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Abstract. The phenomenon of the coexistence of infinitely many sinks for two
dimensional dissipative diffeomorphisms is a result due to Newhouse [Nel, Ne2].
In fact, for each parameter value at which a homoclinic tangency is formed
nondegenerately, there exist intervals in the parameter space containing dense sets
of parameter values for which there are infinitely many coexisting sinks (Robinson
[R]). The structure of the sinks constructed by Newhouse is limited. “Simple”
Newhouse parameter values are values at which there are infinitely many sinks
having some special well defined property concerning the structure. A result due
to Tedeschini-Lalli and Yorke [TY] says that the Lebesgue measure of the set of
simple Newhouse parameter values is zero when the tangencies are due to the
standard “affine” horseshoe map. It is argued in [TY] and [PR] that a more
general derivation of this measure zero result would be desirable. The main result
of this paper is that the Lebesgue measure of the set of KLUS-simple parameter
values (including the simple Newhouse parameter values) is zero for saddle
hyperbolic basic sets forming tangencies.

1. Introduction
Let M be a smooth 2-dimensional compact manifold, and let {F ,},., < Diff*(M)
be a one parameter family of dissipative C3-diffeomorphisms so that for each pel

the diffeo F, maps M to itself, where I =R is some compact interval. For uel, a
point ge M is called a sink (respectively a saddle) of F, if g is a periodic point, say

* Research in Part supported by Gruppo Nazionale per la Fisica Matematica, CNR



430 H. E. Nusse and L. Tedeschini-Lalli

F¥(g) = g, and the eigenvalues ¢ and 4 of the Jacobian matrix DF¥(qg) satisfy |o| < 1,
|A] < 1 (respectively o and A are both real and 0 < |a| < 1 <|A]). If the period p of
a sink (saddle) is minimal, then the sink (saddle) is called a p-sink (p-saddle).

We say poel is a nondegenerate homoclinic tangency value for {F,},, if this
family creates, for a p-saddle q,€4,, a nondegenerate homoclinic intersection at
X =rg, = lo, that is (see also Sect. 2), there exist ¢ > 0, and subarcs y; = W*(q,; F,)
and y, = W*(g,; F,) varying differentiably with u such that: (1) for pe[u, — &, po)
the segments y;, and y} do not intersect; (2) for u = p, the segments y;, and y, are
tangent at ry, and the intersection at r, is of order two (equivalently, the tangency
is of order one); (3) for ue(po, o + €] the segment y;, crosses y, from one side to
the other and returns to the original side. Hence, when u, is a nondegenerate
homoclinic tangency value, then for u > u, there are two new transverse inter-
sections and a Smale horseshoe for some iterate of the map.

The following surprising result is mainly due to Newhouse [Nel, Ne2];
Robinson [R] showed that Newhouse’s result can also be formulated for one
parameter family of diffeomorphisms, and we will use this latter approach.

A parameter value pel is called a Newhouse parameter value if F, has infinitely
many coexisting sinks. Let u,€l be a nondegenerate tangency value such that the
stable manifold and unstable manifold of a 1-saddle of F,, have a nontransversal
intersection at r,. Then the following holds (see [Nel, Ne2, and R] for details):

(1) For each n sufficiently large there exists a p,-sink r, of F,, such that p, — oo,
r,—t, and pn)—yu, as n—o0; (2) for every ¢>0 there exists an interval
H, <[ uo—¢, uo + ¢) in which the set of Newhouse parameter values is residual.

Part (2) follows from (1) in [Ne2, R] by proving that arbitrarily close to uq,
for which there is a tangency at r,, there is a wild hyperbolic set, that is, a hyperbolic
set A, displaying tangencies for each 4 in an interval arbitrarily close to y,.

It is important to know the answer to the question “What is the Lebesgue
measure of such a residual set (that is, countable intersection of open dense sets)
of Newhouse parameter values?”. In [PR] it is mentioned that such a result might
give insight into the well known problem of whether the standard Hénon map
(parameter values 1.4 and 0.3) has a strange attractor or not. In full generality,
this is a difficult problem. A first approach to attack this problem was undertaken
by Tedeschini-Lalli and Yorke [TY]. They considered the so-called simple
Newhouse parameter values (Newhouse parameter values for which the sinks have
some limited structure), and obtained the result that the Lebesgue measure of the
set of simple Newhouse parameter values for the standard (“affine”) horseshoe
map is zero. For this map, Wang [W] improved the result and obtained that the
Hausdorff dimension of the set of simple Newhouse parameter values is positive
(and smaller than one).

A very natural question is: “What can be said about the Lebesgue measure of
some well-defined subset of the Newhouse parameter values for the family {F,},.;
when for all uel, F, has a zero dimensional hyperbolic basic set A, varying
differentiably with p and creating tangencies near u,?”. We will deal with this
problem.

In this paper, we give a definition of KLUS-simple parameter values based on
the structure of orbits that has been described in [TY]. We would like to emphasize
that a simple Newhouse parameter value is a KLUS-simple parameter value. The
main result of this paper is that the Lebesgue measure of the set of KLUS-simple
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parameter values is zero. We argue that it is sufficient to assume that F is of class
C2. In Sect. 4 we also organize a hierarchy of non-simple sinks whose infinite
coexistence has still probability zero.

2. Statement of the Result

Let M be a two dimensional compact smooth manifold. We write Diff*(M) for
the class of C? diffeomorphisms from M to itself.

Let FeDiff3(M). A subset A of M is hyperbolic if A is compact, invariant, and
there is a continuous splitting T,M = E°, @ E*, of the tangent bundle T, M, a
constant 0 <¢<1 and a Riemannian norm ||-|] on TM such that for each
xeA (1) T,F(E3)=Ep,, TF(E)=Eby: () [TF@)|SEv*| for all veEs,
| T.F~*(v") | < &||v*| for all v*eE", where T,F denotes the derivative of F at x. A
set A = M is a hyperbolic basic set if (1) A is hyperbolic, (2) F is transitive on A
(that is, there is an orbit of F which is dense in A), and (3) there exists an open

neighborhood U of A such that A= (") F'(U). A set A <= M is a saddle basic set
neZ

if A is a hyperbolic basic set for which dim(E?,) = dim(E* )= 1. Note that each
periodic point with minimum period p in a saddle basic set is a p-saddle.

Let p denote the induced distance function on M. For a set Y — M the stable
set of Y is W¥(Y; F) = {xeM: p(F"(x), F"(Y))—0 as n— oo} and the unstable set of
Y is WY(Y; F)= {xeM:p(F"(x), F"(Y))—0 as n— — «o}. For a saddle basic set A
of F one has the stable set W¥(A; F) = U W?(x; F), (respectively the unstable set

xe A

W*(A; F)= | ) W¥(x; F)) is the union of the stable manifolds (respectively the

xeA

unstable manifolds) of all the elements of A. A neighborhood U of a saddle
hyperbolic basic set A is called a saddle isolating neighborhood for A if

1) A=) F(U), and
neZ
(V) FW*%A; F)noU)nClos U = .

In this case, a saddle basic set is also known as a zero dimensional hyperbolic
basic set.

Let I <R denote a compact interval with nonempty interior. We consider the
one parameter family {F(‘; u):pel} = Diff*(M). For each uel we write F, = F(-; ),
and we assume (1) F, maps M into itself, (2) the absolute value of the Jacobian
of F, at x is less than one for each xeM.

For an open neighborhood U of a saddle basic set A, of F,, where uel, we write

W) = Oo FU);

wi(U)= () F;"(U);
nz0
and for each positive integer k we write
WiU)= U FiWiO)

0=<n<k

W)= U F 00,

0<n<k
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For each pel let the mapsg;.,, g,,,: R — R be defined by

91,0 =0, g,,(0=y~

Let H c I be some interval, and let x: H — Diff*(M) defined by x(u) = F . be a
C? curve such that

(A1) For each ueH there exists a saddle basic set A, for F, varying differentiably
with .
(A2) There exists an open neighborhood U in M which is a saddle isolating
neighborhood for A, for all ueH.
(A3) There exist a smooth open ball S and C3 coordinates ¢:S —IR? such that
(@ UnS=g;
(b) there exist positive integers K and L such that if xe Wi (U)n W (U)NS,
and if there exists geA so that W*(q; F,) and W*(q; F,) are not transversal
at x, then there exist segments y5 = W*(q; F,),y, = W*(gq; F,) both including x
for which
(b1) @(x) is near (0, 0);
(62) 9(%) < {(21,23):2, = Y(z1), Yy s C2 close o g, )
(b3) (k) = {(21,22): 2, = ¥2,,(21), Y2y, is C? close to gy}

0
(b4) ay*(u) <0, where y*(p) = min{z,:(z;,2,)€0(y}) }.

We call aninterval H = I a KLUS interval if the curve x has the above properties.
KLUS intervals are introduced to describe tangencies outside isolated neighbor-
hoods of saddle basic sets, making the required estimates in the proofs more
transparent.

Let H be a KLUS interval; for ueH we say a p-sink g,€S is a KLUS sink for
F, if the orbit Orb(g,) of g, satisfies:

(1) orb(g,)nS ={q,}; (2) Orb(g,) = LQ . F,(U); and

(3) Orb(g,)NU consists of at least p — (K + L) elements. Hence (by definition) the
number of iterates of a KLUS sink that are not contained in U is at most K + L,
for all parameter values in a KLUS interval.

The family {F,},., nondegenerately creates a homoclinic intersection at x =r,
1= po for a p-saddle g, A, if there exists ¢ >0, and if there are one-dimensional
disks y3 = W*(q,; F,) and y}, = W*(q,; F,) varying differentiably with y, such that:

(1) y,nv, = for pelpo — & wo);

) there ‘are C? local coordinates {(x,y)} near r, depending differentiably on ,
and parametrizations {(x}(z), y3(2)) |¢| < 6} of ¥, and {(x(z), y2(®)): || S 3} of 72
for some § > 0 such that

(22) (x3,(0), 73,(0)) = (0,0) = (x2,(0), »*,(0));

(2b) y;, (1) =0 for each te[ —9,d];

(2¢) sign y;(0) = sign y,(— 6) = — sign y;(£) for some || < d, where £ might depend
on y, for pe(po, po + €l;

d
(3) v, and 3 have a tangency of order one at ro, that is, y}, (0)=0 =d_ Y300
T

dz
and Py;‘m(O) #0;
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(4) the extremum value y*(u) of y, on the interval [ — 6, 5] satisfies :id— ¥*(1o) #0.
u

Let I, <I be a given interval and assume that U is a saddle isolating
neighborhood for the saddle basic set A,, where pel,. Assume that the family
{F,} e creates for a p-saddle q,€A, a nondegenerate homoclinic intersection at
x=roeM\Clos U, p=poelntl,.

Proposition. There exist an open ball S containing r,, positive integers K and L,
and 6,,> 0 such that [ o — 0, tto + 0,,] is a KLUS interval.

For pel and saddle basic set A, of F,, a point z,eM\A, is called a
KLUS-simple Newhouse sink if there exist an open ball S including z,, an open
saddle isolating neighborhood U of A, for which UnS = (&, positive integers K
and L, and an interval H < I including u such that the following hold: (1) z, is a
KLUS sink for F,, and (2) H is a KLUS interval.

For pel, a set I', = M is called an attracting set of F, if (1) I',, is compact and
invariant, and (2) there exists an open neighborhood V, of I', such that
lim p(F}(x), I",) = Ofor every xeV,; I' is called an attractor if (1) I", is an attracting

set and (2) F, has a dense orbit on I',,.

Let for po€l, a point aj,  be a periodic point of minimum period n. Let I, < I
be the maximal interval including u, such that for uel, the point aj, is a periodic
point with minimum period n and aj, varies differentiably with . For each p,€l,
we call {a}: pel,} the path of a;

For ueI a set I', is called a p-attractlng set if (1) I', is an attracting set for

P and (2) for every k 1<ksp-—1,T,is not an attractlng set for F¥; we call
the number p the period of the attracting set I',. I', is called a KLUS-simple
attracting set if there exists peIN such that (1) I', is a p-attracting set, (2) I, includes
a point that is on the path of some KLUS-simple p-sink, and (3) I',,, is a topological
horsehoe for some p, > p. For instance, a p-sink is both a p-attracting set and an
attractor. The parameter value puel is called a KLUS-simple parameter value if F,
has infinitely many KLUS-simple attracting sets of different period.

Theorem. The Lebesgue measure of the set of KLUS-simple parameter values in 1
is zero.

Corollary. The set of parameter values in I, for which there are infinitely many
KLUS-simple Newhouse sinks, is zero.

We would like to emphasize that having allowed an attracting set to contain
several attractors, it might very well be, and indeed is generally the case, that a
KLUS-simple attracting set does in turn contain infinitely many attractors. We
will discuss in Sect. 4 which of these non-simple attractors can still be included in
our approach.

3. Proofs of the Results

Let {F,},<Diff*(M), and p the distance function on M (induced by the
Riemannian metric). We assume that for every uel the set A, is a nontrivial saddle



434 H. E. Nusse and L. Tedeschini-Lalli

basic set for F,, that is, A, includes more than a periodic orbit, and A, varies
differentiably with p.

3A. Preliminaries. In this subsection, we present some auxiliary results for the one
parameter family of diffeomorphisms. Let puel be arbitrarily fixed. For a
nonwandering point z, (a point such that for every open neighborhood V of z,
there exists n 2 1 for which Fj(V)nV # ) the local stable manifold W}, (z,; F,)
(respectively local unstable manifold W7, (z,; F,)) of z, of size f is the set of points
x in the stable manifold W*(z; F,) (respectively unstable manifold W*(z,; F,)) so
that p(F}(z,), F(x)) < B (respectively p(F [ "(z,), F  "(x)) < p) for all 1ntegers n=0,
where > 0. When the stable or unstable mamfolJ is a curve, we write Wloc (z,,, F,)
and Wy (z,; F,) for the two components of Wy (z,; F,)\{z,}, where o is either s
or u. The nontrivial saddle basic set A, is called periodic if there exists melN such
that F™ has no dense orbit on A, and A . 18 called nonperiodic otherwise. The
following results 3-1-3-3, which are rephrased from [NP and PT], say that the
structure of saddle basic sets is essentially controlled by finite sets of periodic
points.

Proposition 3-1. There exist finite sets P; and P, of periodic points, such that for
all xeA,:

® If x is not a limit point of both Wi,.(x; F )N A, and W
in W‘@u,F ) for some p,eP;,.
(2) If x is not a limit point of both W3
xeW*(p,; F,) for some p,eP;.

Proof. For a proof, see Newhouse and Palis [NP]. B

Palis and Takens [PT] have shown that there exist regions in M, whose
boundaries are segments in the stable and unstable manifolds of these finite
sets of periodic points P, and P,, such that these regions when intersected with
the saddle basic set A form a Markov partition of A.

“(x;F)NA, then x is

loc

(s F)nA, and Wi (x;F,)nA,, then

oc

Proposition 3-2. Assume A, is a nontrivial nonperiodic saddle basic set of F,
and let z,€A, be fixed. Let P5 and P}, be as in Proposition 3-1. There exlst
finitely many dzs;omt regions R, bemg diffeomorphic images of the square
B=[-111x[-1,1], say R;,=h;,(B), 1<i<N, for some NeN, and a
segment I} « W*(z,; F ) such that:

1) A r\R,ﬂé@ for all i;
@ A,<= U R.,,,
(3) F,(0, R,u c Z O,R;, and F;'(0,K;,) < U 0,R;,, where O.R;,=h;,({(x,y)

x|=1, —1 SyS 1}) respectively 0,R;, = h,,,,({(x,y) —1=x<1, |y|=1}) are
segments in the stable set W¥(P,; F ) respectively the unstable set W*(P;; F,); and

N
(4) for everyi, I, N Ry, consists of exactly one component and 8(I, " R;,) = -U1 OsR;,
1<i<N. i=

Proof. For a proof, see Palis ad Takens [PT]. W
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From now on, let A, denote a saddle basic set for F,, U a saddle isolating
neighborhood of A, and the point z,€A,, the regions R;,, | i< N, and the
segment I}, « W*(A; F ) asin Propos1t10n 3-2. There exist a C!** stable foliation
&, on a nelghborhood V., Tespectively a C'** unstable foliation &, ona
nelghborhood | % A of A, for some o > 0, and it is no restriction to assume that
every region R;, is contamed in V5, nV%.,, 1Si<N;see [PT]

Let 7,; R—> W*z,; F,) be a C* parametrlzatlon , and define a projection

A~ U Ry, 01,
i=1

by taking in each region R;,, 1 <i< N, the projection along the local stable
manifolds into the intersection I* with that region. This projection can be extended
from A, to the union of the regions R;, by projecting along the leaves of the
foliation ;. This extension will be denoted by = .. The followmg result says
that for some iterate M, the map F, can be v1ewed as expansive along unstable
segments.

Proposition 3-3. There exist a positive integer M and a C'** mapo,

N
U 7, 'I4nR,) > R defined by ¢, (x) =1, '° o Fot,(x) such that | ¢/ (x)| > 1,
i=1

ext i

for some o> 0.
Proof. For a proof, see Palis and Takens [PT]. H

The Escape time Ty(x; F,) of xeU under F, is the minimum value n with the
property FJ(x) not in U. Let J c U be a curve segment such that J intersects the
stable set W*(A; F,) transversally. We define for every integer k > 1:

AJ;F) = {xeJ: Ty(x; F,) 2 k},

D(J;F,)={xeJ: Ty(x; F,) = k}.
In particular, Al(J F,)=J. Hence, for each integer k 2 1 we have A4;.,(J;F,) is
the set of points in A,,(J F,) whose escape time from U is at least k + 1; hence
Ay+1(J; F,) is the set of points in J that stay in U under F . k. The points in J which
will stay in U under all iterates will be denoted by Aw(J, F,). For every integer

k=1 we have:
A3 Fy) = A+ 1(J; F)OD(J; F)), and

k
J=Ak+l(J;FM)U U D](J;Fp),
j=1

that is, J is the union of the set of points A4, (J;F,) whose escape time from U
is at least k + 1, and the set of points D;(J; F,) whose escape time from U is j,
where 1 < j< k. We write

D (J;F,)= ) DulJ; F)).
k=1
Note that 4,(J;F,)= () 4(J;F,), and J = A, (J;F,)uD,(J;F,).
k=0

Denote the length of a segment E = J by p(E).

Lemma 3-4. Let R 4, (U) = {J:J component of WA ;F,)nU,JnA, #J}. There
exists 0 4,, > 0 such that for every JeR 4.,(U), and for each k 2 1.
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(1) Each component of A\(J; F,) contains components of Di(J; F ) and A, , (J; F ).

(2) Let A be an arbitrarily chosen component of A(J; F,). For each component
D of DJ;F,)nA, one has p(D)/p(A)=6,,, and each component G of
A1 F) 0 A, satisfies p(G)/p(A) 2 6 4,

Proof . For the proof, see the proof of the Geometric Lemma II in [NY]. W

3B. Some KLUS Properties. In this subsection, we present some auxiliary KLUS
results. Let H < I be a KLUS interval as defined in Sect. 2. Recall that U is a
saddle isolating neighborhood of A, for all ueH, S is an open ball disjoint from
Uand S c F, “(U)n F{(U)for all ueH, and K, KeN. Obviously, every subinterval
in H is a KLUS interval.

Recall that, for every ueH, V3,  is a neighborhood of A, on which & is
defined. Since each compact 1nterva1 in H is a KLUS 1nterval both ¥, and
depend differentiably on p, and by takmg N sufﬁc1ently large in Proposmon 3- 2

we may assume that every region R;, is contained in () (V* AN V%), where Ry,
ueH
is a region for F, as in Proposition 3-2, for all ueH. Then we select integer Q = 1

such that ﬁ F(U)< V%, for each peH. Define for each integer m 2 Q the set
n=-Q

m
Z™) as the set of all curve segments J = [a,b] in the closure of D— F(U) so

that (1) {a,b} = 5( (| F Z(U)) and (2) J intersects W*(A ; F,) transversally. Let
for ueH the positive number 6 4., be as in Lemma 3-4. For the compact interval
H < I we define the positive number J 4.5 by

5/‘;” = min{é,‘;u' ,LLEH}.
Proposition 3-5. For every ucH, for each JeZ'}),, and for every integer k = 1:

(1) Each component of A,.(J;F,) contains components of D, ..(J;F,) and
Apii+1(J5F ).

(2) Let A be an arbitrarily chosen component of A,,.(J; F ). For each component
D of D, (J;F,)NA, one has p(D)/p(A) 20 4.4, and each component G of
Apri+1(J; F )N A, satisfies p(G)/p(A) 2 6 a5

Proof.. Since the projection along the local stable manifolds is of class C!** for
some o >0, we obtain the result by applying Lemma 3-4. B

From Proposition 3-5 and the assumptions on F, we obtain that for each
k = 1and all ueH, the number of components of 4,,,,(J; F,) and that of D, , ,(J; F,)
is ﬁmte forallJeZ ["‘]u Let, for k = 1 and ue H, N(A4,) be the number of components
of A,,.4(J; F,), and let N(D,) be the number of components of D,, ,(J; F,), where
JeZ‘"‘] We write, for each k=1 and ueH, the sets A4,,,,(J;F,) and Dm+k(J F,)
as the union of their components as follows:

Ap s Fu) = Z A1 F,,),

i=1

N(Dx)
Dm+k(J;Fu)= U Dm+k;i('I;F;‘)'

i=1
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Lemma 3-6. For every ¢ >0 there exists a positive integer R such that for each
ueH, for every JeZ%):

oo N(Ax)

Z z [p(Am+k1(J F )]2<8
k=R j=1
Proof. Let ¢>0 be given, and select positive integer R such that
P {0 ,02—04m)} (1 =06 ,4)*" <e. Then, for each peH, and for every
JeZ% we have:
o N(Ak)

Z Z [o(Ap +1i(J5 F )12
N(Ax) 2 0
R{ Z Lo(Ap 115 u)]} §k;R{(1_5A;H)k'P(J)}2

=p(U)P {0an2—04m) (1 =044 <e. W

3C. Rescaling. Assume that the family {F,},, has for a p-saddle q,eA, a
nondegenerate homoclinic tangency at x=ry,u=u,el. Assume that the
eigenvalues 4 and ¢ of DF?, (q,,) satisfy A>1>0>0, 6A<1 and some generic
condition implying that c hnearlzmg cordinates exist in a nelghborhood of g,
for ueJ, where J = I is some interval including p,. The following result is veiled
in [R], and it is explicitly due to [TY] (using a setting in [GH]). Palis and Takens
[PT] later independently used the same setting, getting to the same conclusion.

MS II

=R
=

Proposition 3-7. For every nelN there exists reparametrizations yu= M,(u,) of the
u variable, and p, dependent coordinate transformation (X, y4) = @p,. (X4 V4) sSuch
that

(1) for each compact set K in the (u,, X, y4)-space, the images of K under the maps
(Mg X400 Vi) = (M (1), @1, (X, V4. )) cONDETgE fOr n— 00 10 ( pho, To);

(2) the domains of the maps (U Xy Vi) = (Byo @ 1 o F N (14)° O (X4 V)
converge for n— oo to all of R®, and the maps converge smoothly for n— oo to the
Map (g X Y1) = (B o, (610 y4)) With F (%, 1) = (70 Y2 — 1),

Proof. For a proof, see [TY]. B

3D. Duration of KLUS-Simple Sinks and Attracting Sets. Before we define the
duration of KLUS-simple sinks and attracting sets, we consider the family
{f5} per-1,3; defined by f4(y) = y* — B. The following is well known:

(1) For pe[ — SH(y)— o0 as n— oo for all y.
(2) For p=—1% a saddf node bifurcation occurs at y, =3, for ,Be(—— 3] there
are two fixed points v, and W, such that v, is unstable and wy is a 1-sink
(respectively unstable) if fe(— 1, 4) (respectively fe(3,3]).
(3) Write Iy =[ —wvp,v,], Jy=[—(v5+ B)/2, (v5 + P)/2], and A, = w; if Be(—£,0]
and Aﬂ— [f,,(O) fB 0)] 1f Be(0,3]; for Be[—42] fylpclzc[—2,2], for
Be(—1%,2) Ay is a 1-attracting set and wyed;cIntJycJycIntlyclc(—2,2),
and ﬂ S p) = Ap; for Be(2,3] ﬂ S3(Ip) is a Cantor set.

n=0 n=0

We define the duration of the 1-sink w; as the interval (— 4, 3), and the duration
of the 1-attracting set 4 as the interval (— %, 2).



438 H. E. Nusse and L. Tedeschini-Lalli

It is not difficult to show that for each fe(—%,2) every two dimensional
C3-diffeomorphism, which is sufficiently C3-close to fj, also has a 1-attracting set
in the interior of [ — 2,2] x [ — 2,2]. For an explanation, see [TY] (see also Sect. 4
for additional comments).

Let H be a KLUS interval as in Sect. 3B. For py,eH, the duration in H of
a KLUS-simple p-sink z};,, is the component in {ue H: 24, is KLUS-simple p-sink}
that includes Ho; the duration in H of a KLUS- smple p attractmg set I'h,. Sis
the component in {peH: I} #1,, 18 KLUS-simple p- attractlng set} that mcludes Ho-
We write Dur(I"}) (respectively Dur(z%)) for the union of the durations in H, and
|Dur(I'%)| (respectively |Dur(z%))| for the sum of the lengths of the durations in
H of all the p-attracting sets (respectively, p-sinks). Notice that the duration of a
KLUS-simple p-attracting set 1'% equals the interval over which a topological
horseshoe is formed for F in a neighborhood B in § of the KLUS-simple p-path.
The length of the interval is proportional to the length of the component in
Proposition 3-5, because in order for I'? to be attracting, the I!® iterate of B must
be contained in the regions of Proposition 3-2.

The set of KLUS-simple parameter values in H is, by definition, contained in

U Dur(I'%) for every pelN. This implies that, for every p, the Lebesgue measure

of the KLUS-simple parameter values is at most Z |Dur(F )|. In order to obtain
k2p
the result that the set of KLUS-simple parameter values in H has Lebesgue measure
zero, it is sufficient to show the following.
For each ¢ > 0 there exists PeIN such that
Y IDur(I'})| <e,
kzP
where the sum is taken over all the KLUS-simple p-attracting sets for all p= P,
that arise (inS) from the tangencies of all the saddles in the saddle basic sets
{A,peH}.
ObVIOUSb’, Z |Dur(I'%)| < ¢ implies that Y |Dur(z%)| <e (in the latter case
k=P
we sum over all the KLUS-simple p-sinks for all p> P arising from all the
tangencies of the saddles in the saddle basic sets {A,: peH}).

3E. Proof of the Proposition. Let I, — I be a given interval and assume that U is
a saddle isolating neighborhood for the saddle basic set A,, where uel,. Assume
that the family {F,} ., creates for a p-saddle g,€A, a nondegenerate homoclinic
intersection at x =ro,eM\Clos U, p = poelnt,.

Select the minimal positive mtegers K and L such that roeF, K (U) and
ro€F , M(U). Since F (U)nF, HU) is open, there exists 6, >0 such that for each
ue[uo — 0o, o + 5of the intersection Ff(U)mF , “(U) is open and it includes .
Let £>0 such that B(ro;e) = () (FX(U)NF,*(U)) and B(ro;e)nU = J, where

ueHo
B(ry; ¢) the ball centered at r, with radius ¢, and Hy = [ug — d¢, Uo + 9¢]- Define
S = B(ro;¢), and we obtain, by the definition of nondegenerate homoclinic
bifurcation, that H is a KLUS-interval, where H = [ o — 6, 4o + 6, ] for some 4,
0 <, = 6,. We conclude: the choice d,,, = d, gives the desired result. This completes
the proof of the proposition. W
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3F. Proof of the Theorem. Let the compact interval I be given. For each uel, let
A, be the saddle basic set that varies differentiably with y, and let V*, be a
nelghborhood of A, on which the stable foliation §; is defined. We will assume
that F, has for every keN and for each pel, only ither finitely many or no periodic
points with period k; this assumption is no restriction, see Yorke and Alligood
[YA]

We may assume that U is a saddle isolating neighborhood for the saddle basic
set A, for all uel, because of the differentiable dependence of A, on p, there are
finitely many compact subintervals, say I,,...,Io of I, and for each k there is
saddle isolating neighborhood U, of A, for uelj, and on which the following
applies.

Assume that the family {F ,} ,.; creates a nondegenerate homoclinic intersection
atx =roeM\Clos U, u = poelnt I for a p-saddle g,€ A,. Select the minimal positive
integers K, L such that roeFK(U)mF (U). Select 3,>0 such that for each

uel o — 0o, o + 991 = Hy the interior of the intersection () [FRU)NF {U)n
ueHo

"( V%.)] is nonempty, and includes r,. Let g >0 such that B(ry;¢,) <
Int N [F SU)NF HU)NF V%)), and B(ro;60)nU = &, where B(ro;¢o) the

ueHo
ball centered at r, with radius ¢,. Define S = B(ry; &), and select d,, 0 <d; <,
so that H = [y — 8,, uo + 6,] satisfies all the conditions of a KLUS interval, see
Sect. 2 for details.

From the definition of S, we know that the stable foliation §; can be extended
to exist on S for every ueH. Therefore, from now on, we will assume that the
stable foliation & exists on S, for all ueH

Recall that for Uo€H, the duration in H of a KLUS-simple p-sink z§., is the
component in {ueH: 2§, is KLUS-simple p-smk} that includes Ho3 the Juration
in H of a KLUS- snmple p-attractlng set '}, is the component in {ueH:T% Hon 18
KLUS-simple p-attractmg set} that includes p,. We write Dur(I"%) (respectively
Dur(z4)) for the union of the durations in H, and (Dur(F ) (respectlvely [Dur(z4))|
for the sum of the lengths of the durations in H of all the p-attracting sets
(respectively, p-sinks). As explained in Sect. 3D, the set of KLUS-simple parameter
values in H has Lebesgue measure zero if for each ¢ > 0 there exists PeIN such
that

Y. |Dur(I%)| <e,

kzP

where the sum is taken over all the KLUS-simple p-attracting sets for all p > P,
that arise (inS) from the tangencies of all the saddles in the saddle basic sets
{A,:peH}.

Let 4,4 >0 as in Sect. 3B. Let ¢>0 be given; applying Proposition 3-5,
Proposition 3-7, Lemma 3-6, and the fact that the stable foliation on S exists
and the projection along the stable manifolds of A, is C'** yields there exists a
constant C, > 0 such that for each p = Q > K + L the total length of the duration
in H of all the KLUS-simple p-attracting sets is at most Co*[1 — 8 ,5]*? ¥ "D =
Cl‘[l —6A;H]2p, Where Cl = Co'[l - 5A;H]~2(K+L).

Select integer P = Q such that C,-[1 —6 ,.5]17%'[1 —6 4.51** <e&. Then, for the
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total duration in H of all the k-attracting sets for all k = P we get
Y IDur(Mpl Y Cy-[1=3 441
k=P

k2P

= C1'[1 - 5A;H]2P" Z [1 —5A;H]2k

k=0

SCi[1- 5A;H]2P'< Y [ —5A;H]k>2

k=0
= Cl[l —5A:H]2P'[1 _5A;H:|—2 <eé&.

The conclusion is that the set of KLUS parameter values in H for the above
S is zero.

For each nondegenerate tangency value poel, for which {F,},, creates a
nondegenerate homoclinic intersection at x =roe M\Clos U for a p-saddle q,€A,,
the above applies. Since both M\U and I are compact, we conclude that the set
of all KLUS parameter values in I is zero. This completes the proof of the
theorem. H

4. Discussion and Concluding Remarks

4-1. Order of Differentiability of the Diffeomorphism. We assume that the
diffeomorphism F is C*. This assumption implied the existence of a C! ** expanding
map, for some a >0, in Proposition 3-3. If F is of class C?, then it is known that
such an expanding map is C*. We would like to point out that the Holder exponent
o is only used to obtain (2) in the proof of Proposition 3-5. Fortunately, we can
prove Proposition 3-5 (in particular property (2)) for the C* map ¢ of Proposition
3-3 by combining the techniques of the proof of Proposition 6 in [Ne] and
Lemma 5.5 in [Nu]. Thus in fact, it is sufficient to assume F is C? to guarantee
the main results of the paper.

4-2. Non-Simple Attractors. Consider a KLUS-simple p-sink. In [TY] it is shown
that these sinks, for p large enough, exist by proving that a p-sink is created near
a nondegenerate tangency value via a saddle node bifurcation at y,. The family
Fiis C3-close to the quadratic map of the interval, both in space and parameter.
The parameter interval I, containing u, and the neighborhood Box, = R? of the
p-sink obey a rescaling law as p— oo (|I,|oc 727, where A>2 is the eigenvalue
of the affine horsehoe). For each possible structure of a periodic orbit with period
n=k-p there exists a parameter value p,el, at which such an orbit is created in
Box,. In fact, a topological horsehoe is created for F? as u varies through I,
Therefore, since FJ, is dissipative, each of these periodic orbits of period k-p is a
sink for some puel, (for a proof, see [YA]). This is a subclass of non-simple
KLUS-sinks (when k = 2).

We call the KLUS-simple p-sink the pioneer of such a topological horseshoe.
For each p, the associated n-sinks with n=k-p appear as p varies in I, in an
order that tends (as p— oo) to the Sarkovski order of the map of the interval. In
particular, given k, k,€IN, for each p sufficiently large, the corresponding n,-sink
and n,-sink (with n, =k, p and n, =k, p) do not coexist.
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However, for fixed p, in the process of the formation of a topological horseshoe,
the KLUS-simple p-saddle forms tangencies, and therefore the Newhouse
phenomenon of infinitely many coexisting sinks holds. That is, the above n-sinks’
can and do coexist for finite p. Holmes and Whitley [HW] nicely rephrased the
Newhouse phenomenon as an overlapping of the p-duration of sinks in
two-parameter families F,,:IR? >R?, where the parameter ¢ is a distance of the
family F,,, from the one dimensional quadratic map.

Of the above n-sinks some never coexist (for example, p-2*-sinks which form
a “cascade”) and their duration is already accounted for in the Duration of the
p-attracting set. For the others, one can copy all of our arguments for the pioneer
KLUS-simple p-saddle forming tangencies and prove that there are sinks which
are “simple” with respect to the pioneer, so they are simple at a second hierarchial
level. Infinitely many of them can therefore coexist only on a parameter set of
measure zero. Since under generic assumptions, there are countably many pioneers,
such KLUS-simple sinks of second level yield a measure zero set of KLUS-simple
second level Newhouse parameter values.

4-3. The [TY ]-Simple Newhouse Parameter Values. Comparing with the results
in [TY], we have a generalization for saddle hyperbolic basic sets, in particular,
a generalization for nonlinear horseshoe maps. Notice that in [TY] an “attracting
set” was called an “attractor.”

4-4. Dimension. For clarity, we stated the theorem in Lebesgue measure. However,
anyone who is familiar with dimensions, will observe that the proof of the theorem
implies that the Box counting dimension (that is, the Capacity dimension) of the
set of KLUS-simple parameter values is less than one, which is slightly more
general.
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