cc}
0 & \frac{-u y}{2} \\
\frac{2 v}{u y}\left(v-2 \theta_{0}\right) & 0
\end{array}\right) .
$$

In the above equation v, u, y are related via the following equations:

$$
\begin{gather*}
\frac{d y}{d t}=-4 v+y^{2}+2 t y+4 \theta_{0}, \quad \frac{d u}{d t}=-u(y+2 t) \\
\frac{d v}{d t}=-\frac{2}{y} v^{2}+\left(\frac{4 \theta_{0}}{y}-y\right) v+\left(\theta_{0}+\theta_{\infty}\right) y \tag{2.22}
\end{gather*}
$$

(i) Analysis near $z=0$.

$$
\begin{equation*}
Y_{0}(z)=\hat{Y}_{0}(z) z^{\theta_{0} \sigma_{3}}, \quad \theta_{0} \neq \frac{n}{2}, \quad n \in \mathbb{Z} \tag{2.22a}
\end{equation*}
$$

where $\hat{Y}_{0}(z)$ is holomorphic at $z=0$ [25].
(ii) Analysis near $z=\infty$. The formal expansion \tilde{Y} is now of the form

$$
\widetilde{Y}=\hat{Y}_{\infty} \exp \left[\left(\frac{z^{2}}{2}+t z\right) \sigma_{3}\right]\left(\frac{1}{z}\right)^{\theta_{\infty} \sigma_{3}} .
$$

The relevant sectors are given by $\operatorname{Re}\left[\frac{z^{2}}{2}+t z\right]=0$; thus for large z the boundaries of these sectors, Σ_{j}, are asymptotic to the rays $\arg z=-\frac{\pi}{4}, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{-3 \pi}{4}$.

Fig. 2.2

As before $Y_{j+1}=Y_{j} G_{j}, 1 \leqq j \leqq 4$, and $Y_{1}(z)=Y_{5}\left(z e^{2 i \pi}\right) e^{2 i \pi \theta_{\infty} \sigma_{3}}$. Thus

$$
\begin{equation*}
Y_{j}(z) \sim \hat{Y}_{\infty}(z) e^{Q(z)}\left(\frac{1}{z}\right)^{\theta_{\infty} \sigma_{3}}, \quad \text { as } \quad z \rightarrow \infty, z \in S_{j}, Q=\left(\frac{z^{2}}{2}+t z\right) \sigma_{3}, \tag{2.23}
\end{equation*}
$$

where $\hat{Y}_{\infty}(z)$ is holomorphic at $z=\infty$, and $\hat{Y}_{\infty}(z) \sim I+0\left(\frac{1}{z}\right)$. Also

$$
\begin{equation*}
Y_{j+1}(z)=Y_{j}(z) G_{j}, \quad 1 \leqq j \leqq 3, \quad Y_{1}(z)=Y_{4}\left(z e^{2 i \pi}\right) G_{4} e^{2 i \pi \theta_{\infty} \sigma_{3}} \tag{2.24}
\end{equation*}
$$

where

$$
G_{1}=\left(\begin{array}{ll}
1 & 0 \tag{2.25}\\
a & 1
\end{array}\right), \quad G_{2}=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right), \quad G_{3}=\left(\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right), \quad G_{4}=\left(\begin{array}{ll}
1 & d \\
0 & 1
\end{array}\right)
$$

(iii) Connection between Y_{1} and Y_{1}. As before Y_{0}, Y_{1} are related via (2.8).
(iv) The Monodromy Data. The trace of the consistency condition

$$
\begin{equation*}
E_{0}^{-1} e^{2 i \pi \theta_{0} \sigma_{3}} E_{0} \prod_{j=1}^{4} G_{j} e^{2 i \pi \theta_{\infty} \sigma_{3}}=I \tag{2.26}
\end{equation*}
$$

implies

$$
\begin{equation*}
(1+b c) e^{2 i \pi \theta_{\infty}}+[a d+(1+c d)(1+a b)] e^{-2 i \pi \theta_{\infty}}=2 \cos 2 \pi \theta_{0} \tag{2.27}
\end{equation*}
$$

We further notice that (2.27) is invariant under the transformation $\hat{a}=r^{2} a, \hat{b}=b / r^{2}$, $\hat{c}=c r^{2}, \hat{d}=d / r^{2}, r \neq 0$. Also if we define \hat{Y} by $\hat{Y}=R^{-1} Y R$, where $R=\operatorname{diag}\left(r, \frac{1}{r}\right)$, $r \neq 0$, the Lax pair for \hat{Y} is the same as the Lax pair for Y with the only change of replacing u by u / r^{2}; this does not affect y, the solution of PIV. We therefore choose to define the monodromy data for PIV as the equivalent classes induced by the transformation ^, on the algebraic variety (2.27). These monodromy data imply E_{0} as in case of PII: Since $\operatorname{tr} G_{1} G_{2} G_{3} G_{4} e^{2 i \pi \theta_{\infty}}=e^{2 i \pi \theta_{0}}+e^{-2 i \pi \theta_{0}}$ and $\operatorname{det} G_{1} G_{2} G_{3} G_{4} e^{2 i \pi \theta_{\infty}}=1$ it follows that the relevant eigenvalues are $e^{2 i \pi \theta_{0}}$ and $e^{-2 i \pi \theta_{0}}$. Using the fact that $\theta_{0} \notin \frac{1}{2}+\mathbb{Z}$ Eq. (2.26) follows. Then, for the solution of the inverse problem we demand that Y_{1} satisfies $Y_{1}=\widehat{Y}_{1}(z) z^{\theta \sigma_{0}} E_{0}$, where $\widehat{Y}_{1}(z)$ is analytic at $z=0$ and E_{0} is any solution of (2.26). Again different choices of E_{0} do not affect Y_{1}, \ldots, Y_{4}. It is also straightforward to show that the monodromy data are time independent.

3. The Inverse Problem

The relations (2.6) and (2.24) indicate that the Inverse Monodromy Problems are RH problems on self-intersecting contours, with singularities at $z=0$ and $z=\infty$. In this section we first remove these singularities by using an analytic solution inside a circle around the origin and by performing a small clockwise rotation near $z=\infty$. We then use the method introduced by one of the authors (Zhou) [21] to study the resulting regular RH problems. Since the procedure is essentially the same for both P II and PIV we give details only for PIV.

We define $\Phi_{j}, j=0, \ldots, 4$ by

$$
\begin{equation*}
Y_{j} \doteqdot \Phi_{j} e^{\varrho}\left(\frac{1}{z}\right)^{\theta_{\infty} \sigma_{3}}, \quad j=1, \ldots, 4, \quad Y_{0} \doteqdot \Phi_{0} e^{Q} z^{\theta_{0} \sigma_{3}}, \quad Q \doteqdot\left(\frac{z^{2}}{2}+t z\right) \sigma_{3} \tag{3.1}
\end{equation*}
$$

We then obtain a piecewise holomorphic function $\Phi=\left(\Phi_{0}, \Phi_{1}, \Phi_{2}, \Phi_{3}, \Phi_{4}\right)$ and a contour $\Sigma_{A} \doteqdot \Sigma \cup\{$ circle $\}$ indicated in Fig. 3.1. We note that the augmented

Fig. 3.1
contour, Σ_{A}, need not be precise except near $z=\infty$, where it is precisely defined by $\operatorname{Re}\left(\frac{z^{2}}{2}+t z\right)=0$.
Inside the circle, $\Phi=\Phi_{0}$ is holomorphic, hence the multiplicative jump of Φ across the dotted lines is I. We denote by $\Omega_{ \pm}$the union of all \pmregions as marked in Fig. 3.1. The orientation used in Fig. 3.1 makes Σ the positively oriented boundary Σ^{+}for Ω^{+}and the negatively oriented boundary Σ^{-}for Ω^{-}. Let V denote the global jump on $\Sigma_{A}, V=I$ on the rays inside the circle, $V \doteqdot\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ on the circle and $V \doteqdot\left(g_{1}, g_{2}, g_{2}, g_{4}\right)$ on the rays outside the circle. V may be expressed in terms of the monodromy data:

$$
\begin{array}{ll}
\Phi_{0}=\Phi_{1} e^{Q} f_{1} e^{-Q}, & f_{1}^{-1}=z^{\theta_{0} \sigma_{3}} E_{0}\left(\frac{1}{z}\right)^{-\theta_{\infty} \sigma_{3}} ; \\
\Phi_{2}=\Phi_{0} e^{Q} f_{2} e^{-Q}, & f_{2}=z^{\theta_{0} \sigma_{3}} E_{0} G_{1}\left(\frac{1}{z}\right)^{-\theta_{\infty} \sigma_{3}} ; \\
\Phi_{0}=\Phi_{3} e^{Q} f_{3} e^{-Q} ; & f_{3}^{-1}=z^{\theta_{0} \sigma_{3}} E_{0} G_{1} G_{2}\left(\frac{1}{z}\right)^{-\theta_{\infty} \sigma_{3}} ; \\
\Phi_{4}=\Phi_{0} e^{Q} f_{4} e^{-Q}, & f_{4}=z^{\theta_{0} \sigma_{3}} E_{0} G_{1} G_{2} G_{3}\left(\frac{1}{z}\right)^{-\theta_{\infty} \sigma_{3}} ; \\
\Phi_{2}=\Phi_{1} e^{Q} g_{1} e^{-Q}, & g_{1}=\left(\frac{1}{z}\right)^{\theta_{\infty} \sigma_{3}} G_{1}\left(\frac{1}{z}\right)^{-\theta_{\infty} \sigma_{3}} ; \\
\Phi_{2}=\Phi_{3} e^{Q} g_{2} e^{-Q}, & g_{2}=\left(\frac{1}{z}\right)^{\theta_{\infty} \sigma_{3}} G_{2}^{-1}\left(\frac{1}{z}\right)^{-\theta_{\infty} \sigma_{3}} ; \\
\Phi_{4}=\Phi_{3} e^{Q} g_{3} e^{-Q}, & g_{3}=\left(\frac{1}{z}\right)^{\theta_{\infty} \sigma_{3}} G_{3}\left(\frac{1}{z}\right)^{-\theta_{\infty} \sigma_{3}} ; \\
\Phi_{4}=\Phi_{1} e^{Q} g_{4} e^{-Q}, & g_{4}=\left(\frac{1}{z}\right)_{+}^{\theta_{\infty} \sigma_{3}} G_{4}^{-1}\left(\frac{1}{z}\right)_{+}^{-\theta_{\infty} \sigma_{3}},
\end{array}
$$

where $\left(\frac{1}{z}\right)^{\theta_{\infty} \sigma_{3}}$ means the boundary value of $\left(\frac{1}{z}\right)^{\theta_{\infty} \sigma_{3}}$ from the + region. If we denote by $\Phi_{ \pm}$the boundary values of Φ from $\Omega^{ \pm}$, we have

$$
\begin{equation*}
\Phi_{+}=\Phi_{-} V_{Q}, \quad V_{Q} \doteqdot e^{Q} V e^{-Q} \tag{3.2}
\end{equation*}
$$

The function V is smooth (in fact analytic) away from the intersections A, B, C, and D. At these intersections, it satisfies the following cyclic product conditions,

$$
\begin{array}{llllll}
g_{1} f_{2}^{-1} f_{1}^{-1}=I & \text { near } & A, & f_{2} g_{2}^{-1} f_{3}=I & \text { near } & B, \tag{3.3}\\
f_{3}^{-1} g_{3} f_{4}^{-1}=I & \text { near } & C, & f_{4} g_{4}^{-1} f_{1}=I & \text { near } & D .
\end{array}
$$

The above products make sense because the relevant functions admit analytic continuations. The conditions in (3.3) follow directly from (3.2). We may also check their validity directly. For example consider the condition near D :

$$
f_{4}\left(z e^{2 i \pi}\right) g_{4}^{-1}\left(z e^{2 i \pi}\right) f_{1}(z)=I, \quad \text { or } \quad e^{2 i \pi \theta_{0} \sigma_{3}} E_{0}\left(\prod_{j=1}^{4} G_{j}\right) e^{2 i \pi \theta_{\infty} \sigma_{3}} E_{0}^{-1}=I
$$

which is the compatibility condition (2.18). Roughly speaking, the cyclic product conditions (3.3) represent the "smoothness" of V at the intersections A, B, C, D. Having established that the global V is smooth it is then possible to factorize V into a product of two functions in certain Sobolev spaces [see below (3.5)].

Now V satisfies all the conditions needed in the theory of [21] except that V_{Q} may oscillate or even grow as $z \rightarrow \infty$. Nevertheless we can still define a RH problem without ambiguity.

Definition 3.1. Let Φ be holomorphic on $\mathbb{C} \backslash \Sigma_{A}$ with smooth extension $\Phi_{ \pm}$satisfying

$$
\begin{equation*}
\Phi_{+}=\Phi_{-} V_{Q} \tag{3.4}
\end{equation*}
$$

Then Φ is said to be a normalized solution of the RH problem (3.4) if :

1. Φ has at worst polynomial growth at $z \rightarrow \infty$.
2. Φ tends to I as $z \rightarrow \infty$ in certain directions.

Conditions 1 and 2 appear weak, but they actually imply the uniqueness of the solution:

Proposition 3.1. The normalized solution in Definition 3.1 is unique and $\operatorname{det} \Phi=1$.
Proof. Since $\operatorname{det} V_{Q}=1$, $\operatorname{det} \Phi_{+}=\operatorname{det} \Phi_{-}$. Hence $\operatorname{det} \Phi$ is an entire function. By Conditions 1 and $2, \operatorname{det} \Phi=1$.

Let Φ^{\prime} be another solution. Then it is easily checked that $\Phi^{\prime} \Phi^{-1}$ is entire and hence by Conditions 1 and 2, equals I. QED
Remark. If Φ is a solution from the direct problem, then obviously Φ satisfies all the conditions enumerated in Definition 3.1. We may in fact derive better properties for Φ from the direct problem. For example, if the sector in Fig. 3.2(a) is slightly rotated clockwise to the sector in Fig. 3.2(b), then $\hat{\Phi}$ obtained from Φ_{j} by restriction and analytic extension approaches I as $z \rightarrow \infty$.
However we prefer to establish such properties directly from the inverse problem. This will show that all the necessary information to derive these properties is already contained in our characterization of the data V.

We make a slight rotation of Σ near $z=\infty$ clockwise as in Fig. 3.3. Since the asymptotes of Σ are independent of t, the rotated contour, $\Sigma_{A R}$, can actually be made independent of t.
In general, a contour Γ for a RH problem may be deformed to another contour Γ^{\prime} within the domain of holomorphicity of the jump functions. However, in our problem, V is not smooth at $z=\infty$. Therefore we used more careful argument for the equivalence of the RH problems before and after the rotations. We still denote our jump function by V after the rotation, since it is obtained by a direct analytic extension of the original V. Since V is triangular near $z=\infty$ it follows that $e^{-Q} V e^{Q}-I$, and its derivatives, decay exponentially as $z \rightarrow \infty$, on the rotated contour $\Sigma_{A R}$. By condition (3.3), V can be factorized (see [21]),

$$
\begin{equation*}
V=\left(I-W^{-}\right)^{-1}\left(I+W^{+}\right) \tag{3.5}
\end{equation*}
$$

in such a way that

1. $\operatorname{det}\left(I \pm W^{ \pm}\right)$does not vanish.
2. For every " \pm " region, the restriction of $I \pm W^{ \pm}$to its boundary is smooth.
3. $W^{-}=0$ away from a neighborhood of A, B, C, and D.

A matrix function f on $\Sigma_{A R}$ belongs to $H^{1}\left(\Sigma_{A R}^{ \pm}\right)$if $f / \partial w$ is H^{1} for every \pm region w (see [21]), H^{1} is the space of functions f, such that f and its distributional derivative both belong to L_{2}. Clearly $W_{Q}^{ \pm} \doteqdot e^{-Q} W^{ \pm} e^{Q} \in H^{1}\left(\Sigma_{A R}^{ \pm}\right)$.

Define the Cauchy integral operators $C_{ \pm}$by

$$
C_{ \pm} f\left(z^{\prime \prime}\right)=\lim _{z^{\prime} \rightarrow z^{\prime \prime}} \frac{1}{2 \pi i} \int_{\Sigma_{A R}} \frac{f(z) d z}{z-z^{\prime}}
$$

where the nontangential limit $z^{\prime} \rightarrow z^{\prime \prime}$ is taken from \pm regions. The following results are given in [21]: $H^{1}\left(\Sigma_{A R}^{ \pm}\right)$are Banach algebras (under certain equivalent norms), and the Cauchy integral operators are bounded on them,

$$
\begin{equation*}
C_{ \pm}: H^{1}\left(\Sigma_{A R}^{ \pm}\right) \rightarrow H^{1}\left(\Sigma_{A R}^{ \pm}\right), \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{ \pm}: H^{1}\left(\Sigma_{A R}^{\mp}\right) \rightarrow H^{1}\left(\Sigma_{A R}\right) \doteqdot H^{1}\left(\Sigma_{A R}^{+}\right) \cap H^{1}\left(\Sigma_{A R}^{-}\right) \tag{3.7}
\end{equation*}
$$

We therefore have a linear integral equation on the space $H^{1}\left(\Sigma_{A R}\right)$,

$$
\begin{equation*}
Y=v I+C_{+} W_{Q}^{-}+C_{-} W_{Q}^{+} \doteqdot v I+C_{W} Y, \quad v \in \mathbb{C} \tag{3.8}
\end{equation*}
$$

Equation (3.8) is in fact Fredholm of zero index, where the Fredholm index $\left(\operatorname{Id}-C_{W}\right)=\operatorname{dim} \operatorname{ker}\left(\operatorname{Id}-C_{W}\right)-\operatorname{dim} \operatorname{coker}\left(\operatorname{Id}-C_{W}\right)$. It is easily checked that Y is a solution of (3.8) iff

$$
\begin{equation*}
\hat{\Phi}_{ \pm} \doteqdot Y\left(I \pm W^{ \pm}\right)=v I+C_{ \pm} Y\left(W_{Q}^{-}+W_{Q}^{+}\right) \tag{3.9}
\end{equation*}
$$

is a solution of the RH problem

$$
\begin{equation*}
\hat{\Phi}_{+}=\hat{\Phi}_{-} V_{Q} \tag{3.10}
\end{equation*}
$$

satisfying $\hat{\Phi}_{ \pm}(\infty)=v I$. As usual we denote by $\hat{\Phi}$ the sectionally holomorphic function obtained from the analytic extension of $\hat{\Phi}_{ \pm}$, and sometimes call $\hat{\Phi}$ the solution of the RH problem (3.10). The function $\tilde{\Phi}$ is said to be a normalized solution, if $v=1$, and a vanishing solution if $v=0$. The normalized solution is always unique.
Proposition 3.2. Let Φ be holomorphic on $\mathbb{C} \backslash \Sigma_{A}$ satisfying (3.4) and let $\hat{\Phi}$ which is holomorphic on $\mathbb{C} \backslash \Sigma_{A R}$ be obtained from Φ by restricting it from one side of each sector and analytically extending it into the shadowed area from the other side. Then Φ is a normalized solution of the RH problem described in (3.4) iff $\hat{\Phi}$ is the normalized solution of the RH problem (3.10).
Proof. If $\hat{\Phi}$ happends to be a normalized solution for (3.10) in H^{1} space, then obviously the corresponding Φ satisfies all the conditions enumerated in Definition 3.1.

Now assume that Φ is a normalized solution in the sense of Definition 3.1. We first show that $I-C_{W}$ is invertible by showing that there exist not nontrivial vanishing solutions for the RH problem (3.10). Let $\widehat{\Phi}_{0}$ be a vanishing solution for that RH problem. Let $\hat{\Phi}$ be obtained from Φ by the restriction, extension procedure described above. Then it is clear that $\hat{\Phi}_{0} \hat{\Phi}^{-1}$ is entire. By the conditions in Definition 3.1 for $\Phi, \hat{\Phi}_{0} \hat{\Phi}^{-1}=0$. This shows $\hat{\Phi}_{0}=0$. Then since the Fredholm index of Id $-C_{W}$ is zero, it is invertible, and we obtain a solution $\hat{\Phi}^{\prime}$ in H^{1} space for (3.10). A similar argument as above shows $\hat{\Phi}=\hat{\Phi}^{\prime}$. QED.

Remark. The above proposition shows that from the function Φ described in Definition 3.1 we obtain a solution $\hat{\Phi}$ in Sobolev space with $\lim _{z \rightarrow \infty} \hat{\Phi}(z)=I$. Therefore Φ has limit I on $z \rightarrow \infty$ in the unshadowed regions in Fig. 3.3, and behaves like $e^{Q} V e^{-Q}$ or its inverse in the shadowed regions.

Fig. 3.4

For P II we define $\Phi_{j}, j=0,1, \ldots, 6$ by

$$
Y_{j} \doteqdot \Phi_{j} e^{Q}, \quad j=1, \ldots, 6, \quad Y_{0} \doteqdot \Phi_{0} e^{Q_{z}^{\theta \sigma_{3}}}, \quad Q \doteqdot-i\left(\frac{4 z^{3}}{3}+t z\right) \sigma_{3}
$$

Then again we obtain the RH (3.2), where the jumps are given by

$$
\begin{array}{lll}
\Phi_{2}=\Phi_{1} e^{Q} G_{1} e^{-Q}, & \Phi_{2}=\Phi_{3} e^{Q} G_{2}^{-1} e^{-Q}, & \Phi_{4}=\Phi_{3} e^{Q} G_{3} e^{-Q}, \\
\Phi_{4}=\Phi_{5} e^{Q} G_{4}^{-1} e^{-Q}, & \Phi_{6}=\Phi_{5} e^{Q} G_{5} e^{-Q}, & \Phi_{6}=\Phi_{1} e^{Q} G_{6}^{-1} e^{-Q} \\
\Phi_{0}=\Phi_{1} e^{Q} f_{1}^{-1} e^{-Q}, & \Phi_{2}=\Phi_{0} e^{Q} f_{2} e^{-Q}, & \Phi_{0}=\Phi_{3} e^{Q} f_{3}^{-1} e^{-Q} \\
\Phi_{4}=\Phi_{0} e^{Q} f_{4} e^{-Q}, & \Phi_{0}=\Phi_{5} e^{Q} f_{5}^{-1} e^{-Q}, & \Phi_{6}=\Phi_{0} e^{Q} f_{6} e^{-Q}
\end{array}
$$

where

$$
f_{j}=z^{\theta \sigma_{3}} E_{0} G_{1} \ldots G_{j-1}, \quad j=1, \ldots, 6, \quad G_{0} \doteqdot I .
$$

Theorem 3.1. The Cauchy problems for P IV and P II always admit global meromorphic in t solutions. These solutions can be obtained by solving RH problems of the form $\Phi_{+}=\Phi_{-} e^{Q} V e^{-\varrho}$ (see Figs. 3.1 and 3.4). For P IV the RH problem is specified in terms of the monodromy data (a, b, c, d) defined on the algebraic variety $V_{I V}$ given by Eqs. (2.27) [E_{0} is any solution of Eq. (2.26)]. For P II the RH problem is specified in terms of the monodromy data (a, b, c) defined on the algebraic variety $V_{I I}$ given by Eq. (2.17) [E_{0} is my solution of Eq. (2.14)]. Having obtained Φ, the solutions of P IV and P II are constructed from

$$
y=-2 t-\partial_{t} \ln \left(\Phi_{-1}\right)_{12} \quad \text { and } \quad y=2\left(\Phi_{-1}\right)_{12}
$$

respectively, where

$$
\Phi=I+\frac{\Phi_{-1}}{z}+O\left(\frac{1}{z^{2}}\right), \quad z \rightarrow \infty
$$

For each $t_{0} \in \mathbb{C}$, there exists an analytic variety $V_{\mathrm{IV}}^{0}, \operatorname{dim} V_{\mathrm{IV}}^{0}<2$, such that the monodromy transformation for PIV is a bijection, $\mathbb{C}^{2} \rightarrow V_{\mathrm{IV}} / V_{\mathrm{IV}}^{0},\left(y\left(t_{0}\right), y^{\prime}\left(t_{0}\right)\right)$ $\mapsto(a, b, c, d) \in V_{\mathrm{IV}} / V_{\mathrm{IV}}^{0}$ and $(a, b, c, d) \in V_{\mathrm{IV}}^{0}$ iff the inverse monodromic transform does not exist at t_{0}. Similarly for PII.

Proof. Since $W_{Q}^{ \pm}$may be viewed as holomorphic functions in t from $\mathbb{C} \rightarrow H\left(\Sigma_{A R}^{ \pm}\right)$, the operator $\mathrm{Id}-C_{W}$ is holomorphic in t. Hence if it is invertible at some t_{0}, then its inverse is meromorphic in t (see [21], Proposition 4.3). For the Cauchy problem, let $\Phi\left(t_{0}, z\right)$ be the solution obtained from the direct problem at $t=t_{0}$. As shown in the proof of Proposition 3.2, Id $-C_{W}$ is invertible at t_{0}. Once $\hat{\Phi}$ is obtained one can use (2.1) to determine y, provided that one can prove that $\hat{\Phi}$ satisfies (2.1). In other words one needs to show that the solution of the inverse problem solves the direct problem:
(i) PIV. Recall that

$$
Y_{j}=\Phi_{j} e^{Q}\left(\frac{1}{z}\right)^{\theta_{\infty} \sigma_{3}}, \quad j=1,2,3,4 \quad \text { and } \quad Y_{0}=\Phi_{0} e^{Q^{\theta_{0} \sigma_{3}}}
$$

We denote by Y, Φ the solutions piecewise defined by $Y_{j}, Y_{0}, \Phi_{j}, \Phi_{0}$ and we define A by $A \doteqdot Y_{z} Y^{-1}$. Then

$$
A=\left[\Phi_{z}+(z+t) \Phi \sigma_{3}-\theta_{\infty} z^{-1} \Phi \sigma_{3}\right] \Phi^{-1}
$$

It follows from the fact that Y_{z} and Y both admit the same jump across Σ that A is holomorphic in $\mathbb{C} \backslash\{0\}$, thus $A=z^{-1} A_{-1}+A_{0}+z A_{1}$ (note that the oscillation and the possible polynomial growth of Φ near Σ is insignificant to the determination of the growth of A as $z \rightarrow \infty$), hence

$$
\begin{equation*}
\Phi_{z}+(z+t) \Phi \sigma_{3}-\theta_{\infty} z^{-1} \Phi \sigma_{3}=\left(z^{-1} A_{-1}+A_{0}+z A_{1}\right) \Phi \tag{3.11}
\end{equation*}
$$

where z is outside the circle. Let

$$
\Phi=I+\frac{\Phi_{-1}}{z}+\frac{\Phi_{-2}}{z^{2}}+O\left(\frac{1}{z^{3}}\right), \quad \text { is } \quad z \rightarrow \infty
$$

in any sector but away from its boundary. Then the large z asymptotics of Eq. (3.11) implies

$$
\begin{gather*}
A_{1}=\sigma_{3}, \quad A_{0}=t \sigma_{3}+\left[\Phi_{-1}, \sigma_{3}\right] \\
A_{-1}=-\theta_{\infty} \sigma_{3}+\left[\Phi_{-2}+t \Phi_{-1}, \sigma_{3}\right]+\left[\sigma_{3}, \Phi_{-1}\right] \Phi_{-1} \tag{3.12}
\end{gather*}
$$

Similarly, considering z inside the circle we find

$$
\Phi_{z}+(z+t) \Phi \sigma_{3}+\theta_{0} z^{-1} \Phi \sigma_{3}=\left(z^{-1} A_{-1}+A_{0}+z A_{1}\right) \Phi
$$

The asymptotics of this equation as $z \rightarrow 0$ yields

$$
\begin{equation*}
A_{-1}=\theta_{0} \Phi(0, t) \sigma_{3} \Phi^{-1}(0, t) \Rightarrow \operatorname{det} A_{-1}=-\theta_{0}^{2} \tag{3.13}
\end{equation*}
$$

Let us define u, v by

$$
\begin{equation*}
u=-2\left(\Phi_{-1}\right)_{12}, \quad v=\theta_{0}+\theta_{\infty}-2\left(\Phi_{-1}\right)_{12}\left(\Phi_{-1}\right)_{21} \tag{3.14}
\end{equation*}
$$

Then Eq. (3.12b) implies

$$
A_{0}=t \sigma_{3}+\left(\begin{array}{cc}
0 & u \tag{3.15}\\
\frac{2}{u}\left(v-\theta_{0}-\theta_{\infty}\right) & 0
\end{array}\right)
$$

To determine A_{-1} we note that Eq. (3.12c) yields

$$
\begin{equation*}
\left(A_{-1}\right)_{\mathrm{diag}}=\left(2\left(\Phi_{-1}\right)_{12}\left(\Phi_{-1}\right)_{21}-\theta_{\infty}\right) \sigma_{3}=\left(\theta_{0}-v\right) \sigma_{3} \tag{3.16}
\end{equation*}
$$

If we let $\left(A_{-1}\right)_{21}=-\frac{u y}{2}$, then Eqs. (3.16), (3.13) imply that $\left(A_{-1}\right)_{21}=\frac{2 v}{u y}\left(v-2 \theta_{0}\right)$. Thus

$$
A_{-1}=\left(\begin{array}{cc}
\theta_{0}-v & \frac{-u y}{2} \tag{3.17}\\
\frac{2 v}{u y}\left(v-2 \theta_{0}\right) & -\theta_{0}+v
\end{array}\right)
$$

This concludes the proof that the inverse problem solves (2.1a). In a similar way it can be shown that it also solves Eq. (2.1 b) and hence P IV.
(ii) P II. Recall that $Y=\Phi e^{Q} z^{\theta \sigma_{3}}$ inside the circle and $Y=\Phi e^{Q}$ outside the circle. Introducing the notation

$$
\begin{equation*}
f^{\sigma_{1}}\left(e^{i \pi} z\right)=\sigma_{1} f(z) \sigma_{1}, \tag{3.18}
\end{equation*}
$$

the equations $G_{j+3}=\sigma_{1} G_{j} \sigma_{1}, j=1,2,3$ can be written in the compact form $G=G^{\sigma_{1}}$. This implies

$$
\begin{equation*}
\Phi=\Phi^{\sigma_{1}}, \quad z \text { outside the circle } \tag{3.19}
\end{equation*}
$$

The symmetry condition (3.19) plays a crucial role in establishing that the solution of the inverse problem also solves the direct problem. Let us first consider Eq. (2.1b): Following the same arguments as in (i) above it follows that

$$
\begin{equation*}
\Phi_{t}-i z \Phi \sigma_{3}=\left(B_{0}+z B_{1}\right) \Phi \tag{3.20}
\end{equation*}
$$

The large z asymptotics of (3.20) yields

$$
\begin{equation*}
B_{1}=-i \sigma_{3}, \quad B_{0}=i\left[\sigma_{3}, \Phi_{-1}\right] \tag{3.21}
\end{equation*}
$$

However, we need to show that $B_{0}=y \sigma_{1}$ for some y. This can be achieved by using (3.19):

$$
\Phi_{-1}=-\Phi_{-1}^{\sigma_{1}} \Rightarrow B_{0}^{\sigma_{1}}=i\left[\sigma_{3}^{\sigma_{1}}, \Phi_{-1}^{\sigma_{1}}\right]=i\left[\sigma_{3}, \Phi_{-1}\right]=B_{0},
$$

which implies

$$
\begin{equation*}
B_{0}=i\left[\sigma_{3}, \Phi_{-1}\right]=y \sigma_{1}, \quad \text { for some } y . \tag{3.22}
\end{equation*}
$$

We now consider Eq. (2.1 a),

$$
\begin{equation*}
\Phi_{z}-i\left(4 z^{2}+t\right) \Phi \sigma_{3}+\theta z^{-1} \Phi \sigma_{3}=\left(z^{-1} A_{-1}+A_{0}+z A_{1}+z^{2} A_{2}\right) \Phi \tag{3.23}
\end{equation*}
$$

where z is inside the circle. Hence

$$
\begin{equation*}
A_{-1}=\theta \Phi(0, t) \sigma_{3} \Phi^{-1}(0, t) \tag{3.24}
\end{equation*}
$$

However, we need to show that $A_{-1}=-\theta \sigma_{1}$. This can be achieved by using the symmetry relation. This relation implies (for z inside the circle),

$$
\begin{equation*}
\Phi^{\sigma_{1}}=-i \Phi e^{Q} \sigma_{2} e^{-Q} \Rightarrow \Phi^{\sigma_{1}}(0, t)=-i \Phi(0, t) \sigma_{2} . \tag{3.25}
\end{equation*}
$$

Equations (3.24), (3.25) yield

$$
A_{-1}=-\theta \sigma_{1}
$$

To determine A_{0}, A_{1}, A_{2} we use

$$
\begin{equation*}
\Phi_{z}-i\left(4 z^{2}+t\right) \Phi \sigma_{3}=\left(z^{-1} A_{-1}+A_{0}+z A_{1}+z^{2} A_{2}\right) \Phi \tag{3.26}
\end{equation*}
$$

for z outside the circle. The large z asymptotics of (3.26) yields

$$
\begin{gather*}
A_{2}=-4 i \sigma_{3}, \quad A_{1}=4 i\left[\sigma_{3}, \Phi_{-1}\right]=4 y \sigma_{1}, \tag{3.27}\\
A_{0}=-i t \sigma_{3}-4 y \sigma_{1} \Phi_{-1}+4 i\left[\sigma_{3}, \Phi_{-2}\right]
\end{gather*}
$$

Equation (3.20) implies

$$
\begin{equation*}
\Phi_{-1_{t}}=-i\left[\sigma_{3}, \Phi_{-2}\right]+y \sigma_{1} \Phi_{-1} . \tag{3.28}
\end{equation*}
$$

Using Eqs. (3.28) and (3.22) we find

$$
\begin{equation*}
\left(\Phi_{-1}\right)_{\mathrm{off-diag}}=\frac{y}{2} \sigma_{2}, \quad\left(\Phi_{-1}\right)_{\mathrm{diag}}=\frac{i y^{2}}{2} \sigma_{3} . \tag{3.29}
\end{equation*}
$$

Using the relations (3.29) in (3.27c) we obtain

$$
\begin{equation*}
A_{0}=-i t \sigma_{3}-4 \Phi_{-1_{t}}=-i t \sigma_{3}-2 y_{t} \sigma_{2}-2 i y^{2} \sigma_{3} \tag{3.30}
\end{equation*}
$$

Finally, from the direct problem at $t=t_{0}$ there exist (a, b, c, d) such that Id $-C_{W}$ is invertible at t_{0}. Then the analytic Fredholm theorem on irreducible varieties implies that the set $V_{\mathrm{IV}}^{0} \doteqdot\left\{(a, b, c, d) \in V_{\mathrm{IV}} /\right.$ corresponding Id $-C_{W}$ at t_{0} is not invertible) is an analytic variety with $\operatorname{dim} V_{\mathrm{IV}}^{0}<\operatorname{dim} V_{\mathrm{IV}}=2$. QED.

In the last section, we will obtain certain conditions on the monodromy data. Under those conditions, the solutions of P II and P IV have no poles when t is restricted to Stokes lines. In this respect the following lemma will be useful.
Lemma 3.1. Every vanishing solution $\hat{\Phi}$ of the RH problem has strong decay,

$$
\hat{\Phi}=O\left(\frac{1}{z}\right)
$$

Proof. By (3.8),

$$
\hat{\Phi}(z)=\frac{1}{2 \pi_{i}} \int_{\Sigma_{A R}} \frac{d \xi}{\xi-z} Y(\xi)\left(W_{Q}^{-}(\xi)+W_{Q}^{+}(\xi)\right), \quad z \in \mathbb{C} \backslash \Sigma_{A R},
$$

where Φ is the vanishing solution for the equation corresponding to $\hat{\Phi}$. Therefore

$$
\begin{aligned}
z \hat{\Phi}(z)= & \frac{1}{2 \pi i} \int \frac{d \xi}{\xi-z} Y(\xi) \xi\left(W_{Q}^{-}(\xi)+W_{Q}^{+}(\xi)\right) \\
& -\frac{1}{2 \pi i} \int d \xi Y(\xi)\left(W_{Q}^{-}(\xi)+W_{Q}^{+}(\xi)\right)
\end{aligned}
$$

The first integral is bounded because $Y \xi\left(W_{Q}^{-}+W_{Q}^{+}\right)$is a H^{1} function and the second is bounded because $Y\left(W_{Q}^{-}+W_{Q}^{+}\right)$is an L^{1} function.

Because of the analytic structure of the jump matrices, it is possible to define an equivalent RH on fewer contours. Consider for example PII. Since $Y_{2}=Y_{1} G_{1}$, $Y_{3}=Y_{2} G_{1}$ and Y_{1}, Y_{2}, Y_{3} tend to e^{Q} on $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ respectively (see Fig. 2.1), it follows that Y_{2} can be defined in $S_{1} \cup S_{2}$ and $Y_{2} \sim e^{Q}$ away from $\Sigma_{1} \cup \Sigma_{3}, Y_{2} \sim e^{Q} G_{1}$ on Σ_{1}, $Y_{2} \sim e^{Q} G_{2}^{-1}$ on Σ_{3}. Similar considerations apply to the other Y_{j}^{\prime} s and to PIV.

We shall use this fact to obtain vanishing lemmas. Suppose $\hat{\Phi}$ is a vanishing solution. We can use it, to construct via analytic continuation a vanishing solution
Y. From Lemma 3.1, the asymptotic behavior of Y_{j}, as $z \rightarrow \infty$ in sector $S_{j} \cup S_{j-1}$ is given as follows:

For PII:

$$
Y_{j} \sim\left\{\begin{array}{lll}
0\left(\frac{1}{z}\right) e^{Q} & \text { away from } & \Sigma_{j+1} \cup \Sigma_{j-1} \tag{3.31a}\\
0\left(\frac{1}{z}\right) e^{Q} G_{j}^{-1} & \text { near } & \Sigma_{j+1} \\
0\left(\frac{1}{z}\right) e^{Q} G_{j-1} & \text { near } & \Sigma_{j-1},
\end{array}\right.
$$

where $Q=-i\left(\frac{4}{3} z^{3}+t z\right) \sigma_{3}$, and $j=1, \ldots, 6 \bmod 6$.
For PIV:

$$
Y_{j} \sim\left\{\begin{array}{lll}
0\left(\frac{1}{z}\right) e^{Q}\left(\frac{1}{z}\right)^{\theta_{\infty} \sigma_{3}} & \text { away from } & \Sigma_{j+1} \cup \Sigma_{j-1} \tag{3.31b}\\
0\left(\frac{1}{z}\right) e^{Q}\left(\frac{1}{z}\right)^{\theta_{\infty} \sigma_{3}} \hat{G}_{j}^{-1} & \text { near } & \Sigma_{j+1} \\
0\left(\frac{1}{z}\right) e^{Q}\left(\frac{1}{z}\right)^{\theta_{\infty} \sigma_{3}} \hat{G}_{j-1} & \text { near } & \Sigma_{j-1},
\end{array}\right.
$$

where $Q=\left(\frac{z^{2}}{2}+t z\right) \sigma_{3}, \hat{G}_{j}=G_{j}$ for $j=1,2,3, \hat{G}_{4}=G_{4} e^{2 i \pi \theta_{\infty}}$, and $j=1, \ldots, 4, \bmod 4$.

4. Vanishing Lemmas

In this section we show that under certain constraints on the monodromy data, every vanishing solution of the RH problems associated with P II and P IV is zero. As described earlier, a vanishing solution is an element in $K_{e r}\left(I_{d}-C_{w}\right)$. Therefore the vanishing lemma shows that $I_{d}-C_{w}$ is invertible and the RH problem is then uniquely solvable.

We denote by $f^{\dagger}(z) \doteqdot f^{*}(\bar{z})$ the Schwarz reflection of a matrix function f. Consider the RH problem $\varphi^{+}=\varphi^{-} V$ on the contour Σ containing the real axis. Let $V \Lambda \mathbb{R}$ and $V \Lambda \Sigma \backslash \mathbb{R}$ denote V on the real axis and on the rest of Σ respectively. It is shown in [21] that if V satisfies

$$
\begin{equation*}
V \Lambda \Sigma \backslash \mathbb{R} \text { is Schwarz reflection invariant } \tag{4.1a}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re} V \wedge \mathbb{R}>0 \tag{4.1b}
\end{equation*}
$$

then every vanishing solution to the above RH problem must be zero. This result is obtained as follows: Let $H \doteqdot \varphi \varphi^{\dagger}$, where φ is a vanishing solution. Then Eq. (4.1a) implies that H is holomorphic on $\mathbb{C} \backslash \mathbb{R}$, and on \mathbb{R}

$$
H^{+}=\varphi^{+}\left(\varphi^{-}\right)^{\dagger}=\varphi^{-} V\left(\varphi^{-}\right)^{*} .
$$

Since $H=0\left(\frac{1}{z^{2}}\right)$ as $z \rightarrow \infty$,

$$
\int_{\mathbb{R}} H^{+}=\int_{\mathbb{R}} \varphi^{-} V\left(\varphi^{-}\right)^{*}=0 .
$$

Then Eq. (4.1b) implies that $\varphi^{-} \equiv 0$.
Using the above result and Eqs. (3.31) it is straightforward to obtain vanishing lemmas for P II and P IV. The only difference here is that the relevant solutions for PII and PIV may possess singularities at $z=0$ and $z=\infty$. We therefore also impose appropriate constants on $\theta, \theta_{0}, \theta_{\infty}$ to ensure that such singularities for H^{+} are integrable.

It is interesting that a direct application of the above result to the original RH problems for P II and P IV, i.e. before the reduction of the number of contours, fails to yield vanishing lemmas. However, it is possible to obtain vanishing lemmas for the original RH problems provided one uses $H=\varphi h \varphi^{\dagger}$, instead of $H=\varphi \varphi^{\dagger}$, where h is an appropriately chosen piecewise constant matrix. This is shown in the appendix.

Lemma 4.1. (Vanishing Lemma for P II). Assume that the matrix function Y, holomorphic on \mathbb{C} / Σ, has the following properties:
(i) possesses the jumps $G_{j}, 1 \leqq j \leqq 6$ on Σ given by (2.6),
(ii) behaves near $z=0$ according to Eq. (2.4) with $|\operatorname{Re} \theta|<\frac{1}{2}$,
(iii) the analytic continuation of Y behaves near $z=\infty$ according to (3.31a).

Then $Y(t) \equiv 0$,

$$
\begin{gather*}
\text { for } t \in \mathbb{R} \quad \text { if } \quad b=\bar{b}, \quad|a-\bar{c}|<2 \tag{4.2a}\\
\text { for } t \in e^{\frac{2 \pi i}{3}} \mathbb{R} \quad \text { if } \quad c=\bar{c}, \quad|b-\bar{a}|<2 \tag{4.2b}\\
\text { for } t \in e^{\frac{-2 \pi i}{3}} \mathbb{R} \text { if } a=\bar{a}, \quad|c-\bar{b}|<2 \tag{4.2c}
\end{gather*}
$$

Proof.

Fig. 4.1

As it is illustrated in Fig. 4.1, the conditions (4.1) yield

$$
\begin{equation*}
G_{2}=G_{5}^{*}, \quad \operatorname{Re} G_{3} G_{4}>0, \quad \operatorname{Re} G_{6} G_{1}>0 . \tag{4.3}
\end{equation*}
$$

Equation $G_{2}=G_{5}^{*}$ implies $b=\bar{b}$, while Eqs. (4.3b) and (4.3c) imply $|a-\bar{c}|<2$. The conditions (ii) and (iii) in the lemma guarantee that the singularities of H at $z=0, \infty$ are integrable. Hence the Vanishing Lemma follows.

The cases (4.2b) and (4.2c) are obtained in a similar way after performing suitable rotations of the \mathbb{C}-plane.

Lemma 4.2. (Vanishing Lemma for PIV). Assume that the matrix function Y, holomorphic on \mathbb{C} / Σ, has the following properties:
(i) possesses jumps $\widehat{G}_{j}, 1 \leqq j \leqq 4$ on $\Sigma, \widehat{G}_{j}=G_{j}, j=1,2,3, \widehat{G}_{4}=G_{4} e^{2 i \pi \theta_{\infty} \sigma_{3}}$,
(ii) behaves near $z=0$ according to Eq. $(2.22 \mathrm{a})$ with $\left|\operatorname{Re} \theta_{0}\right|<\frac{1}{2}$,
(iii) the analytic continuation of Y satisfies (3.31b) with $\left|\operatorname{Re} \theta_{\infty}\right|<\frac{1}{4}$.

Then $Y(t) \equiv 0$,

$$
\text { for } \left.\quad t \in e^{-\frac{\pi i}{4}} \mathbb{R}, \text { if } \quad \mid b-\bar{c}\right)<2
$$

and

$$
\begin{align*}
& e^{2 \pi I_{m} \theta_{\infty}}|a-\bar{d}|<2\left|\cos 2 \pi \operatorname{Re} \theta_{\infty}\right| \tag{4.4a}\\
& \text { for } t \in e^{\frac{\pi i}{4}} \mathbb{R}, \text { if }|c-\bar{d}|<2
\end{align*}
$$

and

$$
\begin{equation*}
e^{-2 \pi I_{m} \theta_{\infty}}|a-\bar{b}|<2\left|\cos 2 \pi \operatorname{Re} \theta_{\infty}\right| \tag{4.4b}
\end{equation*}
$$

Proof. Performing the rotation $z^{\prime}=e^{\frac{i \pi}{4}} z, \Sigma_{1}$ is mapped on to the real axis and q becomes $q=-i\left(\frac{z^{\prime 2}}{3}+t e^{\frac{i \pi}{4}} z^{\prime}\right)$, thus for $t e^{\frac{i \pi}{4}} \in \mathbb{R}, Q^{\dagger}=-Q$,

Fig. 4.2

As it is illustrated in Fig. 4.2, Eq. (4.1b) implies

$$
\begin{equation*}
\operatorname{Re} G_{2} G_{3}>0, \quad \operatorname{Re} G_{4} e^{2 i \pi \theta_{\infty} \sigma_{3}} G_{1}>0 . \tag{4.5}
\end{equation*}
$$

Let $M \doteqdot G_{4} e^{2 i \pi \theta_{\infty} \sigma_{3}} G_{1}$. One of the diagonal entries of $M+M^{*}$ is $e^{2 i \pi \bar{\theta}_{\infty}}+e^{-2 i \pi \theta_{\infty}}$; positivity of this entry is equivalent to $\left|\operatorname{Re} \theta_{\infty}\right|<\frac{1}{4}$. Also demanding that $\operatorname{det}\left(M+M^{*}\right)>0$ we find $e^{2 \pi I_{m} \theta_{\infty}}|a-\bar{d}|<2\left|\cos 2 \pi \operatorname{Re} \theta_{\infty}\right|$. Again conditions (ii) and (iii) in the lemma guarantee that the singularities of H at $z=0, \infty$ are integrable.

In the case of $t=e^{\frac{i \pi}{4}} \mathbb{R}$, we take the branch cut along Σ_{2}. Then the rotation $z^{\prime}=e^{\frac{3 i \pi}{4}} z$ yields the jumps indicated in Fig. 4.3 and Eq.(4.4b) follows similarly.

Fig. 4.3

$$
G_{1} e^{2 i \pi \theta_{\infty} \sigma_{3}} G_{2}
$$

Theorem 4.1. For each Stokes line, there exists a set of conditions on the monodromy data given by Eqs. (4.2), such that for ton a Stokes line, the solution for P II with $|\operatorname{Re} \theta|<\frac{1}{2}$ has no poles.

Remark 4.1. If the Cauchy data is purely imaginary and t is real, then Eq.(4.2a) is always satisfied. Indeed, if q and θ are purely imaginary, then A defined by (2.2a) satisfies $\sigma_{2} \bar{A}(\bar{z}) \sigma_{2}=A(z)$. Thus if $Y(z)$ is a solution of (2.1a), $\sigma_{2} \bar{Y}(\bar{z}) \sigma_{2}$ is also a solution. Hence

$$
\begin{equation*}
\sigma_{2} \bar{Y}_{2}(\bar{z}) \sigma_{2}=Y_{6}(z), \quad \sigma_{2} \bar{Y}_{3}(\bar{z}) \sigma_{2}=Y_{5}(z), \quad \sigma_{2} \bar{Y}_{1}(\bar{z}) \sigma_{2}=Y_{1}(z) \tag{4.6}
\end{equation*}
$$

But

$$
G_{5}=Y_{5}^{-1}(z) Y_{6}(z)=\sigma_{2}\left(\bar{Y}_{3}(\bar{z})\right)^{-1} \bar{Y}_{2}(\bar{z}) \sigma_{2}=\sigma_{2}\left(\bar{G}_{2}\right)^{-1}
$$

thus $b=\bar{b}$. Also

$$
G_{6}=Y_{6}^{-1}(z) Y_{1}(z)=\sigma_{2}\left(\bar{Y}_{2}(\bar{z})\right)^{-1} \bar{Y}_{1}(\bar{z}) \sigma_{2}=\sigma_{2}\left(\bar{G}_{1}\right)^{-1} \sigma_{2},
$$

thus $\bar{a}=c$.
Remark 4.2. Unfortunately, we do not have such a theorem for PIV. The reason for this is that y has a pole when Φ_{-1} has a zero. But the vanishing lemma for P IV is still useful, for instance, regarding the long time asymptotic behavior of P IV.

Appendix

We now show how the vanishing lemmas can be derived on the original contours. Let h be a piecewise constant matrix. We consider $H \doteqdot Y h Y^{\dagger}$ and we choose h, G_{j} 's in such a way that H is holomorphic in \mathbb{C}^{+}, and H can be reduced on \mathbb{R} to a quadratic form with positive definite real part.

P II.

Fig. A. 1

We note that for $t \in \mathbb{R}, Q^{\dagger}=-Q$, thus in order for H to be bounded, the large z behavior of Y suggests that h must be lower triangular in Sects. I, III, V and upper triangular in the complement. Also continuity across Σ_{3} implies

$$
H^{+}=Y_{2} h_{2} Y_{5}^{\dagger}=Y_{2} h_{2} G_{4}^{*} Y_{4}^{\dagger}=H^{-}=Y_{3} h_{3} Y_{4}^{\dagger}=Y_{2} G_{2} h_{3} Y_{4}^{\dagger} .
$$

Thus $h_{2} G_{4}^{*}=G_{2} h_{3}$ and the uniqueness of upper-lower triangular factorization yields

$$
\begin{equation*}
h_{2}=G_{2}, \quad h_{3}=G_{4}^{*} . \tag{A.1}
\end{equation*}
$$

Continuity across Σ_{2} implies

$$
H^{+}=Y_{2} h_{2} Y_{5}^{\dagger}=Y_{1} G_{1} h_{2} Y_{5}^{\dagger}=H^{-}=Y_{1} h_{1} Y_{6}^{\dagger}=Y_{1} h_{1} G_{5}^{*} Y_{5}^{\dagger} .
$$

Thus

$$
\begin{equation*}
h_{1}=G_{1}, \quad h_{2}=G_{5}^{*} . \tag{A.2}
\end{equation*}
$$

Equations (A.1), (A.2) yield the constraint $G_{2}=G_{5}^{*}$, i.e. $b=\bar{b}$. On $\Sigma_{4}, \Sigma_{1}, H^{-}$ becomes:

On $\Sigma_{4}: H^{-}=Y_{3} h_{3} Y_{4}^{\dagger}=Y_{3} G_{4}^{*} G_{3}^{*} Y_{3}^{\dagger}$.
On $\Sigma_{1}: H^{-}=Y_{1} h_{1} Y_{6}^{\dagger}=Y_{6} G_{6} G_{1} Y_{6}^{\dagger}$.
H is holomorphic in \mathbb{C}^{+}with continuous extension to \mathbb{R}, except possibly at $z=0$ and ∞. But for $|\operatorname{Re} \theta|<\frac{1}{2}$ the possible singularities at 0 and ∞ are integrable. Thus

$$
\begin{equation*}
\int_{\mathbb{R}} \operatorname{tr} H^{-} d z=0, \Rightarrow \int_{\mathbb{R}} \operatorname{tr}\left(H^{-}+H^{-*}\right) d z=0 . \tag{A.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
L \doteqdot G_{3} G_{4}, \quad M=G_{6} G_{1} . \tag{A.4}
\end{equation*}
$$

If the eigenvalues of the Hermitian matrices $L+L^{*}, M+M^{*}$ are positive then Eq. (A.3b) implies $Y=0$. Since both these matrices have 2 as one of their diagonal entries, it follows that the positivity of the eigenvalues is equivalent to the positivity of their determinants. Demanding that $\operatorname{det}\left(L+L^{*}\right)>0$ and $\operatorname{det}\left(M+M^{*}\right)>0$ we find $|a-\bar{c}|<2$.

PIV.

Fig. A. 2

Continuity of $H=Y h Y^{\dagger}$ implies

$$
H^{-}=Y_{1} h_{1} Y_{4}^{\dagger}=Y_{1} h_{1} G_{3}^{*} Y_{3}^{\dagger}=H^{+}=Y_{2} h_{2} Y_{3}^{\dagger}=Y_{1} G_{1} h_{2} Y_{3}^{\dagger}
$$

i.e.

$$
\begin{equation*}
h_{1}=G_{1}, \quad h_{2}=G_{3}^{*} . \tag{A.5}
\end{equation*}
$$

On $\Sigma_{3}, \Sigma_{1}, H^{+}, H^{-}$become

$$
Y_{2} G_{3}^{*} Y_{3}^{\dagger}=Y_{2} G_{3}^{*} G_{2}^{*} Y_{2}^{\dagger} \quad \text { and } \quad Y_{1} G_{1} Y_{4}^{\dagger}=Y_{4} G_{4} e^{2 i \pi \theta_{\infty} \sigma_{3}} G_{1} Y_{4}^{\dagger}
$$

respectively. The positivity of the eigenvalues of $G_{2} G_{3}+\left(G_{2} G_{3}\right)^{*}$ implies $|b-\bar{c}|<2$. Let $M \doteqdot G_{4} e^{2 i \pi \theta_{\infty} \sigma_{3}} G_{1}$. One of the diagonal entries of $M+M^{*}$ is $e^{2 i \pi \bar{\theta}_{\infty}}+e^{-2 i \pi \theta_{\infty}}$; positivity of this entry is equivalent to $\left|\operatorname{Re} \theta_{\infty}\right|<\frac{1}{4}$. Also demanding that $\operatorname{det}\left(M+M^{*}\right)>0$ we find $e^{2 \pi I_{m} \theta_{\infty}}|a-\bar{d}|<2|\cos 2 \pi \operatorname{Re} \theta \ldots|$.

Acknowledgements. We thank Percy Deift for many useful discussions and for his important suggestions on the early draft of this manuscript. A. S. Fokas was partially supported by the Office of Naval Research under Grant Number N00014-88K-0447, National Science Foundation under Grant Number DMS-8803471, and Air Force Office of Scientific Research under Grant Number 89-0148. X. Zhou was partially supported by the National Science Foundation under Grant Number DMS-9000045.

References

1. Flaschka, H., Newell, A.C.: Commun. Math. Phys. 76, 67 (1980)
2. Ueno, K.: Proc. Jpn. Acad. 56A, 97, 103 (1980); Jimbo, M., Miwa, T., Ueno, K.: Physica 2D, 306 (1981); Jimbo, M., Miwa, T.: Physica 2D, 407 (1981); 4D, 47 (1981); Jimbo, M.: Prog. Theor. Phys. 61, 359 (1979)
3. Fokas, A.S., Ablowitz, M.J.: Commun. Math. Phys. 91, 381 (1983)
4. Fokas, A.S., Mugan, U., Ablowitz, M.J.: Physica 30D, 247 (1988)
5. Ince, E.L.: Ordinary differential equations (1927). New York: Dover, 1956
6. Fokas, A.S., Ablowitz, M.J.: J. Math. Phys. 23, 2033 (1982)
7. Ablowitz, M.J., Ramani, A., Segur, H.: Lett. Nuovo Cimento 23, 333 (1978); J. Math. Phys. 21, 716, 1006 (1980)
8. Barouch, E., McCoy, B.M., Wu, T.T.: Phys. Rev. Lett. 31, 1409 (1973); Wu, T.T., McCoy, B.M., Tracy, C.A., Barouch, E.: Phys. Rev. B 13, 316 (1976)
9. Jimbo, M., Miwa, T., Mori, Y., Sato, M.: Physica 1D, 80 (1980); Jimbo, M., Miwa, T.: Proc. Jpn. Acad. 56A, 405 (1980)
10. Miles, J.W.: Proc. R. Soc. London A 361, 277 (1978)
11. McCoy, B.M., Perk, J.H.H., Schrock, R.: Nucl. Phys. B (1983); Correlation functions of the transverse Ising chain at the critical field for large temporal and spatial separations
12. McCoy, B.M., Tracy, C.A., Wu, T.T.: J. Math. Phys. 18, 1058 (1977)
13. McCoy, B.M., Wu, T.T.: Nucl. Phys. B 180, (FS2), 89 (1981)
14. Creamer, D.B., Thacker, H.B., Wilkinson, D.: Phys. Rev. D 23, 3081 (1981)
15. Perk, J.H.H., Capel, H.W., Quispel, G.R.W., Nijhoff, F.W.: Finite-temperature correlations for the Ising chain in a transverse field. Physica 123A, 1 (1984)
16. Gromak, V.I., Tsegelnik, V.V.: Teor. Mat. Fiz. 55, 189-196 (1983)
17. Zakharov, V.E., Kuznetsov, E.A., Musher, S.L.: JETP Lett. 41, 125-127 (1985)
18. Gross, D.J., Migdal, A.A.: Phys. Rev. Lett. 64, 127 (1990); Douglas, M., Shenker, S.: Strings in Less Than One Dimension, Rutgers University, Preprint RU-89-34
19. Alvarez, O., Windey, P.: Universality in 2D Quantum Gravity, preprint (1990); Moore, G.: Matrix Models of 2D Gravity and Isomonodromic Deformations, YCTP-P17-90
20. Brezin, E., Marinari, E., Parisi, G.: A Non-Perturbative Ambiguity Free Solution of a String Model, preprint (1990); Witten, E.: 2D Gravity and Intersection Theory on Moduli Space, IASSNS-HEP 90/45 (1990)
21. Zhou, X.: The Riemann-Hilbert Problem and Inverse Scattering, SIAM. J. Math. Anal. 20, (4), 966-986 (1989)
22. Its, A.R., Novokshenov, V.Y.: The Isomonodromic Deformation Method and Painlevé Equations. Lecture Notes in Mathematics. Dodd, A., Ecknamm, B. (eds.). Berlin, Heidelberg, New York: Springer
23. The case $\theta=\frac{2 n+1}{2}$ can be treated in a similar manner
24. Birkhoff, G.D.: Trans. AMS 436 (1909); 199 (1910)
25. The case $\theta_{0}=\frac{n}{2}$ can be treated in a similar manner
26. Its, A.R., Kapaev, A.A.: Math. USSR Izvestiya, 31, 193 (1988)
27. Its, A.R., Novokshenov, V.Y.: ФYHKWNOH. AHAムN3, 22, 25 (1988)
