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Abstract. We get a rigorous bound for the diffusion constant of the hamiltonian
dynamical system generated by a sawtooth map on a cylinder. The momentum
variable properly renormalized then behaves almost like a brownian motion in
the limit of infinite coupling constants. The strategy of the proof is a rigorous
reformulation of the Random Phase Approximation.

0. Introduction

In this paper we consider the area-preserving sawtooth map:

where g(θ) is a 2π-periodic piecewise continuous function of zero average. This
map is a simple model for a certain number of physical situations: charged particles
in magnetic fields, plasma confinement in nuclear fusion, stochastic ionization,
etc.... In fact it describes a "kicked" rotor subject to a sequence of periodic impulses
g(θ\ or alternatively, since it can be written as a second order difference equation:

θn+ί - 20Λ + 0Π_i = Kg(θn)(mod2π) (0.2)

it describes the motion of a particle receiving an impulse determined by a periodic
one-dimensional potential.

A lot of analytical and numerical work has been devoted to the study of (0.1)
for smooth g% the most important example being g(θ) = sin 0, namely the Chirikov-
Taylor "standard map" [1,2]. While at small values of K the dynamics is regular
(stability of KAM tori [3-8]), it has been observed since a long time ago that for
K large, the solutions of (0.1) admit a diffusive behavior in the phase space
(A, 0)eR x T. The standard argument in this respect is the so-called random phase
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approximation (RPA) [1,2]. If we define ΔAn by ΔAn(A, θ) = An(A, θ) - A we get a
2π-periodic function of A, that will be considered as a stochastic process if (A, θ)
is considered as a random variable on the space T 2 with probability given by the
normalized Haar measure μL. Neglecting the two-point correlation function
< g(θ)g(θn(A, θ)) >, n > 0, where < > is the expectation on T 2 , the variance of ΔAn is:

((ΔAn)
2} = K2n<g2>. (0.3)

The intuitive idea is that, for n > 0, the phases θn = θn(A, θ) oscillate so fast at large
K's, that they become uncorrelated from θ. Therefore, the evolution of ΔA is
diffusive and the diffusion coefficient D, defined by:

^ , (0.4)

(provided the limit exists), is approximately equal to X2, for K large. This last
limit is called the quasi-linear diffusion coefficient and is denoted by DL. Further
calculations [1,2,23-27] using the formal infinite expansion for D in force-force
correlations, give an higher-order correction of the type:

D~DLl±-J2(K) + J2

2(K)l (0.5)

where J 2 is the Bessel function of order 2. Amazingly enough, very little is known
mathematically on the existence of D and the validity of (0.4) and (0.5). The main
difficulty is the non-ergodicity of the motion due to the possible existence of islands
of stability, so that the usual methods are useless to prove the convergence of the
expansion involved in (0.5).

Our aim in this paper is to take seriously the RPA method and to derive
rigorous estimates on the diffusion coefficient. The argument leading to (0.3) is
actually much too simple. A certain number of additional steps must be investigated
in order to estimate how fast the correlation function converges to zero at large
X's. To illustrate these ideas, we will consider the sawtooth map. This is because
this latter model avoids complicated and probably inessential combinatorics. We
must note at this point that if X is a positive integer, this map becomes a linear auto-
morphism of the torus and the diffusion coefficient can easily be computed using
analytic methods ([10-11,16-18]). However for KφZ the situation is quite different.
While it is possible to prove the ergodicity of the map (and the proof is far from being
trivial [15]), the exact computation of D is still unsolved; approximate estimates
can be found in [9] and recently a new technique based on a suitable partition
of the phase space into "resonances" has been developed, but not all the statistical
assumptions of this method are justified yet [19-22].

Moreover the technical difficulties of establishing exponential decay of cor-
relations from the construction of a Markov partition has stimulated a search for
alternative, more direct techniques of estimating the rate of decay of correlations.
The current paper is in this spirit.

We remember that Markov partitions for dynamical systems with singularities
(in particular billiards) have been constructed by Bunimovich and Sinai [28-30];
see also Levi [31] and a recent paper by Krϋger and Troubetzkoy [32].

Our way to estimate the diffusion coefficient is the following: we firstly recall
the equality (0.3) that holds in the RPA and neglecting the higher-order corrections
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to D for K large; then we introduce a continuous effective time ίe[0,1] and set
n = \Kt\ where [•] denotes the integer part. The variance of ΔA[Kt] scales now
like K3t(g2}9 so that if we define the stochastic process:

Λ A ίs.Λ

(0.6)

on the probability space of the initial values, we get the following limit (see
Theorem 1.1 below):

(0.7)

Equation (0.6) is a necessary (but not sufficient) condition for the process ξκ(t9 ω)
to converge in probability to the normalized Wiener process. Let us however
remark that ΔAn measures the diffusion of the action variable in the cylinder
R x l After a rescaling of the discrete time n = [Xί] and a suitable normalization,
(0.6) suggests that ΔA[Kt] is approximately distributed for K large, as the path up
to time ί = 1 of a brownian particle (see Billingsley, p. 5 in [12]). What we prove
in the present paper is the existence and the validity of the limit (0.7). We also get

a rigorous finite-time estimate for the diffusion coefficient Dn = 2 " — after n

steps. More precisely, we will prove that the difference
Dn is of order K - 1

for times n up to [K].
The proofs of these results are based upon a detailed analysis of the two-point

correlation function (g{θ)g(θn(A,θ))}, and don't require ergodicity for the map.
We believe that this method can be extended to a larger class of transformations,
including the smooth ones. The core of the proof is a detailed control of the points
of discontinuity of θn(A,θ)9 0e[ — π,π), for A fixed.

For smooth #'s, these points should be replaced by a small neighbourhood of
the critical points of 0W, where the derivative of the map becomes small. These
latter points are responsible for islands of stability in the phase space, and for
breaking the global ergodicity.

We actually prove for the sawtooth map (and we guess it should also be true for
the standard map), that those singular regions give a contribution of order K~a

(for some α ^ 2) to the correlations, which is sufficient in our probabilistic approach.
We incidentally note that for integer K's our method recovers the exponential
decay of the two-point correlation function as expected, showing in this case that
the diffusion coefficient D coincides with the quasi-linear one in the limit K -» oo.

1. Notations and Statements of the Results

The sawtooth map (SM) T is defined on the cylinder R x T with coordinates (A, 0)
by:

T(A,Θ) = (A + Kg(θ)9 A + Θ + Kg(θ)mod2πl (1.1)

where K is a real positive number and g(θ\ 0eIR is a 2π-periodic piecewise linear
function given by g(θ) = 0, for 0 e [ - π, π). We set Tn(A9 θ)=(An(A9 0), ΘH(A>θ)) f o r
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neZ. We will show in Sect. 2 that:

An(A9θ) = A + KHΣg(θs{A,β)). (1-2)
s = 0

In particular, the action increment ΔAn(A, θ) = An(A, θ) — A is a 2π-periodic function
of both variables (A, θ). Remarking that T commutes with the translation of A by
2π, we denote by T the map induced by T on the 2-torus TΓ2 just making A an
angle variable in (1.1)

T(A, Θ) = (A + Kg(θ)mod2π, A + Θ + Kg(θ)moά2π). (1.3)

dAdθ _
T preserves the Lebesgue measure μL = — on TΓ .

4π2

Then we introduce the probability space 0> = {T2,τ7,μL}, where η is the Borel
σ-algebra and we denote by E, V respectively the corresponding expectation and
variance on ^\ One easily checks that ΔAn is actually defined on & with a zero
expectation, and it describes a stationary process on ^ .

Our next step is to formulate an "invariance principle" for the process ΔAn as
briefly sketched in the introduction. We begin by setting n = [Kt], ίe[0,1] and
replace ΔA[Kt] by (1.2). Using the notation ξκ(t,ω) defined in (0.6) the main result
of this paper anticipated by (0.7) can now be restated as:

Theorem 1.1. We have the following limit:

( 1 M " 1 \
limV — - Σ g(θs(A,θ)))=\im((ξκ(t,ω))2y = t, (1.4)

where σ2 = Ψ{g) = \π2. O

As pointed out in the introduction, this result suggests that the process ξκ(t,ω)
converges to the normalized Wiener process (and this is called an invariance
principle), in the following sense: the measure μL induces a family of probability
distributions μκ on the space # of continuous functions on [0,1] with the uniform
topology, according to:

μκ(B) = μL{ωe0>; ξκ(t,ω)eB}, (1.5)

whenever B is a measurable subset of (β. We have an invariance principle whenever
μκ converges weakly to the Wiener measure. To prove such a result, Theorem 1.1
is a necessary condition. A sufficient condition is given by the convergence of all
the finite-dimensional distributions of the process. We have not investigated this
latter point yet, and we postpone it to a future work.

It is interesting to note that as a by-product of the proof of Theorem 1.1 we
W(ΔA )

can estimate the diffusion coefficient. In fact, if Dn = —— and DL are respectively
no2

the diffusion coefficient at "time" n and the quasi-linear coefficient we are able to
show:
Proposition 1.2. For K > ^— and n ^ 0, the following estimate holds:

D, -0.5 K + \
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Theorem 1.1 follows immediately from this proposition. The singularity at K — ^—

is apparent: it arises to optimize the bound for K large; in fact the key estimate
for the proof of Proposition 1.2 is the following lemma:

Lemma 1.3. We have for K^O: \Έ(g(θ)g(θs(A,θ)))\^27ί-(2 + 22csk) for s^2;
or

\Έ(g(θ)g(θι(AM)\<^-, "here csk= *~Y and α = * + 2 + V * 2
V V V iv " " - κ + 1 ' s'fc (f-\a-2) 2

is the (constant) positive eigenvalue of the derivative of T. O

Proof of Proposition 1.2. By an elementary calculation we get:

- - 1 -Έ(g(θ)g(θ1(A,θ))) + n Y -( I--)Έ(g(θ)g(θs(A, (1.7)

n-1 I / s\ * 1
The term Y -I 1 — is bounded by the Riemann integral f dx( 1 — x) = - Using

5=2 n\ nj o 2'
Lemma 1.3, it is easy to conclude. O

Here we give a sketch of the proof, that is reduced to estimate the integral of the
product g(θ)-g(θn(A, θ)) only with respect to the angle θ. An important combinatorial
role will be played by the graph of the function θn(A9 0)-mod 2π, 0e[ - π, π), which
we simply call FJβ) keeping A fixed. This graph is made of straight lines with
slope dθn (namely the derivative dFn(θ)/dθ) which cut (whenever KφJti) along vertical
lines located at the discontinuity points of Fn(θ). This graph determines a partition
of the basic torus [ — π, π) in the following way. Let Sn be the set of 0's in the
interval [ — π, π) such that either Fn(θ) is an odd multiple of π, or θ is a discontinuity
points of Fn(θ). This set divides [ - π, π) into two different kinds of intervals. In
the first ones (good intervals or #-typed), both their endpoints are continuity points
of Fn(θ); in the second ones (bad interval, or fo-typed) at least one of the endpoints
is a discontinuity point of Fn(θ). We then split the integral:

J g(θ)g(θn(AM^-
-n 2π

over the partition defined by Sn. In each term of this decomposition, g(θ) can be
replaced by a constant, with an error of O(K~n). Then, it remains to integrate
g(θn(A, θ)). If we have a g-typed interval, the integral vanishes. Whereas on fe-typed
interval, the integral can be written in one of the two following forms:

where αn (respectively βn) is different from π (respectively — π), and the slope δFn

is of order Kn. We will prove that, up to an error of order X~2, one can group these
integrals in approximately Kn~2 terms, each of which being the sum of ln(K) = O(K)
integrals of type (i) and (ii) above, where now the boundaries OLJ and βj
(1 ^ J g ln{K)\ are distributed on T according to a well-defined rotation of the
circle. The contribution of each sum can be estimated by Denjoy's inequality and
gives a bound of order 1 (and not K). Since each integral is multiplied by the
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inverse of the slope of Fn(θ)9 we finally get a bound of order K " 2, which is enough
to prove Lemma 1.3.

2. Structures of the Discontinuities

In this section we prepare some technical tools needed to prove Lemma 1.3. Our
major interest is for non-integer K. It is easy to prove the following lemma by
induction:

Lemma 2.1. For positive π's the following relations hold:

s = 0

ΘJLA, θ) = θ + nA + κ"Σ(n- s)g(θs(A, #)),
s = 0

and similar relations hold for negative n's. O

Let Fn(θ) be the function on R defined as Fn(θ) = θn(A, θ) where A is kept fixed
once and for all. Since Fn(θ + 2π) = Fn(θ) + 2π, Fn is itself the lift of a function on
the torus X So that it is sufficient to consider the restriction of Fn(θ) on the interval
[ - π , π ) . We also remark that the function FH(Θ) = Fn(θ) - (θ + nA)(θeJR) is 2π-
periodic. Now, the function g(θ), θeIR, is monotone increasing everywhere but on
the set (2Έ + l)π of odd multiples of π, where the mapping T becomes discontinuous
for K£N. Let Disc {Fn{θ)} denote the set of points in [ — π,π), where Fn(θ) is dis-
continuous (including the end points). By definition, we clearly have Disc {Fn(θ)} =
Disc{FΠ(0)}. Therefore:

Disc {Fn(θ)} c "Q1 Disc {goFs(θ)} (2-1)
s = 0

We then remark that g°Fs(θ) is discontinuous at points θ such that either
Disc {Fn(θ)} Φ 0 or Fn(θ) = π(mod2π). Together with (2.1), this gives:

Lemma 2.2. For n > 1 we get the recursion formula for the discontinuities of Fn:

Disc{Fn(θ)} c "Q1 (Disc{F s(θ)})^{θe[-π,π);Fn. ι(θ) = π(mod2π)}. O

The previous lemma also shows that Disc {Fn(θ)} is a finite set. We will give later
on an upper bound on its cardinality. The derivative dFn at the points of continuity
is independent of θ (and of A too) and is given by:

Proposition 2.3. In the points where it is defined, the partial derivative of Fn(θ) with
respect to θ is given by:

dFn=l+K *Σ (n -j)dFj = a*n+l*l, n^O. O (2.2)
j=o {a+\)an
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da
Proof. Starting from the formulae in Lemma 2.1, since — = 1 we get immediately:

dθ

The generating function is the formal power series in X given by:

F{X)= £ Xm dFm.
m = 0

It follows immediately that F satisfies the following equation:

+ K
1-X (1-X)2

and therefore

1-X

F(X) = — — + K — ^ — F{X\
1X (1X)2

F(*) = -

Remembering the definition of the constant a in Lemma 1.3, one can expand easily
F in power series using 1 — (K + 2)X + X2 = (a — X){a~* — X). An elementary
calculation leads to the result. O

Corollary 2.4. We get the following estimates'.

K + 2 l—<a<K + 2 — , -a—atι<dFn<an. O (2.3)

K+l K + 2 a+l ~ n~ y '

Proof. Since a + a~1=K + 2, it follows that K>0^1<a<K + 2. Thus

<a~x < 1=>K + 1 <a<K + 2 . Hence <a~x < givingK+2 K+2 K+2 K+l
the first estimate in (2.3). On the other hand, from (2.2) we get

a2n + 1 + l a2n + 1+x

dFn = ^ for 0 ^ x ^ 1. Setting x = 0 we get the upper bound
(a + l)an (a + x)an

in (2.3). Using a2n+1 + 1 ̂  a2n + 1, we immediately get lower bound. O
We want now to get a more precise description of Disc {Fn(θ)}. For n = 1, Fx(0) =
Θ + A + Kg(θ\ and we get Disc {F^θ)} = {- π}. For n = 2, F2(0) = Θ + 2A + 2Kg(θ) +
Kg(F1(θ))9 so that beside 0 = {— π}, the discontinuities of F2(0) are given by the
points θJι such that F 1(0 J l) = (2J1 + l)π. We then remark that Fί(-π + 0) =
A - (K + l)π and Fλ(π - 0) = A + (K + l)π, so that the total variation of Fx is
2π(K + 1) and we get for any fixed A:

θ < — 7 Γ < c / < α < ••• < p , < ••• < c/ , < C 7 Γ < C c / , H
Nϊ+ί dF JVf+l iVj"+2 J i iVj+ Nj + Qp

with
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The preceding equations define the set of indices Nf; moreover we also set
0 _ = — π and 0 + = π, so that:

namely,

( # + - JV" - 1) ̂  dFί g (JV + - JV; + 1).

We denote by Ij = [0 y; ΘJ+1), for N~ g J ^ N±, the intervals defined by this parti-
tion of [ — π, π). In each such interval, F1 is continuous, affine and takes on values
in [(2J -4- l)π, (2J + 3)π). In particular, g°F1 and therefore F 2 also, is continuous
and affine there, and the discontinuities of F2 are exactly given by the endpoints
of these intervals. So:

Disc {F2} = {θy, N ^J^ Nf + 1}.

we get recursively a family of interv
rtition of [ - π, π], and defined by:

7Ji J.-i = C0Ji J.-i» θJu...Js- i + l)»

In much the same way we get recursively a family of intervals (called intervals of
type s — 1), giving a partition of [ —π,π], and defined by:

where:

having also defined: θJi Js 2 = 0 ^_ , and:

Moreover the indices N*{Jι,...,J5^ί) are defined in such a way as to satisfy:

(2iV; + l)π ^ FΛ(θJχ_Ja_ χ + 0) < (2W; + 3)π,

(2JV; + l)π g Fa(θJu_Ja_ ι + ι-0)< (2ΛT; + 3)π,

and the new interval at the sth step are defined by:

Fs(θJι Js_ uJs) = (2JS + l)π whenever Λf < Js £ N +

We call "good" the intervals of type (s - 1) with Js-χφ Nf_v Actually the function
Fs-X(θ) is monotone increasing with variation 2π on them, so that their width is
2π/dFs-!. On a "bad" intervals with J s _ ί = N~_ x (respectively N*_ J , the function
F s_1(0) is discontinuous at the left (respectively right) endpoint, or at both.

This latter case may happen if there is a bad interval of type (5 — 2) with length less

than or equal to . Such an intervals can be written as / τ τ = [ 0 , τ

ΘJU...,JS-2 + IΪ> w h e r e

ΘJI,...JS-2,N;_1 + I =θJι,...,J.-i + ι

or
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I , - Ij j N - , Ij j j Ij j N

+ 1 ! J J N+

ϊ r i v i
r-l Yjf\ ψ h -

/ ί / \ \
Θ J, VrJ+i \ % . ^ Ϊ

Fig. 1. The discontinuities of Fs and the corresponding partition

This means that IJu.tmtJs_2 generates only one interval of type (s — 1) which we can

also denote by / j _2N
± w ^ e r e N~_ί(Jίi...,Js-2) = N*_1(Jί,...,Js-2)'

On the other hand, it is easy to see that in any good interval of type (s — 1),
there are approximately dFs/dFs-ί good intervals of type (s). More precisely, if
N s

±_1 = N*_ι(Jί9...,Js_2) with J s _ x φN^_ί, we get:

N s

+ - JV " - 1 ̂  ldFJdFs. J S N+ - ΛΓS" + 1. (2.4)

For large K this number can be estimated using Proposition 2.3:

1 dF
Lemma 2.5. For s ^ 1, we get a — ^ — ^ a. O

dF a2s+1 + 1 a2s+1 + x
Proof. From Proposition 2.3, we get — = —^—^ ^ — ^ ^ for

0 ^ x ^ 1. Setting x = 0, we get the upper bound. For the lower bound,

3FS a2-\ 1
a — = — 2 ^ Γ Ί S 2 ( 5 _ l Γ O

Let us call &s-ι the partition of [— π, π] given by the intervals of type (s — 1) and
let P s _ ! be its cardinality. To get an upper bound of P s _ x we note that each
interval / of ^ s _ 2 gives at most two (possibly bad) intervals of ^ s _ i having at
least one endpoint in common with an endpoint of /. So they give a contribution
of 2P S _ 2 to P s _i . If we now subtract these latter intervals, all the remaining
intervals of £Ps-ι are good and their number is simply bounded by 2π/(2π/δFs_1).
Then we get: Ps-t ^ 2 P S _ 2 -\-dFs_1. We also observe that the cardinality of
DiscFs(0) is surely bounded by 2PS_X; iterating the preceding inequality for Ps-χ
with P o = 1, and using (2.2) we get:
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where csk was defined in Lemma 1.3, Sect. 1. O
In the next section we have to compare P s _ α to dFs for α = 1,2,3.
Collecting Lemma 2.6 and Proposition 2.3 we easily get:

P c
Lemma 2.7. For s > α we have — ^ < — o

3. Proof of Lemma 1.3

Now we have all the ingredients to prove Lemma 1.3 following the strategy
indicated at the end of Sect. 1. We will use the notation:

Es = Έ(g(θ)g(θs(A,#)))S f dυg(θ)g(θs(A,θ)\ s^ 1, (3.1)

where dυ = — .
2π

Let us decompose (3.1) into a sum over the intervals IJι Js defined in Sect. 2.
Let θf^ Js be a point in this interval. We can then write g(θ) = g(θ{°ι

)

 ? J s) +
(θ — θf^ Js)9 and therefore we immediately get:

dυg(θ)g(Fs(θ))ί
Jl. .Js Ij\,...,Js

• Σ
Ji. .J,

= £(!) +£(2).

Using Lemma 2.4, we prove that the second term is bounded by:

max (

(3.2)

(3.3)
Ji. J,

Now let us consider the first term E(\) in (3.2). The good intervals in the sum give
no contribution for Fs is linear and varies from — π to π, whereas g has mean
zero. Therefore only bad intervals must be kept, namely those for which Js = N*.
We now get E(l)^E(l\) + £(12), where £(11) is obtained by restricting the sum
in £(1) to those intervals for which J s _ x = N*_19 and £(12) is obtained in the same
way with now Js-ιΦ Nf-V An estimate similar to (3.3) using Lemma 2.7 will give
easily:
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Then we have to estimate the sums £(12). Let now θf^ Js 2 be a point in the
interior of Iτ r which contains I r xr±. A shift of the argument in £(12)

JI,...,JS 2 Jιt...,Js- l»iVs

gives:

£(12) =

Jl...Js-2

Σ + Σ ί dvg(Fs(θ))

+ Σ Σ
±

dυg(Fs(θ)) = £(121)+ £(122). (3.5)

Using again the results of Sect. 2, we easily see that £(122) is bounded by:

(3.6)

Once again we split the sums involved in £(121) into two pieces as follows:

£(121)^

Σ , (-) = £(1211)+ £(1212).

The first give a contribution which is easy to estimate:

(3.7)

(3.8)

Now we are ready to estimate the most difficult piece £(1212). Since g is bounded
by π, we can estimate this piece as follows:

£(1212) = π
Jι...Js-3 Js-2

Σ Σ Σ ί dυg(Fs(θ))
*2 Js-ι^N^_i ε=± Ijι,...,jβ-ι,N's

(3.9)

The same kind of estimate as above produces only a bound of order O(K x) which
is not enough. So we have to use a more sophisticated technique. In order to do
so, let us consider the partial sum:

SJu...,Js-2= Σ + ( ί
Js- 1 ^N~_ j \Ijι,...,Js- I,N~

ί dυg(Fs(θ))\
Js-i,N+ /

(3.10)

To deal with it we will need some more notations, namely:

(ii)



532 J. Bellissard and S. Vaienti

(iii) Rs(x) = x + 2παs(X)(mod 2π). This is actually the rotation on the circle T 1 with
rotation number:

(3.11)

Fig. 2. Graph of Γδ

Lemma 3.1. IfTs_1= N+_ x - N~_ ί - 1, the following identity hold:

S

t=o oFs

O (3.12)

Proof. See Appendix 1. O

By inspection we can check that Γδ(x) is continuous, piecewise linear, with zero
average on the circle, and a bounded total variation. The standard way to estimate
the sum in (3.12) consists in using Denjoy's inequality [13,14], giving an upper bound
Var(Γ^) provided the rotation number (xs(K) is sufficiently "well approximated"
by a rational numbers of the form p/Ts-1. But we get:

Lemma 3.2. For s ^ 2, we get the following estimate:

1
o

Proof. From Lemma 2.5, we get (xs(K) — 1 H g a - K - 2 +

(3.13)

1 1

In much the same way ocs(K) - 1 + :α-^Lτ-X-2 + -L
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ϊϊ^T) - ~ ~ 2 ( S -i) N θ W W e k n o w ( s e e E q * ^2 4 ^ t h a t ^ s - i < t f < ^ s - i + 2 +
a a a
-—-—- < Γs_ i + 3. A simple calculation leads then to the result. O

Lemma 3.3 (Denjoy's Inequality). Let h be a continuous function on the circle with
bounded variation. Let α e R and p/qe<Q (p and q prime to each other) be numbers
such that |α — p/q\ ̂  ε for some ε > 0. If we denote by [X] the smallest integer larger
than or equal to X, then for any xeTΓ, we have:

ί=o T 2π

Proof. See Appendix 2. O

Therefore we can now bound S^ Js 2 using (3.12) and Lemmas 3.2 and 3.3:

for Γδ has a zero mean over the circle and its variation is bounded by 2π. Replacing
in (3.12) and then in (3.9), one gets for s ^ 2:

£(1212) £ π Σ Σ ^ ^ ^ π ^ ό π ^ 1 2 ^ . (3.16)
8F dF 2

Thus for s ^ 2 and K ^ 0, we get:

\Έ(g(θ)g(θs(A9θ)))\ ^ E(2) + £(11) + £(122) + £(1211) + £(1212)

4π2 8c s Λ π 2 16csfcπ
2 8c s f cπ

2 I2cskπ
2

(3.17)

We can estimate l E ^ Θ ^ Θ ^ ^ O ) ) ) ! in much the same way. A direct calculation

gives:

\Έ(g(θ)g(θι(A,θ)))\^1^, (3.18)

which achieves the proof of the main lemma. O

Appendices

Appendix 1. Proof of Lemma 3.1

We consider the formula (3.10) which gives the main term to be estimated:

ί dog(Fs(θ))+ ί dvg(Fs(θ))\
l,..,Js-l,N- Ijl,.,Js-l,N+ J

(Al.l)
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Since in this sum, JS_2ΦN*_2, the interval IJχ Js 2 is good and its length is

. This interval is subdivided into the intervals lΊ 7 , , N ~ + 1 <
fir* Jl,...,Js-2*Js- l' S— 1 —

Js_ ί ^ ΛΓs

+_ j . In the sum (A 1.1) only the values Js-ιΦ N*_ x are taken into account,
so that the number T s _! of permitted values of the index J s _ i is Ts_χ = N^_1 —

N;_ X - 1, and we have Γ5_ 1 < — — < Γs_ x + 2. We then set:

(i) ί = J s _ 1 - ( N s

+ _ 1 + l
(ii) , " -FΛ*, , . . . . , . . , , . ,

(iii) η;=Fa(θJum.mwJβ_2jβ_ι + 1-0)-

Note that JV* may depend upon J s _ ! . We know that

Fs(θ) = θ + sA + sKg(θ) + (5 -

is piecewise affine with a constant slope and that its discontinuities are precisely
the endpoints of the intervals lJχ JS.2,JS.X' These discontinuities are due to the
last term only, for F s _ ! is continuous on lJχ 3 2. It follows that:

+K Σ (
j=o

for indeed g(Fs-ι(θJi J s _ 2 > Λ _, +0)) = π. Since IJt Jm_2jm.t is good, using the
formula (2.2) we get:

^ = 2παs(K)(mod 2π). (A1.2)

The same formula holds for η + .
Let us now set y = Fs(θ) in (Al.l). Then dy = δF sd0 and y varies from */* to

± π, depending upon which interval is considered. This gives

Using the definition of Γδ given in Eq. (3.11 (ii)) we get immediately the result. O

Appendix 2. Denjoy's Inequality

Let h be a periodic function of period 1 with bounded variation on the circle. Let
αelR and p/qs<$ (p and q prime to each other) be numbers such that |α — p/q\ ^ ε
for some ε > 0. If we denote by [X] the smallest integer larger than or equal to
X, then for any xeTΓ, we have:

O (3.14)

Without loss of generality we can assume that 0 ^ α < 1, p/q ^ α, x = 0.
Then if 0 ^ ί < g is an integer, let pt be the integer in [0, q) such that pt = tp

(modg). It follows that t<xelpt/q,pt/q + <?ε](mod 1). Since h has bounded variation,
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there is a finite signed measure μ on [0,1] such that h(y) — h(x) = μ([x,y])9 and

Var(ft) = | |μ| | . It follows that if xe[pt/q,pt/q + 1/q), we get:

(Pt/q) + qε [q2ε] - 1 (p t + j + 1 )/q

\h(t*)-h(x)\ = \μ(dy) g J \μ(dy)\£ Σ ί \β(dy)\ (All)
<P./«) J = 0 (p t+j)/«

Note that (A2.1) is true also for \/q ^ ε, replacing the interval [pt/q,pt/q + qε] with

the unit interval.

Integrating over x on both sides we get (all the pt are distinct since p/q is an

irreducible fraction):

q-l

r = 0

q-l (Pt + D/q

ί \h(*t)-h(x)\dx
t = 0 (pt/q)

[ ί 2 ϊ ] - l r l (s + j+l)/q (Pt+D/q

^ Σ Σ ? ί Mdy)\ J dx g [<?2ε] Var(ft). O
j = 0 s^O (s
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