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Abstract. Given a finite range lattice gas with a compact, continuous spin space,
it is shown (cf. Theorem 1.2) that a uniform logarithmic Sobolev inequality (cf.
1.4) holds if and only if the Dobrushin-Shlosman mixing condition (cf. 1.5) holds.
As a consequence of our considerations, we also show (cf. Theorems 3.2 and 3.6)
that these conditions are equivalent to a statement about the uniform rate at which
the associated Glauber dynamics tends to equilibrium. In this same direction,
we show (cf. Theorem 3.19) that these ideas lead to a surprisingly strong large
deviation principle for the occupation time distribution of the Glauber dynamics.

0. Introduction

In our earlier article [S&Z], we showed (cf. Remark 3.23 in [S&Z]) that the
Dobrushin-Shlosman mixing condition (cf. (1.5) below) guarantees that the corres-
ponding (necessarily unique) Gibbs state satisfies a logarithmic Sobolev inequality
(cf. (1.1) below) and asserted that we would be proving a converse statement in a
forthcoming article. This is that "forthcoming article," and the promised converse
is the content of Theorem 1.2 below. Because it is difficult to give precise statements
of our results before we have introduced the notation explained in Sect. 1 below,
we will confine our discussion in this introduction to a few general remarks of
a somewhat historical nature. In particular, all that we hope to explain here is the
general principle on which our analysis rests.

Ever since the ground-breaking work of Dobrushin, Lanford and Ruelle, most
of the analysis of Ising-type models has concentrated on the associated Gibbs
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states and, as such, has been a study of "the equilibrium theory." Unquestionably,
the most important goal of this type of analysis has been the determination of
when there is only one Gibbs state (i.e., phase transition is absent). In some special
cases (e.g., for the classical Ising model itself) great progress has been made toward
this goal by the careful application of often deep and intricate combinatorial
techniques. Although, at least to date, truly refined results of this sort depend
extremely heavily on special properties of the model under consideration,
Dobrushin nonetheless introduced in [D] a quite widely applicable criterion
(known ever since as the Dobrushin uniqueness condition) which guarantees that a
potential admits only one Gibbs state. Although Dobrushin's condition is in some
ways quite crude, it is sufficiently strong to verify that, for a large class of potentials
(including shift-invariant ones with finite range), uniqueness holds at sufficiently
high temperature. In fact, as Gross showed in [G,2], so long as Dobrushin's
condition holds, the mapping taking a potential to its associated Gibbs state is
twice differentiable. In this same direction, Dobrushin and Shlosman showed (cf.
Theorem 2.1 in [Dob&S, 1]) that Dobrushin's original uniqueness condition,
which was stated in terms of the single site conditional distributions, has a much
more general multi-site analogue (condition " C κ " in Theorem 2.1 of [Dob&S, 1])
which also guarantees uniqueness. This condition Cv has sometimes been called
the Dobrushin-Shlosman uniqueness condition. However, we prefer the authors'
original designation Cv because of the considerable confusion resulting from the
multiplicity of subtly distinct conditions to which the term "Dobrushin-Shlosman
uniqueness condition" might be justifiably applied. As distinguished from its
predecessor (i.e., Dobrushin's condition), Dobrushin and Shlosman claim in
[Dob&S, 1] that "meditations on Czech models" by Shlosman reveal that Cv does
not imply that the Gibbs state depends analytically on its potential; and, with this
in mind, they initiated the program carried out in [Dob&S, 1-3], where they
introduce some twelve equivalent conditions guaranteeing analytic dependence;
and among these twelve is the one which we have chosen to call their mixing
condition.

In the preceding paragraph we summarized a small piece of the recent history
of the equilibrium theory for Ising-type models. In this paragraph we will give an
even briefer summary of a few results about the corresponding dynamical theory
(i.e., the dynamics for which Gibbs states are equilibria); for a beautiful and
thorough account, see Liggett's book [L]. These dynamical systems (often called
Glauber dynamics) are Markov processes which have the following two essential
properties: they are completely determined by the given potential and their
reversing states (i.e., the initial distributions for which they are reversible) coincides
with the set of Gibbs states for the given potential. In particular, if the Glauber
dynamics is ergodic in the sense that it admits only one invariant measure (and
therefore only one which is reversing), then the corresponding potential admits
only one Gibbs state. Perhaps more significant for us here is the observation made
in [H&S, 1] that sufficiently strong convergence of an ergodic Glauber dynamics
to its equilibrium allows one to transfer rather obvious mixing properties of the
dynamics to the associated Gibbs state. That is, the Glauber dynamics are run in
such a way that the probability of two distant sites "communicating" during a
finite time interval is exponentially small in the ratio of the distance between them
to the length of the time interval; and, therefore, if the dynamics is equilibrating
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sufficiently fast, then this inability to "communicate" becomes a mixing property
for the equilibrium measure.

The structure of this paper is the following. In Sect. 1 we introduce the notation,
state the main result (cf. Theorem 1.2), and prove an abstract lemma (cf. Lemma
1.8) which formalizes the principle outlined in the preceding paragraph. Next,
basing our reasoning on this principle and borrowing from the ideas in [H&S,2],
we give in Sect. 2 the proof of our main result. Finally, in Sect. 3 we derive a few
related results which follow from the same line of reasoning.

1. Setting, Statements, and Preliminaries

The basic setting will be the same as that in [S&Z]. Thus, we will be working in
the following context.

The Lattice. The lattice underlying our model will be the d-dimensional square
lattice TLd for some fixed deZ+, and, for k = (k\..., kd)tTLd, we will use the norm
|k| = max \kι\. Given A <^TLd, we will use ΛC = Έd\Λ to denote the complement

of Λ, \Λ\ to denote the cardinality of Λ, and k + Λ to denote the translate
{k + j jeΛ} of A by keZd. Furthermore, each ReZ + , we take the R-boundary dRA
to be the set

{keΛC: | k - j | ^ K for some jeΛ}.

Finally, we will occasionally use the notation A a a 7Ld to mean that \A\ < oo, and
J5 will stand for the set of all non-empty A <

The Spin Space. The spin space for our model will be the compact, connected,
finite dimensional, C00 manifold M equipped with Riemannian metric ( | ). Also,
we use T(M) to denote the tangent bundle over M and introduce the associated
gradient operator V:C1(M)-^ C(T(M)) and divergence operator div on (^-sections
of T(M) onto C(M). Finally, 0&M will stand for the Borel field over M and λ will
be the normalized Riemannian measure on (M, 08M).

The Configuration Space. Our configuration space will be the product space
M = Mπd endowed with the product topology. Given a non-empty A c= Έd, we will
use xeM\->xΛeMΛ to denote the natural projection taking M onto MΛ, ^ ( M )
and CΛ(M) to denote the set of functions on M of the form xeMh->φ(xΛ)eR as
φ runs over, respectively, the set B(MΛ) of bounded, ^^-measurable and the set
C(MΛ) of continuous functions on MΛ; and <FA to denote the σ-algebra over M
generated by elements of BΛ(M). When A = {k}, we will use xk in place of x{k};
and when A = Έd

y it is clear that J^Λ is precisely the Borel field <%M over M, and
we will simply write £F instead of J^^d. Also, we will say that /:M—>1R is local if
it is an element of BΛ(M) for some Λeg. Finally, for each keZ d , we define the
shift transformation θk:M -+ M so that (0kx)j = x k + j for every xeM and every \eΈd.

In order to describe a differentiate structure on M, it will be convenient to
introduce additional notation. In the first place, given 0 Φ AaΊLd, we define

(xΛ,yΛ C)eMΛx M
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so that \Λ yΛC is the element zeM determined by

zΛ=xΛ and zΛ C = yΛC;

and,for/:M-^RandyΛ CGMΛ C,wedefme/( | y Λ C ) o n M Λ a n d / Λ ( |y Λ C )onMby

xΛeMΛ ^f(xΛ \yΛC) = f(\Λ- yΛC)
and

xeM^fΛ(x\yΛC) = f(xΛ-yΛC).

Secondly, for yeM, we write fΛ(x\y) instead of fΛ{x\yΛC); and, when A = {k} we
will use / k( |y) in place of/ { k }( |y). Since both

(xΛ,yΛ C)eMΛx MΛCh->χΛ yΛ CEM and (x,y)eM2ι-^xΛ y / l CeM

are continuous maps, all the preceding constructions preserve both continuity and
measurability; and we now introduce the differentiable structure on M so that
these constructions will also preserve it. Thus, given neZ+ and a non-empty A g Zd,
we say that feBΛ(M) is n-times continuously differentiable and write feCJM) if

yeMh-^/k( |y)eC"(M) is continuous for every k e Λ

Further, we set

and when A = Zd, we drop the subscript A (i.e., C"(M) = Cn

Έd{M)) and introduce

Cn

0(M)

Next, given keZ^, we define

= (V/k( |x))(xk),

and divk to be the corresponding divergence operation taking C1-sections

xGMh->F(x)eTJCk(M)

into C(M). Also, for / e C ^ M ) and non-empty A g Z d , we define

x e M ^ V Λ / ( χ ) G Π T X k ( M ) so that (VΛ/(x))k = (Vk/)(x) for k e Λ
keΛ

(In the preceding, TXk(M) denotes the tangent space to M at xk.) In keeping with
our earlier conventions, we take V = VZd and Vk = V{k}. Also,

| V Λ / | 2 ( x ) Ξ Σ IV/k( |x)|2(xk)e[0,oo],
keΛ

and, when the quantities involved are finite, (VΛ/| VΛ#)(x) is defined by an obvious
application of polarization. Finally, we will use || |)u to denote the uniform (i.e.,
"sup") norm.

Measures on MA and Logarithmic Sobolev Inequalities. For non-empty A <= Zd, we
use aR^M"1) to denote the space of Borel, probability measures μ on (MΛ, J ^ ) ,
and, given μeyJlx(MA\ we will use, depending on the context,

J f(xΛ)μ(dxΛ\ \fdμ, (fμ\ and
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all to denote the μ-integral of a μ-integrable function /:MΛ-»R. When we discuss
convergence in ySlx(MA), the underlying topology will be that of weak convergence,
sic: {μn} J° g W^M*) converges to μ in SPΪ^M^), written μπ=>μ, means that </>μn -•

for every feC(MΛ). Furthermore, given μeWl^M) and 0 Φ A c Έd, we use
MΛ) to denote the marginal distribution of xeMκx Λ eM y i under μ.

Next, for any non-empty Λ^Έd and μe^Fί^M), we define the logarithmic
Sobolev constant c(μ; A) of μ on A to be the smallest ce[0, oo] with the property that

ί/ 2 log |/ |^^cf |V Λ / | 2 dμ+| |/ | |2 2 ( μ ) log | |/ | | L 2 ( A I ) , feC\(M). (1.1)

When c(μ A) < oo, we say that μ admits a logarithmic Sobolev inequality on A, in
which case, (1.1) with c = c(μ;A) is the logarithmic Sobolev constant for μ on A;
and when A = TLd, we drop all reference to A in the notation. Thus, c(μ) = c(μ; TLά\

Potentials and Gibbs States. The family / = {JA\Ae%] is a twice differentiate,
shift-invariant potential with finite range ReΈ+. That is, for each /leg, J^eC^(M),
Jk + A = JA°Θ\ keΈ\ and JA = 0 if 0e/4 £ [- Λ,^]d Given / , we define the cor-
responding local specification (£ = (£(/) so that

where

In this

An.

connection,

M

M

1

zΛ(<

Σ JΛ,

AΦ0

it will be

and ZΛ(ξ[

convenient

II) and

4c)exp|

)= J e :
M

for us

II/IU

Γ—Γ/ΛΓv •/? ^Ίϋ^v^

φ R V ϋ ] *

to have the notation

/ \1/P

ιξ = ( $ \f(y)\pEΛ(dy\ξ)) .

Finally, we say that μeWl^M) is a Gifobs state for C(/) and write μe©(/) if

for all Λeg and /eC0(M).

With this notation in place, we can now state the central result of the present
article.

1.2 Theorem. lfforeachf<EC2

0{M\

X |k| d sup| |£ Λ \ { k } (/-^/)L<oo, (1.3)

Λak

ί/ien, for each non-empty SaΈd and zeM, there is a unique Es{-\z)e^iSix{M) with
the property that

ί/(x)Es(rfx|z)=ί LEΛn(yszsC)Es(dy\z\ S^Λe% and /eC0(M).
M M

In particular, ©(,/) contains precisely one element μ; and, for each non-empty S c Zd,
ZGMI—> £ S ( |Z)G9JΪ 1 (M) is a continuous transition probability which is a conditional
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probability distribution of μ given J^5C. Finally,

sup c{Es{'\z);S)< oo,
0ΦS^Έd

zeM

and so μ itself admits a logarithmic Sobolev inequality on Έd.
Conversely, if

supc(£Λ( |z);Λ)<oo, (1.4)

zeM

then there exists an εe(0, oo) such that, for every Ae%,

sup IIEΛ W(f - EΛf) |L S K{A)e-^~A\ \\ XTJ ||u, feC2

A(M), (1.5)

for some K(A)e(0, oo). (Cf. Remark 2.18 below for a slight weakening of the conditions
under this converse assertion can be proved.)

1.6 Remark. The first part of Theorem 1.2 is covered in [S&Z]. In fact, in
Theorem 3.8 of that article we showed that the conclusions drawn in the first part
of Theorem 1.2 above are guaranteed by conditions which involve only Λ's
contained in a sufficiently large cube. In particular (cf. Corollary 3.12 of [S&Z])
this led to the important conclusion that (1.3) for the potential / implies (1.4)
not only for the local specification &(f) but also for all local specifications <&{β)
corresponding to differentiate, shift-invariant potentials J with range R with the
property that

Σ II VF(JF ~ JF) II u i s sufficiently small.

Thus, it is the converse assertion in Theorem 1.2 on which we will be concentrating
in this article. Notice that the estimate in (1.5) is what we called the Dobrushin-
Shlosman mixing condition in Remark 3.15 of [S&Z]. In fact, (1.5) is (cf. (3.11) in
[Dob&S, 1] or IIIc in both [Dob&S,2] and [Dob&S,3]) one of the many
equivalent conditions which, as Dobrushin and Shlosman show, imply complete
analytic dependence of the corresponding Gibbs states. Hence, one interpretation
of Theorem 1.2 is that it says (1.4) can be appended to Dobrushin and Shlosman's
list of equivalent conditions. In this connection, it may be worth pointing out that
if one combines Theorem 3.8 of [S&Z] with Theorem 1.2 here, one obtains an
alternative proof that complete analyticity admits a characterization in terms of
what Dobrushin and Shlosman call a constructive condition (cf. Hie in [Dob&S, 2]
and CA in Sects. 4 and 5 of [Dob&S, 3]). Unfortunately, Dobrushin and
Shlosman's picture of "a big table with a small duster" (cf. Sect. 5 of [Dob&S, 3])
does not appear when one uses our method; on the other hand, we feel that the
addition of (1.4) to Dobrushin and Shlosman's list provides significant confirmation
of Tolstoy's wisdom as interpreted by Dobrushin and Shlosman in the first sentence
of [Dob&S, 3].

1.7 Remark. Readers who are familiar with [Dob&S, 1-3] may be justifiably
concerned about the difference between the settings in which we and they work.
Indeed, much of what they did was proved only for finite spin spaces, whereas we
have worked exclusively with continuous spin spaces. Moreover, there are several
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places in both their and our analyses where it may not be entirely trivial to extend
the argument so that it covers both finite and continuous spins. Nonetheless, we
firmly believe that essentially all their results extend to continuous spins and that
ours can be proved for finite spins. In fact, the only question about the extension
of our results is whether one can carry out the analysis in Sect. 2 of [S&Z] when
one has to replace the classical Leibniz rule by its discrete analogue; that the proof,
given below, of (1.4)=>(1.5) works (and is in fact easier) in the finite spin case should
be clear.

In our proof that (1.4) implies (1.5), we will be borrowing heavily from the
ideas introduced in [H&S, 1] and [H&S,2]. In particular, this means that we will
have to discuss Glauber-type dynamics associated with the potential /" and will
be taking advantage of properties of these dynamics which result from our
assumption that $ has finite range. Thus, in order to facilitate the presentation
later, we will now present an elementary, abstract statement of what will turn out
to be the key fact about Glauber dynamics corresponding to finite range potentials.

In the following, {Tt:t > 0} denotes a Feller continuous, Markov semigroup on
C(M), and A on domain D(A) is the generator of {Tt:t > 0}. Given a dense subset
D of C(M), we will say that {Γ f : ί>0} is ^-decomposable if D is a {Tt:t >0}-
invariant subset of D(A) and, for each keZd, there is an operator Ak:X)->C(M)
with the properties that A k / = 0 whenever feT> is independent of xk and, for all

X | | A k / | | B < o o and A / = £ A k/;
keZd keZd

in which case {Ak:keZd} is said to be the corresponding ^-decomposition of A. In
keeping with our earlier conventions, we will use £>Λto denote I π C Λ ( M ) .

1.8 Lemma. Let the Feller continuous, Markov semigroup {Tt:t > 0} with generator
A be ^-decomposable and {Ak:keZd} the corresponding ^-decomposition of A.
Further, suppose that, for each keΈd, ||| | | |k is a semi-norm on X> with the property that

^ Ill/lllk + τ^~vrd Σ ί III ϊ /iiijώ (i.9)
(ZK+ 1)

for some Re{Q, oo), Ce(0, oo), and allfeT), te(0, oo), and keZd. Then, for all A £
NeJN, andfeT>A,

(i.io)
{k:\k-Λ\^NR}

where \\\f\\\Λ stands for £ | | |/ | | | k and
keΛ

N-l s» /Se\
N

eo(s) = es and eN(s) = es- £ ^ - ) es, NeZ + .

n = o n\ \Nj

Next, assume that there is some S^Έd for which T)s is {Tt:t >0}-invariant. Also,
suppose that {T,:ί>0}, with generator A, is a second Feller continuous, Markov
semigroup which is ^-decomposable, and let {Ak:keZd} be the corresponding
^-decomposition of A. Finally, assume that

l |A k /-A k / | | u ^C| | | / | | | k , keS and feVs (1.11)
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and that, for some NeJN and /I <Ξ S,

Ak = Ak for all keS with \k-Λ\<NR. (1.12)

Then,

HΓ,/-t;/|L^βw+1(Ct)|||/|||Λ, feT>Λ. (1.13)

Hence, if, in addition, there exist μ,μe'ϊβl1(M) with the property that

pr(t) = || T,/ - </>„ |L v || fi/ - </> ί |L N. 0 as t S co

for eachfeΐ>Λ, then

I</>μ - </>ίI S Rf(N) = mf{pf(t) + eN+1(Ct)\\\f\\\Λ:te(0, oo)}. (1.14)

In particular, if there is an αe(0, oo) and a C(Λ)e{0, oo) for which

«7;/-</>JluV||T;/-</>A | |1 1^C(Λ)|| |/| |Uβ-'«, ί6(0,oo) and / e £ Λ ,

(1.15)
then there is a β — jS(α, C)G(0, OO) such that

-'*> fet)Λ. (1.16)

Proof. Define aN(t) to be the left-hand side of (1.10) and observe that, because of
(1.9),

t

ao{t)Sao{0)eCt and aN(t)<> Jα^.^sjds for Ne2: + .
o

Hence, (1.10) follows immediately by induction with respect to N e N .
Turning to (1.13), set ft = Ttf and observe that, because of (1.12) and the fact

that fteT)s for all ίe[0, oo),

~ ft_Js = ff_so(A - A)/s = X t f.βo(Ak - Ak)/f

US {keS:\k-Λ\ZNR}

for 5G(0, ί). Hence

|| T J - f j 1| u ^ j ||/i(5)L^, where Λ(*)== Σ (Ak-Ak)/ f;
0 {keS:|k-Λ|^Ni?}

and therefore, by (1.10) and (1.11),

|| TJ - fjIIB ^ CHI/IIU} MC5)ώ = eN+ι(Cή\\\f\\\Λ.

Finally, (1.14) is an essentially trivial consequence of (1.13); and to prove (1.16)
(N + lVy

when (1.15) holds, simply note that by taking t = , where ye(0, oo) solves

+ l o g y + 1 = 0 ,

one can dominate Rf(N) in (1.14) by
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2. Continuous Glauber Dynamics

In this section we will prove the second (i.e., the converse) assertion in Theorem 1.2;
and to this end, for each /leg a n d ξeM, we introduce the diffusion semigroup
{Pt

Λtξ:t >0} for which the measures EΛ(-\ξ) is the equilibrium state and

ΛΛ-*(φ,φ)= Σ ί |V kφ| 2£-VylS) (2.1)

is the Dirichlet form. That is, {Pt

Λtξ:t > 0} is the unique Feller continuous, Markov
semigroup whose generator kA^ restricted to CQ(M) is given by

X (2.2)
keΛ

where UΛ>ξ(x) = UΛ(xΛ ξΛC). Taking advantage of the fact that {Pt

Λ-ξ:t>0} acts
trivially on all but a finite number of coordinates, standard facts about finite di-
mensional diffusions apply. In particular, we have the following.

2.3 Lemma. Each of the spaces CΛ(M\ CQ(M), and CQ(M) is invariant under
{Pt

Λ-ξ:t> 0}. In addition, there is a constant K e [ l , oo), which is independent of both
A and ξ, such that

\\Pΐ'ξf\\uύKM\\f\\UAtξ9 feC(M). (2.4)

Proof. The invariance properties of {P/^ ί >0} are completely standard facts
about finite dimensional heat flows. To prove (2.4), let / be a non-negative element
of C2(M), set

,x) = exp _ ϋ [p f^
Γ U(x)\

w(ί,x) = exp _ ϋ [pf^«/](χ) for (ί,x)e[0,oo)xM,

and note that

^ ( ί , x ) = Σ
Ot keΛ

where Δkφ = divk(Vkφ) for keZd and φeC2(M\ and

Since, by any one of many (e.g., the Feynman-Kac formula) standard arguments,

|w(ί,x)|

where

3](ί,x) with wo(0, •) = /,
01 keΛ

we now know that

Γ
[Pί {/](x)gexpl
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Finally, if po(t,x,y) is the heat kernel for M, then

o(l fx)= f ( Π

M

where Ce(O, oo) is the maximum value of po(l,x,y) and

osc(UΛ^)= sup \UΛ^(y) — UΛ^(\)\ ^ κ\Λ\
x,yeM

for some κe(0, oo). Hence, since it is clear that || VΛ*ξ | |u is dominated by a constant
times \Λ\, the derivation of (2.4) is complete. •

Combining the first part of the preceding with the presentation of AΛ'ξ in (2.2),
we see that each {Pt

Λ'ξ:t >0} is C^MJ-decomposable. Thus, the results of Lemma 1.8
will be applicable once we have the following.

2.5 Lemma. Define

Ill/Ilk =111 Vk/|||u, feC^M) and keZd.

Then a constant Ce(0, oo) can be chosen so that, for all /leg, ξeM, keZd, and
feC2

0(M):

Σ ί III^S

Λ'^/ΊM5> ίe(0, oo), (2.6)
\ o

and, for all Λ,λe% and keλnΛ,

H A k

Λ ^ / - A k

Λ ^ / | | u ^ C | | | / | | | k , feClm (2.7)

In particular, for all A,λe% with Λ^Λ, all A<= A, and all ξ,ξeM satisfying

one has (cf. (1.10)),

\\Pt

Λ>ξf-Pt

λ>ξf\\uίeN(Ct) X | | |/ | | | k, /eC 2 (M). (2.8)
keA

Proof. Since (2.7) is obvious and, given (2.6) and (2.7), (2.8) is an easy application
of Lemma 1.8, we will restrict our attention to (2.6). To this end, we first introduce
Hik(φ) for φeC2(M) and },keZd to be the (j,k)th block of the Hessian tensor of
φ. It is then an elementary application of Bochner's formula to see that

2(Vk<A I Vk A/1-V) = A ; «( I Vk^ | 2) - δίk Ric(Vjtfr, Vkφ)

- Hlk(U^)(W^, Vkφ) - || Hιv(φ) II2,.,,,

where Ric denotes the Ricci curvature tensor for M and the norm in the last
expression is the Hilbert-Schmidt norm. In particular, if /eCj^M) and /, = P,Λ'ξf,
then

j | V k / , | 2 g A Λ «( |V k / f |
2 )-Ric(V k / f ,V k / r )-ΣHj.k( l/ Λ {)(Vj/f,Vk/,).

at jeΛ
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Thus, by considering se[0, t]^P^ξ

s (| Vk/J2)GlR, we see first that there is a Ce(0, oo)
for which

Ill/rlllk ̂  Hl/lllk + ̂ 7 7 , Σ ί Ill/Jjlll/Jlkώ,
(2K + 1) {jeΛ:\}-k\^R} 0

and thence that (2.6) holds with the same choice of C. •

So far, nothing which we have done in this section makes any use of the condition
in (1.4). Indeed, we use it for the first time when we attempt to check (1.15) holds
uniformly for the semigroups {Pt

Λjξ:t>0}. To be precise, we have the following.

2.9 Lemma. Set (cf. (2.1))

y(Λ,ξ) = inf |y ( f :^ :y6Cg(M) with [£>](«) = θj (2.10)

for all Λe% and ξeM. Then,

y(Λ,ξ)> — l . (2.11)

Moreover, if (1.4) holds, then, for every θe(0,1) and .4Eg, there is a Kθ(A)e(0, oo)
such that

\\Pt

Λ^f-ίEΛfM)L^KΘ(A)e-θ^Λ^\f\\\A, feC2

A(M) and (t, ξ)e(0, oo) x M.

(2.12)

In particular, if

- = 2sup{c(EΛ( \ξ);Λ):Λeΰ and ξeM},
α

then

IIΛΛ^/-C^/](^)Hu^^(^"αΊII/IIL, feC2

Am and (ί,ξ)e(0,x)xM,
(2.13)

with K(A) = K1I2(A).

Proof. Equation (2.11) is (cf. Corollary 6.1.17 in [D&S]) a simple restatement of
a remark by B. Simon (cf. Corollary 6.1.7 in [D&S]). Thus, from now on we will
assume that (1.4) holds and will be taking α accordingly, as in the last part of the
statement.

By L. Gross's fundamental result in [G, 1] (alternatively, again see Corollary
6.1.17 in [D&S]), we know that, for all ίe(0, oo), /leg, and φeC(M):

\\Pt

A-ξφ\\m.Λ.ξύ\\φ\\2tΛ.ξ, with q(t)=l+e2". (2.14)

At the same time, by elementary spectral theory,

\\Pt

Λ'ξφ-lEΛφ ](ξ)\\2,Λtξ£e-«A't»\\φ -[EΛφ](ξ) \\2%A%ξ9 φeC(M), (2.15)

for all / leg and (t, ξ)e(0, oo) x M.
Now let Ae% and θe(0,1) be given, and, for gaΛ ϋ A, define

ίe(0,
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where σ = e2(C v G) with C the constant appearing in (2.8) and

G = sup{γ(Aξ):Λe% and ξeM}.

(Trivial considerations show that G < oo.) Then, by (2.8), we know that

\\Pt

Λ'ξf-Pt

ΛA(thξfLύe-σt\\\f\\\A, feC2

A(M);

and so

I I ^ Λ V — C^:^^< r > V 3 ( 5 ) H o ^ ^ ~ Λ l l i y 111̂  -ι- II^ r^-*w V — C^:^^ < 0 V 3 C 5 > I I . - ( 2 . 1 6 )
At the same time, by (2.4) and standard interpolation theory,

φeC{M\ /leg, and ξeM

for every qe(l, oo). In particular, if qθ(t) = q((l - θ)(t - 1)) for ίe [ l , oo), then (2.14)
and (2.15) show that

\\Pt

ΛAit) ξf-lEΛAit)-ξn(ξ)L

\\2,ΛMt),ξ

^ ίe[l,oo) and feC2

A(M).

Finally, since ί 6 [ l , o o ) ^ ^ 1 ^ i e [ 0 , o o ) is bounded and G^γ(ΛΛ(t)9ξ)^y(Aξ),

the preceding together with (2.16) makes it clear how KΘ(A) can be chosen so that
(2.12) holds. •

Proof of Theorem 1.2. As we said following its statement, the first half of Theorem
1.2 was proved in Corollary 3.18 of [S&Z]. Thus, all that we have to do here is
prove that (1.4) implies (1.5). But, by combining Lemmas 2.5 and 2.9 with the last
part of Lemma 1.8, we know see that there is a βe(0, oo) such that, for every Ae%,

|| EΛ\Mf _ EΛf || u ^ ( K { A ) + l)e-

feC2

A(M) and keΛ with \k-A\^NR9

where K(A) is the quantity in (2.13); and, obviously, after adjusting K(A\ this leads

to (1.5) with ε = - . D
R

2.17 Remark. As the preceding line of reasoning makes clear, we could have added
the existence of an αe(0, oo) and {K(A):Ae^} <= [0, oo) for which (2.13) holds to
the list of conditions which are equivalent to (1.4). Moreover, with essentially no
change in the argument, one can prove (2.12) as soon as one knows that

[ - ί , ί ] d and £ e M } = 0 . (2.18)(

ί-oo\ t

Hence (just as in the proof given of (2.13)), (2.18) together with

inf{y(Λ ξ):Λeΰ and ξeM} > 0 (2.19)
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implies first (2.13) for some αe(0, oo) and then (1.5) for some βe(0, oo). In particular,
this means that when (2.19) is known to hold, (2.18) is equivalent to the apparently
stronger (1.4).

3. Some Dividends

Although we have now reached our major objective, namely, the proof of the
equivalence contained in Theorem 1.2, there are still a couple of additional observa-
tions which can be extracted from what we have done. The first of these is the
remark that we are now in a position to extend the reasoning in [H&S,2] to the
present setting and thereby show that (1.4) implies a sharp exponential rate at
which the Glauber dynamics converges to equilibrium. Thus, let {Pt:t > 0} be the
Feller continuous, Markov semigroup for which the Gibbs state μ is the equilibrium
distribution and

is the Dirichlet form. Alternatively, {Pt:t > 0} can be described as the unique Feller
continuous, Markov semigroup whose generator A has the property that, for each

Af = AΛ>ξf feC2

A(M), %3A^AvdRA, and ξeM.

In particular, from this latter description, it is a trivial matter to see that

lim sup \\Pt

Λ-ξf-Ptf\\u = 0 f o Γ a 1 1 Te(0,oo) and feC(M); (3.1)
Λ S ΊLd (ί,^)e[0,Γ]x M

and, as we are about to see, (3.1) together with (2.12) yield a very strong statement
about the way in which Pt tends to equilibrium.

3.2 Theorem. Assume that (1.4) holds, let μ denote the unique element of (&(f), and
define

y = ]

WΨWUU

Then - is dominated by the logarithmic Sobolev constant c(μ),

y

e-yt = sup{\\Ptφ-(φ)μ\\L2{μ):\\φ\\L2iμ)^l} for all te(O, oo) (3.3)

and, for each θe(0,1) and A eg,

IIΛ/-</>μllu^^(^" a vΊII/IIL far all ίe(0,oo) and feC2

A(M), (3.4)

where Kθ(A)e(0, oo) is the same as it was in (2.12). In particular,

1
sup lim -log [sup { H P , / - </> / i | | u :/eC^(M) and \\\f\\\A S 1}] = — y. (3.5)

Proof The domination of- by c(μ) is another application of the remark by B. Simon
y
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alluded to above. In addition, (3.3) is a simple application of spectral theory, and,
obviously, (3.5) is an immediate consequence of (3.3) combined with (3.4). Hence,
we need only prove (3.4). To this end, set Λn = [ - n, ή]d, choose and fix some ξeM,
and set μn = EΛn>ξ( \ξ) and (cf. (2.10)) yn = γ(Λn9ξ). Because μ is the only element
of ©(/), it is easy to check that μn=>μ and therefore that

^ Mm yn<\VΛnφ\2>μn= lim ynt(φ,φ), ψeC2

0(M).
n-*co n->oo

Hence, y ̂  lim yn. At the same time, by (2.12), (2.12), and an elementary application
H-+00

of the triangle inequality,

\\PJ-<f>Ju£KM)Me-°ynt\\\f\\\A for te(0,oo) and /eC*(M);
π-*oo

and so (3.4) is now proved. •

We next turn to a variation on a question which was discussed first in [H]
and then again in [A&H]. Namely, in the context of attractive Ising models with
spin space { — 1,1}, Holley showed that the rate at which the Glauber dynamics
for the whole system takes local functions to equilibrium is necessarily exponential
if it is strictly faster than t~d. The proofs (both the one in [H] as well as the simpli-
fied one in [A&H]) of this interesting result rely heavily on the hypothesis that
the model is attractive and are therefore too delicate to be entirely replaced by
the sort of reasoning which we have been using here. Nonetheless, if one is willing
to replace Holley's hypothesis about the whole system with a considerably stronger,
uniform one about the Glauber dynamics on finite boxes, then one arrives at the
following.

3.6 Theorem. Assume that ©C/) = {μ}, and suppose that for each f"eC^M),

]t2d-1sup{\\Pt

Λ<ξf-(f)Λ,ξ\\u:Λe(5andξeM}dt<oo. (3.7)
1

Then (1.3) holds, and so the conclusions of both Theorems 1.2 and 3.2 apply. In
particular, (3.7) implies (3.4).

Proof By plugging (3.7) and (2.8) into (1.14), we see that (1.3) holds for each

An important benefit to having a logarithmic Sobolev inequality is that it
allows one to develop the large deviation theory for the empirical distribution of
the diffusion determined by the semigroup {Pt\t > 0}. To be more precise, standard
Markov process considerations lead to the existence of a continuous mapping

O, oo);M))

with the property that, for every neZ+, 0 < tί < ••• < fn, and FeC(M"),

f F(ψ(tι\...,ψn(tn))Px(dψ)
C([0,oo);M)

M M
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where xeMi—•P(ί,x, )e9W1(M) is the transition probability for the operator Pt.
Alternatively, if 381 denotes the σ-algebra over C([0, oo);M) generated by ψ\->ψ(s)
as s runs over [0,ί], then, for each x e M , P x can be characterized as the unique
probability measure on C([0, oo);M) with the property that, for every

/ t \

f{φ(ή) — /(x) — J [Af](φ(s))ds, J*f,Px I is a mean-zero martingale.
\ o /

Now suppose that μe ©(</)> and set P μ = J Pxμ(d\). It is then an easy matter
M

to check that the symmetry of the P/s in L2(μ) translates into the statement that,
for each Γe(0, oo), the processes {φ(t):te[0, Γ]} and {φ(T- t):te[0, Γ]} have the
same distribution under P μ . (In other words, t\-*φ(t) is reversible under Pμ.) In
particular, this means that P μ is invariant under the natural time-shift maps on
C([0, oo);M), and therefore Birkhoff's Individual Ergodic theorem applies. Thus,
if P μ is ergodic, then, for each bounded, measurable /:M-»IR,

lim - j f(φ(s))ds = </>μ for Pμ-almost every φeC([09 oo); M). (3.8)
t / o o ί o

Next, define the empirical distribution

(t9φ)e(0, oo) x C([0, oo);Mi^Lt(φ)em1(M)

so that

</,L#)>= f f{y)UΦ,dy) = -\f{φ{s))ds, /eC(M).
M t o

It is then clear that (3.8) has, as an immediate corollary, the consequence that,

Lt(φ)=>μ as t / oo for P^-almost every φ. (3.9)

In order to relate these considerations to the topic of the present article, we
assume that © ( / ) = {μ} and (cf. pages 128-133 in [D&S]) note that, for each
geL2(μ), the limit

ίte,fif) = l i m i f (g(y)-g(x))2P(t,xJy)μ(dx)
t\θZtM2

necessarily exists in [0, oo]. In fact, when geCι

Q(M),${g,g) is nothing but <|V^|2>μ.
Thus, if J^aR^MJh+IO, oo] is defined by

*(fll2,fι/2) when dv = fdμ

oo if v is not μ-absolutely continuous,

then the logarithmic Sobolev inequality in (1.1) is equivalent to the statement that

H(v|μ)^2cJ ( f (v), veSMM), (3.10)

where

{ J / log fdμ when dv = fdμ
M

oo if v is not μ-absolutely continuous,
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is the relative entropy of v with respect to μ. (Notice that the sign convention here
is opposite to the usual one in physics.) In particular (cf. Theorem 5.3.10 and
Exercise 5.3.16 in [D&S]), the existence of a logarithmic Sobolev inequality for
μ leads to the following more quantitative version of (3.9): for each measurable
subset Γ

- iirfJ,(v) glim-log [ P ^ (3.11)
veΓ° ί-κx> t t-+oo t veΓ

where Γ° and Γ are, respectively, the interior and closure of Γ in the weak topo-
logy for SR^M).

Although the information contained in (3.11) is interesting, from a practical
point of view it has serious flaw. Namely, perhaps the most significant use to
which this sort of estimate might be put is that of predicting how well the Gibbs
state μ can be approximated by the empirical distribution coming from a simulation
based on Glauber dynamics; and presumably the reason for running such a
simulation is that the measure μ is unknown. But if μ is unknown, then it is obvious
that, as it stands, (3.11) has no value, since (3.11) is predicated on the assumption
that μ is known well enough to use it as the initial distribution for the Glauber
dynamics. Thus, before they can be considered truly useful, the estimates in (3.11)
must be replaced by statements in which P μ is replaced by P x for arbitrary xeM.
Clearly, the problem here is a precise analogue of the one involved in the passage
from the L2(μ)-statement in (3.3) to the uniform one in (3.5); and so it should not
be surprising that the solution here is similar to the one there. In particular, we
will need a path-space version of the estimate in (2.8). Thus, for each /leg and
xeM, let P^be the unique probability measure on C([0, oo);M) with the property
that

t

(f(Ψ(t)) ~ /(x) - J [AΛ'x/]0A(s))ds,Stx, P?) is a mean-zero martingale
o

for each / G C Q ( M ) ; or, equivalently,

(a.s.,

for all s, ίe[0, oo) and /eC(M).

3.12 Lemma. There is a constant Ce(0, oo) with the property that

2)N\1/2

Lip(F) (3.13)

whenever /leg, x,yeM, Γ e [ l , oo), and F:C([0, oo);M)-»R satisfy \Λ = yΛ and

\F(φ) - F(φ)\ ̂  Lip(F)max {dist(^(ί)k, ^(ί)k):ίe[0, T] and |k - ΛC| ^ NR}

for all ψ,ψeC(l09oo);M).

Proof. In order to prove (3.13), we will use stochastic integral equations to construct
a coupling of the measures P x and P^; and for this purpose, it will be convenient
to think of M as embedded in R D for some sufficiently large D e Z + . Then, taking
B = \_ — R, K]d, we can choose twice continuously and bounded differentiable
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functions σ:RD->]R l )<g>R l ) and ί?:(R D ) β ->R D with the property that

for all keΈd, xeM, and / e C 2 ( ( R D ) z d ) . Next, let (Ω, &, IV) be a complete probabi-
lity space on which there exists a family {βk:kεZd} of mutually independent,
Brownian motions ωef2ι—•βk( ,ω)eC([0, oo);RD). Using the familiar techniques
of Itό stochastic calculus, one can easily show that, for any non-empty A <= TLd,
there exists a ^-almost surely unique, {/?fc:keZd}-progressiveΓy measurable
XΛ:[0, oo) x M x βι-»M such that (ί,x)e[0, oo) x M\-*XΛ(t,x,ω) is a continuous
for each ωeΩ and

XΛ(τ x, ω)k = x k + J σ(XΛ(t, x)k)dβ% ω)
o

T

+ Jfo(XΛ(r,x,ω)k+β)dί, k e Z d and Γe[0,oo),
o

for ^Γ-almost every ωeί2. Moreover, setting X = \ π d and using the martingale
characterization given above, it is an elementary application of Itό's Lemma to
check that the distributions of ωeί2t->XΛ( ,x,ω)eM and ωe,f2ι->X( ,x,ω)eM
under IV are, respectively, P^and P x . Thus, (3.13) will follow as soon as we show
that there is a C E ( 0 , OO) such that

sup \X (t, y)k — X(t,χh
re[O,Γ]

= d i a m ( M ) ( C Γ ( 1 + T ) ) * , if xΛ = yΛ and

But, by elementary Itό calculus and Doob's inequality, one sees that, for any kE/1,

re[O,Γ]

T

max E^[\XA(t,y\-^(ί,x)jl2Λ, ΓG[0,OO),

where CG(0, OO) depends only on the Cx-bounds on the functions σ and b. Hence,
since \XΛ( 9y9ω)k — X(t,x,ω)\ is necessarily dominated by diam(M), the desired
estimate follows immediately by induction on NeZ + . •

Our next task is to develop an appropriate analogue to the estimate in Lemma
2.3.

3.14 Lemma. Assume that (1.4) holds, and set

q(t) = 1 4- e

t/2c, ίe[0, oo), where c = supc(£ Λ ( |x)).

xeM
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Then, for each δ>0and all xεM, Aeft, FeC(M), and f e « M l ( M ) ,

j£ p "[^< κ ' L t >,L f GΓ^]£ Λ (r fy |x), xeM, (3.15)
M

27+ 4
so long as 0 < t < oo with < δ. (The constant X G [ 1 , oo) in (3.5) is the same

as the one in (2.4) and the quantity Γ{δ) denotes the open δ-hull of Γ computed with
respect to the Levy metric on SJΪ^M).)

Proof. Note that if 0Γ:C([O, oo);M)->C([0, oo);M) is the time-shift determined by

\βτΦΌP)= Ψ(t + T\ (ί, ̂ )e[0, oo) x C([0, oo);M),

then

|| Lt(θτψ) - Lt(φ) | | v a r ^ ^ , (ί, (A)G(O, oo) x C([0, oo); M),

2T + 4
and therefore, when < δ,

t
E^[β f< κ L ' > , L f 6 Γ ] ^ ^ ^

where

Λ(y) = £ P " [ ^ ί < κ ' L t > , L f e Γ w ] , yeM.

Next, by (2.3), interpolation, and duality, note that, for any ge[2, oo),

| |Pf' x/| |u^χl^| |/ | | l 5 Λ ) X and \\P^f\\^A,xύK^\\f\\UΛ^ feC(M),

where q' denotes the Holder conjugate of q. At the same time, by Gross's integration
lemma for logarithmic Sobolev inequalities,

and so (3.15) is now proved. •

With these two lemmas, we now have the upper bound which we are seeking.

3.16 Lemma. Assume that (1.4) holds. Then, for each δ>0, FeC 0(M), and

xeM

(3.17)

In particular,

lim -log supPX(L,eΓ) ^ - inf Js(v). (3.18)
ί->oo t LxeM J veΓ

Proof. Given (3.17) and (3.11), (3.18) becomes an easy application of the fact (cf.
Exercise 5.3.16 in [D&S]) that (3.10) implies Js is lower semi-continuous. To
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prove (3.17), note that, for each δ>0, there exist an A eft and an Le[0, oo)
(depending only on δ and V) such that, for each ίe(0, oo), one can construct
functions Ft and Gt on C([0, oo);M) with the properties that

ύ Ft(φ) ^

for all^eC([0,oo);M), and

\Ft(ψ) - Ft(φ)\ V IGt(φ) - Gt(φ)\ S Le ί | | F | | u max {dist(φ(s).p ψ(s)}):se[0, t] and j

for all ψ,ψeC(lO,ao);M). Hence, if Λ(t) = { k e Z d : | k - A\ g ί3}, ίe[l,oo), then,
by (3.13) and (3.15),

M

/2

J
M

KTT
for all sufficiently large ίe[0, oo) and all x,yeM satisfying yΛit) = xΛ{t). But the
final expression in the preceding only depends on yΛ(ί)c, and so, after integrating
it with respect to μ, we obtain

^ '\t\WU

for all xeM and sufficiently large ίe[ l , oo); and clearly (3.17) follows immediately
from this. Π

3.19 Theorem. Assume that (1.4) holds. Then, for each Γ e J ^ l ( M ) :

- inf Λr(v)^ lim-log inf Px(L f eΓ)

veΓ° t->oo t \_xeM J

S ϊϊϊn-log supPX(L,GΓ) U -inf Jέ(v). (3.20)
ί->oo t \_xeM J veΓ

In particular, for any continuous Φ:$)11(M)-+1R. with the property that

sup £ P x |> ( 1 +<*φ^yι< < oo far some ε > 0,
ίe(0,oo)

xeM

lim sup
ί-^oo xeM

- sup = 0. (3.21)

Proof The upper bound in (3.20) is already contained in (3.18), and the passage
from (3.20) to (3.21) is an application of Varadhan's Laplace asymptotic lemma
(cf. Theorem 2.1.10 in [D&S]). Thus, all that remains is to prove the lower bound



322 D. W. Stroock and B. Zegarlinski

in (3.20). That is, we must show that

lim lim -logΓ inf Px(L,eB(v,r)) ] ^ - J,(v), veSR^M),

where B(v,r) denotes the Levy ball of radius r around v in SDl^M). In fact, by the
same sort of argument as the one given to check the corresponding assertion in
the proof of Theorem 5.3.11 in [D&S], we need only consider veSJΪ^M) of the form
dv = fdμ, where / is a uniformly positive element of CQ(M). Given such a v, set

Rt(Ψ) = ~7^exp Γί niA(s))<*4 (t, ψ)e[09 oo) x C([0, oo); M),
t#(0)) Lo J

and note that, because (Rt, Mx, P x ) is a martingale, there is a unique element Q x

of SR^CflΌ, oo);M)) such that

QX(Γ) = £P*[K,,Γ] for all ίe[0,oo) and Γe<%t.

Moreover (cf. Lemmas 5.3.5 and 5.3.9 in [D&S]),

lim Q (Lfefl(v, r)) = 1 for all re(0, oo);
t-*oo

and therefore, by (3.17), we see that

lim lim inf Qx(LfeB(v,r)) = 1.
r\0 ί->oo xeM

Hence, since

Px(LteB(v, r)) ^ εe-tM{r)Qx(LteB(v, r)),

where

ε = infi —:x,yeMi and M(r) =
[u{x) j

we conclude that

lim lim -logI inf Px(L feB(v,r))l ^ - lim M(r)
r\Ot->σo t LxeM J r\0

Aw
= J — d v = J uAudμ = - Js{v). Q

M U M
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