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Abstract. General asymptotic causality properties of chronological Λf-point
functions and, in massive theories, of iV-particle collision amplitudes, are derived
from locality and the spectral condition. Results include specified rates of
exponential fall-off, with simple and direct physical content, for large non-causal
separations of points or particles in Minkowski space-time depending on values
of the energy-momenta and on the mass spectrum. Relevant mathematical results
on rates of exponential fall-off of generalized Fourier transforms outside their
microsupports are given.

1. Introduction

1.1 Preliminaries. The purpose of this paper is the derivation in field theory, from
locality and the spectral condition, of general asymptotic causality (also called
macrocausality, properties of chronological ΛΓ-point functions and in turn, in massive
theories, of Λf-particle collision amplitudes, with specified rates of exponential
fall-off in non-causal situations. Results provide in particular a general and precise
expression of the idea that energy-momentum can only propagate in future causal
cones, in an asymptotic sense and up to specified exponential fall-off, with some
further conditions (depending on the mass spectrum) in massive theories. They
generalize, complement and unify in various respects earlier works on the subject
([1-7] and references therein) as outlined below. Further results and conjectures
in massive theories, on macrocausal properties in terms of real on-shell intermediate
particles, linked to asymptotic completeness, will be presented elsewhere. Results
of this paper are general ones that depend only on the (possibly weakened) locality
condition and on the mass spectrum. (Rates of exponential fall-off in more refined
properties depend also on further aspects of the models considered: unstable
particles,...) The analysis and results are in particular very close to the work of
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Bros-Epstein-Glaser [5], and more precisely both to Sect. 2 of [5], in which
results on iV-point functions are given in the sense of rapid fall-off (in the line of
original results of [3] on collision amplitudes in particular situations), and to Sect. 3
of [5]. In the latter, local momentum-space decompositions1 into sums of
boundary values of analytic functions, whose analyticity domains (in massive
theories) intersect the complex mass-shell2, have been established. They might be
used, via mathematical results [8,9], to obtain in turn causality properties in the
sense of exponential fall-off. Our methods, which develop those outlined in [6] in
terms of ("microlocal," analytic) essential support or "microsupport" properties3,
are more direct and efficient to that purpose, both for the treatment of Λf-point
functions and in turn of Λf-particle collision amplitudes. Results on Λf-point
functions also allow one to reobtain local momentum-space analyticity properties
in a simpler way, through decomposition theorems4 of [8, 9]: see Appendix 2.
As well appear, our results generalize on the other hand earlier results on rates of
exponential fall-off of N-point functions [1,2] or collisions amplitudes [4, 7]
obtained (by different methods) in particular situations: see details on [1, 2] in
Sect. 1.2 below and on [4, 7] in Appendix 3.

12 Contents. For definiteness, we consider as in [5] the Wightman axiomatic
frame work but a similar analysis can probably be carried out in the related
Haag-Araki theory of local observables. On the other hand, we consider for
simplicity a theory with only one basic (interacting) field, a scalar field A(x -• A(x)).
Locality takes the form [A(x\ A(y)~\ = 0 if x — y is space-like. A weakened
formulation of locality involving only exponential fall-off in space-like directions
is also sufficient for most purposes below. The spectral condition asserts in general
that the spectrum of the energy-momentum operator is contained in the closed
cone V+ = {p,p2 ^ 0 , p o ^ 0 } , where p2 = p^ — ~p2 and pQ,~p are the energy and
momentum components of p. We shall also consider spectral conditions with mass
gap, which will as a matter of fact characterize "massive theories," and for simplicity
will restrict our attention in this case to a spectrum composed of the origin, an
hyperboloid H+(μ) of mass μ > 0 (H+(μ) = {p; p 2 = μ2, p 0 > 0}) and the continuum

2 2 }{
Results on N-point functions and ΛΓ-particle collision amplitudes are presented

in Sects. 3 and 4 respectively. An introduction and more details on contents are

1 Similar decompositions follow from the results of Sect. 2 of [5] but with undesirable C00

backgrounds. The method used in Sect. 3 of [5], in momentum-space, is different and is based
on a generalized edge-of-the-wedge theorem of [8,9]
2 This is not the case for the primitive analyticity domain of the iV-point function, nor even in
general (at N > 4), for its holomorphy envelope, so that several terms are needed in general in
these decompositions
3 The definition [8,9] of the ("microlocal," analytic) essential support is recalled in App. 1.1. It
coincides [10] with the analytic wave front set and with the singular spectrum introduced
independently by different methods, in [11] and [12] respectively. This common notion is also
called microsupport, following a mathematical teminology proposed by M. Sato (which has,
however, no link with microlocality in field theory)
4 These theorems are used in some sense in Sect. 3 of [5], but in an indirect way, the generalized
edge-of-the-wedge theorem used there (see footnote 1)) being established in [8,9] as a corollary
of the latter
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given below. Some mathematical results, which complete those of [8, 9] and are
directly useful in Sect. 3, are first presented in Sect. 2.

The simplest result on exponential fall-off properties of N-point functions
(in Minkowski space-time) is the exponential fall-off [1, 2], in a massive theory,
of connected Wightman N-point functions W(xί9...,xN) for large space-like
separations of subgroups of points. In order to get more general asymptotic
causality properties, in which past and future are distinguished, one has (i) to
consider chronological functions T(xί9...9xN) (= vacuum expectation values of
time-ordered products of field operators A(x1\..., A(xN)9 whose amputated Fourier
transforms Tamp(pl9...9pN), in a massive theory, give the S matrix by restriction
to the mass-shell) and (ii) to introduce localization properties in energy-momentum
space. To that purpose, one may consider the action of T (which is in fact a
tempered distribution), or Tamp, on suitable test functions φitτ9i= l,...,iV, with
(asymptotic) localization properties both in space-time and (after Fourier trans-
formation) in energy-momentum space. The simplest choice (Sect. 2 of [5], in the line
of [3]) is that of test functions with Fourier transforms φitτ(p$ = Xi(p$ exp — i(p[ Uf)τ,
where each ut is a given point in space-time, τ is a scalar parameter that will tend
to infinity, and each χt is a C00 function with compact support around a given
point pt;φiτ is then well localized asymptotically around the point τu{ in space-
time, in the sense of rapid fall-off. Correspondingly, rapid fall-off properties of
T({ψi,τ}) in the τ-> oo limit can be derived in non-causal situations, depending on
the set of points uu...,uN and on the supports of the functions χt (as also, in a
massive theory, on the mass μ). However, it is then not possible to see actual
exponential fall-off effects, and better results cannot be achieved with functions
φiτ of the form above whether χt has a compact support (because of its C°°
singularities at least on the boundary of its support) or not: if e.g. χt is a gaussian
centered at pi9 other points p\ at possibly large but fixed distances of pt will spoil
the causality properties expected for the given points pt In the line of related
considerations in [4] and [13,8,9], χ( is then replaced by gaussian-type functions
χiτ with width shrinking to zero as τ-> oo. More details and results on these test
functions are given in Sect. 3.1, in which basic properties [5] derived from locality
and spectrum on chronological (and related) functions are also recalled. Main
results on exponential fall-off properties of T({φUτ}\ or Tamp({φitT})9 in non-causal
situations, depending on the set of points ul9...,uN and PU ->PN (and, in a massive
theory, on μ) are presented in Sect. 3.2, where physical comments and some
complements are also given. Results relative to T apply either in general or in
massive theories, with various improvements in the latter case. Finally, a space-time
cluster property analogous5 to that of [1,2], namely the exponential fall-off, in a
massive theory, of T(xί9...9xN) itself for large space-like separations is obtained
in Sect. 3.3 as a byproduct.

In Sect. 4, it is explained how asymptotic causality properties, with also specified
exponential fall-off properties, can be directly established in turn for JV-particle
collision amplitudes between initial and final on-shell wave functions chosen, in
the line of [4,13], to be mass-shell restrictions φiτ ot previous functions φiτ.

5 Results on W and T are very close for space-like separations. As mentioned above, chronological
functions are those to be considered for more general results
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Relevant space-time wave functions, Fourier transforms of φiτ{p')δ + {p'2 — μ2) are
now well localized along the space-time trajectories {τuhPi) passing through τut

and parallel to pt. Results on rates of exponential fall-off of these functions, away
from these trajectories, are established in Sect. 4.1, where the general idea of the
method used for the analysis of collision amplitudes is also presented. Main results
and complements are then given in Sect. 4.2.

Complementary mathematical results are given in Appendix 1. General results
that complement those of [8,9] on rates of exponential fall-off of generalized
Fourier transforms of tempered distributions outside their microsupports are
presented in Appendix 1.1: results of Sect. 2 to 4 will appear in this context as
particular cases of interest in which more precise results can be established. A
convolution theorem directly useful in Sect. 4.2 is then given in Appendix 1.2.

As already mentioned, Appendix 2 explains how local analyticity properties
can be derived from results of Sect. 3. Finally, results of Sect. 4 are illustrated in
Appendix 3 in a simple situation analogous to that of [4].

2. Mathematical Results

We consider a tempered distribution / defined in R", its Fourier transform / and
the generalized Fourier transform F of / defined for each y > 0 by the formula
(see [8,9] and references therein)

F(x,p;γ) = $f(p')e-i'>'xe-v^'-rt2dp'. (1)

In the 7 ^ 0 limit, F reduces to f(x). It is a well defined function, depending
on p, at y > 0. The consideration of various values of y > 0 is useful for mathematical
reasons and also in the application. (The values of y that will allow the best
expression of causality will depend on the situation considered.)

Part (i) of Theorem 1 and Theorems 3,4 are the main results needed in Sect.
3. Part (i') of Theorem 1 and Theorem 2 will be useful in Sect. 3.3. Part (ii) of
Theorem 1 is useful if one starts from weakened formulations of locality.

In Theorem 1, C is a cone with apex at the origin, Ca is the set of points x
whose distance d(x) to the complement of C is ^ α, da{x) is the corresponding
distance to the complement of Cα, and x = x/\x\ is the unit vector in the direction
of x. Parts (i) and (ii) of Theorem 1 assert essentially that, if f(x) = 0 in C or if /
decays exponentially like e~a{x^x^ in the directions of C, then, for any point p and
each y > 0, F(x, p; y) decays exponentially in each direction of C at least like

exp< | x | > and exp{ — oc(x,γ)\x\} respectively, with oc(x,y) defined in Eqs.

I 4y J
(4), (5), up to minor changes if / is a general tempered distribution. The rates of
fall-off, d(x)2/4y and α(x, y), are arbitrarily large, or arbitrarily close to α(x) respec-
tively, if y is sufficiently small, in agreement with the relation lim F(x, p; y) = f(x).

Part (i)' will be applied in particular to regularized distributions, namely to
functions obtained from a distribution vanishing in C by convolution with a C00

function with compact support around the origin.
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Theorem 1.
(i) Iff(x) — 0 in the cone C, then, given any ε > 0, F(x, p; y) satisfies, for x in CE,
bounds of the form

4y|x|

/ / ε
where 0* is a polynomial and v is an integer dε(x) = d(x)

V V 1*1
(Iffis a continuous function, ε can be fixed at zero and the bounds (2) reduce to

\F\ <cstexp< — — |x| \ if moreover f \f(x)\dx< oo).
I 4y J

(i)' If f(x) = 0 in Ca,a^0 and if f is moreover C00 (with possible, at most
polynomial, increase), bounds of the form (2) hold in Ca with ε = a,0> independent of
\p\ and a further factor (1 + \p\)~y\ where V is any ^ 0 integer:

^ l (3)

(ii) Iff decays exponentially like e~
ai^x^ in each direction x of C, oc(x)>O, results

analogous to (i),(i)' hold with a rate of exponential fall-off in \x\ at least equal (or
arbitrarily close) to cc(x, y), where

Γd'(x)2 Ί
)ύmInfl -±L9a'(x) \,

Γd(x) Ί
α(x,γ) = Supd.(i)ύmInfl -±L9a'(x) \, (4)

α'(x) = lnϊ^_^d^oi(ym - d'(x)) (5)

Proof (Outline). We present below a direct proof based on the (easily checked)
convolution formula:

(7|x|)n/2F(x,p;y) = j / ( x / ) ^ p ' ( x " x ' ) ^ ~ | x " x ' | 2 / ( 4 y | x | ) ^ ' . (6)

The integration domain is divided into the region \x — x'\<d(x) or
|x - x'| < d'(x), in which the conditions on / are used, and its complement, up to
slight modifications (in usual ways) if/ is not a continuous function but a (tempered)
distribution. The further factor (1 + \p\)~v> in (i)' is obtained by usual methods in
view of the presence of the factor e~ipx'. Q.E.D.

Theorem 2 is a converse of Theorem 1. It applies in cases when / is e.g. a
continuous function satisfying (at x Φ 0)

f(x) = (y\x\)nl2\F(x,p',y)dp (1)

forborne γ > 0. This is the case (Vy > 0) if / is sufficiently regular, i.e. equivalently
if / has a sufficient decrease as \p\ -• oo.

Theorem 2. /// is a (continuous) function satisfying Eq. (7) for some fixed yo>0
and if F satisfies moreover, for x in C,\x\ larger than a given constant and v0

sufficiently large, bounds of the form

\F(x,p;y)\ < Cvo(l + |p|ΓV0^(|x|)e-α<*>l*l (8)
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with oc(x) (>0) independent of p, then for x in C,

( : ί ) | x | . (9)

The next result applies in cases when/, rather than/, has support properties.

Theorem 3. Iff(p) = 0 in the sphere S(P,r) of radius r around a given point P (i.e.
in the region \p — P\ < r), then V ε > 0, F satisfies at P bounds of the form:

V { ( l - ε ) r 2

7 | x | } (10)

for all γ>0.

The following common corollary of Part (i) of Theorem 1 and of Theorem 3
will be directly useful in Sect. 3.

Theorem 4.
a) Iff = f' + f"9f'(x) = 0 in a cone C andf"(p) = 0 in S(P,r\F satisfies at P
bounds of the form (10) in each direction x of C if γ < d(x)/2r. More generally, the
rate of fall-off in each direction of C is at least equal {or arbitrarily close) to

.w 21ΠΓryJ'Inf di^-,r2y , and in particular to r d(x)/2 if y = d(x)/2r.

b) Similarly, if f = f\ + f'[ = f'2+ f"2 = with f'^x) = 0 in a cone C{ and
f'!(p) = 0 in S(P, rf), i = 1,2,..., F(x, P; γ) decays exponentially in each direction x of
(J Cf. The rate of exponential fall-off is at least equal (or arbitrarily close) to the

i

"enveloping function"6 of

Remarks.

1. Similar results apply if/' or /'. does not vanish but decays exponentially in the
directions of C or Ct as a consequence of part (ii) of Theorem 1.

2. Theorem 4 yields the following byproduct on the microsupport ES(f):

Corollary 1

ESP(f) c complement of (J Q. (11)
i

3. The explicit result given in Theorem 4b does imply somewhat improved results
on rates of exponential fall-off. In particular, if γ is very large, the result given in
Theorem 4b is

whereas one can establish a rate closer and closer (as y increases) to d(x)2/Ay, where

6 The rate given below entails by itself a better rate of exponential fall-off (see Remark 3),
called its "enveloping function" following a terminology proposed by analogy with "holomorphy
envelopes" of analytic functions
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d(x) is the distance to the complement of \J Ct and may be much larger than

Sup, <*,(*).

4. It will be useful in Sect. 4 to consider a slightly different definition of the
generalized Fourier transform (of any tempered distribution /) , namely

(12)

where τ is a scalar parameter that will tend to infinity. In view of the equality

F(τ;u9p,γ) = F(τu9p;γ/\u\) (13)

all previous results apply to F(τ ) with d(x) replaced by d(u) and |x| by τ. More
generally, rates α(w, p, y) of exponential in τ of F(τ; w, p, y) satisfy the relation

φ , p , y ) = α(ώ,p,y/|tι|)|i<| (14)

which makes the link with rates of exponential iΰ |x| of F(x,p;y).

3. Macrocausality Properties of TV-Point Functions

3.1 Preliminaries. For definiteness, we use the standard formulation of locality as
a strict support property. In view of part (ii) of Theorem 1 of Sect. 2, results extend
similarly to theories in which one assumes only exponential fall-off in space-like
directions.

The connected chronological function T(xί9...9xN) (assumed for simplicity to
be a well defined distribution even at coincident points) is the connected vacuum
expectation value < ί 2 | ^ ( x 1 ? . . . , xN)\Ω}c of the time-ordered product <T of N field
operators A(xί),...,A(xN) (i.e. fields are ranged according to time components of
x!,...,XJV). For any proper subset / of indices among \9...9N (I non-empty and
different from (1,...,JV)), Tj(xί9...9xN) is defined similarly with 3Γ(xl9...ixN)
replaced by F{x{l)W{x(J)\ x(I) = {xf}ie/, J = (1 , . . . , N)\I. Locality yields [5] the
following "microcausal factorization" property7 of time-ordered products:

if x(/)>x(J), (15)

where x(/) > x(J) means that x(/) contains no point of x(J) in its closed causal
future: each xj9 jeJ is space-like to, or is in the past cone of each xh iel. Equation
(15) yields in turn

(T-TI)(xl9...9xN) = 0 if x(I)>x(J). (16)

This result is not by itself a causal property of Γ, since TI(x19...9χN)φ T(x{J))T(x{I)\
but will be directly useful, as in [5], when completed by the following support
property [5] in energy-momentum space of T7, due to the spectral condition (and
energy-momentum conservation)

TI(pι,...,pN) = 0 if
or if

7 A related property has also been proposed (see [14]) as a basic axiom under the name of
microscopic causality
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where p7 = £ Vv Moreover, in a theory with μ > 0:
iel

l,...,pN) = 0 if PlφH + (μ)W+(2μ) (18)

and amputated functions

Tfi>(p»...,pN)= Π (PΪ-μ2)Tm(Pu---,PN) (19)

still satisfy (16-18) and moreover

TT*(PI> ->PN) = 0 if prfV+Qμ), | / | = 1 or Λf-1. (20)

Macrocausality properties will be naturally expressed as exponential fall-off

properties, as τ-> oo, of JT(x l 9 . . . ,x N ) f j φitXfa)dx1 dxN for suitable choices of

the test functions φUx. The simplest and best choice for present purposes is, up to
normalization factors,

φ^p;) = e-Hp;-pιlVί*>>* (21)

with given points ph ut and γ > 0: best results will be obtained for various values
of γ depending on the set of points phut. In (21), \p\2 = (p)l + ~p2. As τ->oo,φ i>τ is
localized around pf up to exponential fall-off with a width of the order of /
whereas its Fourier transform, equal to

ψiχfa) =
where |x f |

2 = fa)* + 3c?, is localized around xt = τuh up to exponential fall-off with
a width of the order of y/yτ, small compared to τ, hence to the distances |TM£ — TM̂ I
if Mf # Up at large τ and any given γ.

We note that the above integral of T (or T a m p) with the test functionsjpUτ just
mentioned is the generalized Fourier transform F (or F a m p ) of f (or Γai"p) as
defined in Eq. (12) with /? = (p 1,...,p i V), M = ( M 1 9 . . . , M N ) and | p | 2 = XlPil2. Other
choices of the functions φitt9 of the form ι

ΦiAPd = Xi(Pd^yτlP'i'Pil2^P'i'Uι)τ (23)

with Xi locally analytic around pt have their own interest and are also useful in
the later analysis of ΛΓ-particle collision amplitudes in Sect. 4. Exponential fall-off
properties analogous to the above are then still satisfied up to some changes. The
function φiτ still decays exponentially like exp — |xf — τUi\2/(4yτ) in the region
|xf —TUjI <2ηyτ, where rf is linked to the analyticity domain of χv Otherwise, a
factor exp - rfyτ is obtained. We state e.g. the following more precise result.

Lemma 1. // χt is a continuous function with compact support, locally analytic in
the region |p[ —p, | < r f , \q\\ < rt - |p - p t | in complex space {pf replaced by
p' + iq'\ φiτ satisfies bounds of the form

\φUτ{τϋt)\ < cstexp - InfΓ |f?l ~ Uil\rfγ jτ. (24)
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If X is moreover C00 (infinitely differentiable) everywhere, then, for any ^ 0 integer
v and any y ^ 0,

Proof Easy adaptation of results of [8].

Remark. The standard rapid fall-off of the Fourier transform of χh due to its C00

character, is the particular case y = 0 of (25).

3.2 Main Results. For clarity, results of Theorem 5 (ii) are stated for test functions
(21) which allow one to obtain the simplest and best results in this section. Results
in other cases are indicated in Remark 4.

Theorem 5.
(i) Given test functions (21) or (23) (with χt locally analytic), T({φUτ}) decays
exponentially, for any y > 0, in the τ -• oo limit apart possibly from configurations

N

(u, p),u = (u1,..., uN), p = (pu..., pN) of the set Σ such that £ p f = 0 and

(Cl) Given any non empty set I (^(\,...,N)) such that u(I) contains no other
point Uj,jφl, in its closed future, pI belongs to V+, or in a theory with μ > 0 to
H+(μ)uV+(2μ). (26)

(ii) Given test functions of the form (21) and (p,u)φΣ, the rate of exponential fall-off
in τ is at least equal (or arbitrarily close) to β(u, p; y) for each y>0, where β is
strictly positive and is determined as follows. For each I (^(1,...,N)), let dj(u) be
the distance of u to the set of points y such that y(I) contains other points in its
closed future, and let rj(p) denote the distance of p to the set of points p' such that

N

Σ p = 0 and p'IeV+,orp'IeH+(μ)uV+ (2μ) in a theory with μ>0. For each γ, let

βj(u, p; γ) = Inf Γ ^ , ή(p)γ\ (27)

Then:

β(u,p;y) = SupIβI(u,p;y). (28)

// y is chosen equal to ί//(w)/(2r/(p)) for some I (such that dj(u) > 0, rt(p) > 0),
then β(u, p; y) is at least equal (or arbitrarily close) to

(iii) The same results apply to Tamp, in a theory with mass μ>0, with
H + (μ)uV+(2μ) replaced moreover by V+(2μ) if |/ | = 1 or N—l Σ and β are
correspondingly replaced by Σamp and β*mp.

Remarks.
1) Condition (Cl) in (26) can be equivalently replaced, as easily seen,
by (Cl)': P / G F _ , or pIeH.(μ)uV_(2μ), if u(I) has no other point in its closed
causal past. (Here K_,H_(μ), K_(2μ) are opposite to V+,H + (μ), V+(2μ).)
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2) Results of (ii) imply moreover that the rate of exponential fall-off is at least
equal (or arbitrarily close) to α(w, p; y), where α ̂  β is the "enveloping function" of
β (see Sect. 2).

3) Theorem 5 entails the following byproduct:

Corollary 2.

£ S ( ί ( a m p ) ) c 2 ; ( a ι n p ) . (29)

4) In the case of test functions (23), rates of exponential fall-off are similar to
above with a further restriction of the form βj ^ r2y, where r is linked to the local
analyticity domains of the functions χv Given a set / (such that r7(p) > 0, dj{u) > 0),
bounds on |T({φ i τ}) | including both the exponential fall-off factor and a further
rapid fall-off factor are obtained if the support of χ(pf) = f]Xt(Pi) lies i n the region
\p' -p\< rj(p) (in which case the term Tj({φitt}) vanishes).

Proof of Theorem 5 (outline). Theorem 1 (ii) is a particular case of Theorem 4b
of Sect. 2, obtained by writing Γ ( a m p ) = (T- 7})(amp) + Γ| a m p ) and using exponential
fall-off properties due to Eqs. (16) and (17), (18), (20) respectively. In the case of
test functions (23) (Remark 4), a similar argument allows one to treat the
contribution (T— T7)

(amp)({φ ιτ}), using the convolution formula

(T- Γ/)
(amp)({φί,τ}) = ί ( Γ - Γ,)<amp)(x') Π ΨtMW> (3°)

and Lemma 1 on φUτ. Theorem 5 (i) and Corollary 2 (Eq. (29)) are byproducts of
previous results.

Physical Comments and Complements. The following results hold if p is e.g. a
physical point of a given process in a massive theory {Σpi = 0, pf = μ2, i = 1,..., N,
(Pί)o < 0 if i is initial, (pi)0 > 0 if ί is final). Conditions (C2) (C3) are essentially
contained in [5] (in a less explicit form).

(i) Let (p, u) belong to the "causal" set Σ. Then
(C2) The set u(If) of final points is contained in the closed causal future of the

set u(Iin) of initial points (and u(/in) is contained in the closed past of u(lf)\
(C2); Any subset u(/'in) of initial points (Γin cz 7in) must contain final points in

its closed causal future (and any subset of final points must contain initial points
in its closed past).

Condition (C2); is e.g. needed so that the total energy-momentum pl9 where /
is the union of Γin and of all other (initial or final) indices j such that Xj belongs
to the closed future of w(/'in), will belong to V+. The result is in agreement with
the idea (see Sect. 1) that energy-momentum can propagate only in future cones
(in an asymptotic sense): the energy-momentum outgoing at final points in the
future of u(Γin) will compensate at least the energy-momentum incoming at points
of u(Γin). The more detailed condition pjeH + (μ)uV+(2μ) in (Cl), in a theory with
μ > 0, indicates that, for connected functions, there cannot be strict compensation
unless Γin = Iin (in which case 7 = (l,...,iV) and p7 = 0): the energy-momentum
outgoing at final points in the future of u(Γin) must also compensate part of the
energy-momentum incoming at other initial points which do not belong to u(Γin)
but lie in the past of these final points.
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(ii) Let (p, u) belong to Σamp. Then (C2) (C2)' are satisfied and moreover:
(C3) "Extremal" initial or final points cannot be isolated: at least two or more

such points lie at the same position in space-time. (An initial point ut is "extremal"
if there is no other initial point in its closed past unless both lie at the same
position. Similar definition for final points with closed future replacing closed past.)

Physical interpretation, e.g. for initial points: at least two initial particles must
first interact if there are to be interactions.

Proof of (C3). Assume a final point uf is extremal. If there is no initial point in
its closed future, let / be reduced to the single index /. Since there is no point in
the closed future of uf = u{I), pι = pf should belong to V+(2μ), whereas pfeH+(μ).
If there are initial points in the closed future of uf (which must lie, as a matter of
fact, at the same position as uf in view of (C2)), let / be the set composed of /
and of corresponding initial indices. Then pι is the sum of preH + (μ) and of other
energy-momenta in H _ (μ), so that pι cannot belong to H+(μ) (J V+ (2μ). Q.E.D.

We now complete Theorem 5 with the following more refined result on T in
a theory with μ > 0. For simplicity, we do not try here to specify rates of exponential
fall-off and thus restrict ourselves in Theorem 6 (ii) to a statement on the (microlocal,
analytic) essential support of T, which ensures exponential fall-off of T({φiiX})9 for
test functions (21) or (23) and any y > 0 , for points u outside Σ\p). Part (i) of
Theorem 6, reobtained below, is well known by other methods in field theory.

Theorem 6. Given any physical point P,

<*>
T(pu...,pN)= Π ltf-μ2 + i*r1T«"(pu...,pN) (31)

i = l

in the neighborhood of P.

(ii) ESP(T) a Σ'(P) = {x = ( x x , . . . , xN); there exist y = (y1,..., yN) and scalars λu,..,λNi

λ t ^ 0, such that x f - yt = λtPh Vi, and {y, P)eΣamp}. (32)

The various results on possible "causal" configurations with respect to T a m p

and T ((p,u)eΣamp or (p,w)eΣ") are illustrated in Fig. 1.

Time

Fig. 1. Possible causal configurations (xu..., x8) and (yίf... ,y8) relative to non-amputated and
amputated functions at a physical point (P j , . . . ,P 8 ) , 1,...,5 initial, 6, 7, 8 final (and
P P P H ( ) ( 2 ) )
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Proof of Theorem 6 (outline). At e.g. a physical point P, one checks easily that

λt < 0 if i is initial, λt > 0 if i is final}. (33)

Points in the set defined in the right-hand side of (33) cannot be opposite to points
in ESP(famp) (in view e.g. of condition (C2)) so that standard "non-w = 0" results
of [9] can be directly applied to define the product in the right-hand side of (31)
and to show that its essential support is contained in the set (32). It remains to

show the equality (31). In view of the definition of T a m p , the product of f\ (pf - μ2)

with the difference of the two sides of (31) vanishes, so that this difference is at
most a sum of products involving mass-shell (5-functions. Such terms cannot be
present because their essential support would be inconsistent with those of each
term of the difference (and hence of the difference itself).

3.3 Space-Time Cluster Property. The purpose of this sub-section is to establish
(part (iii) of Theorem 7) the exponential fall-off, in a theory with μ > 0 , of
T(xl9...,xN) itself, or more precisely of any regularized function Tφ=T*φ
obtained by convolution with a C00 function φ with (small) compact support
around the origin, for large space-like separation of subgroups of points. For
simplicity, we consider two groups x(/), x(J), J = (1 , . . . , N)\I. F denotes below the
generalized Fourier transform of f in the sense of Eq. (1).

Theorem 7.
(i) Whatever p = (pu .,pN) is, x = (x1,...,xΛr) is non-causal at p ((x9p)φΣ) if
x(I) ~ x(J), i.e. x(/) and x(J) space-like (x, — x7- space-like, VielJεJ).

(ii) Given a configuration x (\x\ = 1) such that x(/)~x(J), the rate of exponential
fall-off in the direction of x is at least equal (or arbitrarily close) to cμd(x\ Vp, if
y = d(x)l(Acμ) where

d(x) = Min(dI(x\dJ(x))>0, (34)

and c is a fixed > 0 constant (independent of p and x) such that

Sup(r/(p),rJ(p))^2cμ, Vp. (35)

(iii) Γφ(x!,..., xN) decays exponentially as | x | ^ o o with a rate of fall-off at least
equal (or arbitrarily close) to cμd(x).

Proof.
(i) Both x(J) and x(J) have no other point in their closed future, but at least

(depending on p) does not belong to H+(μ) u V+ (2μ) if Σpk ( = pι + pJ) = §.

(ii) From results of Sect. 3.2. The existence of c>0 is easily checked. On the
other hand, both dj(x) and dj(x\ hence d(x\ are > 0 if x(/) - x(J).

(iii) In a non-rigorous way, one may write (for any given γ > 0)

T(xl9...9xN) = (γ\x\γi2ldPl.. dpNF(x9p;γ) (36)

as checked formally by interchange of orders of integrations. The exponential
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fall-off of T thus arises from the minimal uniform fall-off, as p varies, provided
by part (ii) (with suitable y). To make this proof rigorous, it is sufficient
to check that Theorem 2 of Sect. 2 can be applied to Tφ = {T — Tj)φ + (Tj)^ =
(T - Tj)φ + (Tj)φ, i.e. to obtain bounds including a uniform exponential fall-off
factor in |x| and a further factor with sufficient decrease as |p | —> oo. To that
purpose, (T - T^ and (T - Tj)φ are treated by part (i)' of Theorem 1 of Sect. 2.
Remaining terms are easily treated (for e.g. |x | > 1) by noting that r7(p) and rj(p)
tend to infinity (at least linearly) as \p\ -» oo in respective sectors in p-space.

4. Macrocausality Properties of /V-Particle Collision Amplitudes

4.1 General Method and Preliminary Results. In view of the standard link [3],
recalled in Sect. 1.1, between T a m p and the connected S matrix, connected collision
amplitudes between initial and final wave functions φiτ that are mass-shell
restrictions of the functions (21) or (23) can be written

Sc({Φi,τ}) = J f^np')δM(pMpy-^^e-y^'-^2dp\ (37)

where p u = ΣsiPi'Ui (εf = — 1 if ί is initial, εf = + 1 if ΐ is final), χ(p) = Y\Xi (pj),
ί

<W) = Π W2 - μ2)θ(εi(pdo). (38)

and where the product Γamp<5M is a well defined distribution, as established so far
away from M o points such that two initial or two final energy-momenta are
colinear (i.e. equal in a theory with only one mass μ). We below either consider
test functions χt with supports that exclude M o points or make a regularity
assumption to cover these points.

We first present a semi-heuristic analysis of the way exponential fall-off pro-
perties of Sc({<pifT}) can be established from those of iV-point functions. Given any
η such that 0 < η < 1, the integral (37) can be considered as the Fourier transform
(at x = τu) of the product

so that Sc({φiiτ}) can be expressed as the convolution integral
N

Sc( {ΦΛ) = J Famp(τ; v, p, ηγ) f] /,.τ(«t - »„ Pi, (1 - ηW(™), (39)

where F a m p is the generalized Fourier transform of T a m p in the sense of Eq. (12),
and is thus the action of T a m p on test functions of the form (21) (see Sect. 3), and

/i>i>My) = J f c ( r i ) e ^ ^ ^ (40)

If, given (p, w), there is a > 0 uniform lower bound on the rate of exponential fall-off
in τ obtained, as v = (vu...,vN) varies, from the various factors F a m p and fiτ in
the integrand of (39), Sc({φitτ}) can then be expected, modulo convergence problems
in υ9 to decay exponentially in τ with at least the uniform rate thus determined.
We give in Sect. 4.2 a slightly weaker result but first give the following preliminary
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result on exponential fall-off properties of the functions fUτ9 which generalizes that
given in [4] in a particularly simple situation and is a more precise and complete
version of that given in [13]. We consider for simplicity a fixed point pi and leave
the index i, as also the dependence of results on pi9 implicit.

Theorem 8. (i) \fτ(u;y)\ decays exponentially as τ->oo if u does not lie on the
trajectory (0, p) passing through the origin and parallel to p.

(ii) The rate of exponential fall-off in τ satisfies the properties indicated in
Theorem 10 in Appendix l.Ifχ=l9it is moreover at least equal to cstoc(u;y), with
a constant independent of w, γ, and

α(u; y) = d(u\ (0, p))2/(4y) ifu is space - like, (41)

φ ; γ) = Min [ φ ; (0; p))2/4y, p(p, u)2y] ifu is time - like, (42)

where d(u;(0,p)) is the (euclideaή) distance of u to the trajectory (0,p), ύ is the unit
vector in the direction of u and p(p, ύ) is the {euclideaή) distance of p to the point
p' of H+(μ) in the direction of ύ.

(iii) If χ is not the function 1, αχ(w,p;y) is moreover less than r(χ)2y, where r(χ) is
linked to the analyticity domain of χ around p. If χ is C00 with compact support
and if u lies outside the velocity cone V(χ) (set of trajectories (0, pf) for all point p'
of H+(μ) in the support of χ), bounds on \fτ(u;y)\ include also a further rapid
fall-off factor cv(ύ)/(l + τ|w|)v, V integer v^O, where cv may tend to zero as ύ
approaches V(χ).

Remark. The standard rapid fall-off outside V(χ) of the space-time wave function
associated to χ is the particular case γ = 0 of the last part of Theorem 8.

Proof of Theorem 8 (outline). Theorem 8 is a consequence of the assumed local
analyticity of χ. The latter allows suitable local distortions of the integration
domain in (40) (i.e. the real mass-shell H+(μ)) in the complex mass-shell, in the
line of the ideas and methods developed in [8] in a simpler situation. The local
distortion is restricted both by the analyticity domain of χ£ around pt and by the
geometry of the mass-shell. The result is in agreement with general results on rates
of exponential fall-off of generalized Fourier transforms (see App. 1.1) and gives
more precise information in the case under consideration.

4.2 Main Result and Complements. The result stated in Theorem 9 below allows
one to derive exponential fall-off properties of connected amplitudes Sc({φUτ}\ for
functions φiτ that are mass-shell restrictions of functions (21) or (23), from
preliminary information relative to T a m p for functions of the form (21). It applies
in particular if one starts from results on Γ a m p of Sect. 3 but may also apply more
generally if one starts from improved information relative to T a m p (obtained e.g.
from assumptions going beyond locality and spectrum).

The proof of part (i) relies on the condition that ESp(famp) contains no
(non-zero) point of -ESp(δM\ i.e. of the form {^pj, where λt is an arbitrary real
scalar. This condition is satisfied in Sect. 3 if p is not a M o point in view e.g. of
Condition (C3). (The situation at M o points will be discussed later.) On the other
hand, the proof of part (ii), makes use of results relative to Γ a m p not only for
functions of the form (21) but also of the form (23): needed results for functions
(23), including rapid fall-off factors, are either known (they are directly established
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from locality and spectrum in Sect. 3: see Remark 4 in Sect. 3.2) or can be derived
from those applying to functions (21) through results of [9], as in App. 1.2.

Theorem 9.
(i) Given test functions (21) or (23), Sc({φitτ}) decays exponentially in the τ^co
limit for any γ>0, apart possibly from configurations (p,u) such that either peM0

or u belongs to the set

Σ(p) = {u;3y = (yί,..., yN)eESp(f™p) and

real scalars λ1,...,λN such that u{ — yt = λiPh i = 1,..., N}. (43)

(ii) The rate of exponential fall-off in τ, for any y>0, if pφM0 and uφΣ(p), is
at least equal, up to a fixed (multiplicative) constant, to the (> 0) minimal rate obtained
as v varies, from the various factors Famp and fiτ in the integrand of (39).

Remarks.
1. The fixed (<1) multiplicative constant that occurs in (ii) is due to technical
problems in the proof.

2. Σ(p) is defined in the same way as Σ'(p) in (32) except that the constraints on
the signs of λ t are removed. If one starts from locality and the spectral condition
(with mass μ > 0), possible causal configurations ύ can be illustrated as in Fig. 1,
except that each ut may lie on the full trajectory (yh pt) parallel to pt and passing
through yt.

3. The fact that the rate obtained in (ii) is > 0 can be seen as follows. If v is causal
with respect to T a m p , the term F a m p(τ; v,p, ηy) provides no exponential fall-off factor
in τ, but at least one of the terms fUτ (ut - v{, (1 - η)y) produces such a factor: one
or more vt does not belong to the trajectory (ph uj. On the other hand, if each
Vi belongs to the trajectory (ph Mf), v is non-causal with respect to T a m p , so that
the term Famp produces an exponential fall-off factor, lip is not a M o point, there
is a > 0 minimal rate as v tends to infinity in any direction. In fact, if some vt tend
to infinity in the direction of the corresponding p{ (or in directions close to it), v is
non-causal with respect to Γ a m p and a minimal > 0 rate of exponential fall-off is
obtained for Famp. If some vt tend to infinity in other directions (not close to the
direction of pt), a minimal > 0 rate is obtained for fiτ.

Proof of Theorem 9 (outline). Theorem 9 is a particular case of Theorem 11 in
Appendix 1.2. We briefly give below an idea of the proof in the physical situation
(with some slight specific changes). Suitable partitions of unity, of the form
1 = ψ(p') + (1 - φ)(p'\ l = ψ.(p'j + (l - ψMfi) are introduced, with C00 functions
φ, φi that have sufficiently small supports around p = (pί9...,pN) or pi respectively,
and are equal to one locally. Sc({φifτ}) is then written as the sum of a contribution
analogous to^ (39), except that famp and χf in the definitions of F a m p and fUτ are
replaced by Tamp(p')ψ(p') and χ^p'ijψάp'i) respectively, and remaining terms. Rapid
fall-off factors in the analysis of the first contribution (see comments preceding
the statement of Theorem 9) will ensure convergence in v. The exponential decay
of remaining contributions follows from the vanishing of 1 — φ, or 1 — φh is the
neighborhood of p, or pim

Situation at M o Points. If p is a M o point, the proof outlined above does not
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trajectory (P2, u2)

Fig. 2. (Pj, P2 initial, Pγ = P2\λ> 0)

apply. However, a minimal > 0 rate of exponential fall-off in τ, as v varies, can
still be extracted as above from the integrand of (39) apart from configurations u
of a set Σ'(p) analogous to Σ(p) except that there is no constraint on ux if there
is one or more p7- equal to p t (j φ i). If ueΣ\ the existence of a minimal > 0 rate
is not guaranteed in view of possible sequences of points v such that vt tends to
infinity in the direction of pt whenever pt is equal to some other Pj, and such that
the rate of exponential fall-off in τ of F a m p vanishes, at least in the limit; rates of
fall-off in τ of the functions fiτ are in this case either zero or tend to zero in the
limit because the factor ρ(ph v^Ui) in (42) tends to zero: see the example of Fig. 2
in which the rates of exponential fall-off of f1,τ{

υi-uι) a n d fiΛυ2 ~ui) a r e

non-zero but become arbitrarily small as λ-» oo (p->0 as θί9 or 02> ~>0).

The following property can be conjectured and might be established modulo
some regularity assumptions.

Conjecture. If uφΣ'(p), Sc({φUτ}) decays exponentially in τ with a (>0) rate of
fall-off determined as in part (ii) of Theorem 9.

Lower bounds of physical interest on rates of exponential fall-off provided by
Theorem 9, or by the conjecture just mentioned at M o points, can be established
in various situations. A simple situation, analogous to that considered in [4] and
to one of those considered in [7], is treated in Appendix 3.

Appendix 1: Complementary Mathematical Results

1.1 Exponential Fall-Off Properties of Generalized Fourier Transforms: General
Results. Proofs of results below, which complement those of [8,9], are omitted
for conciseness and will be given elsewhere.

Let / be any tempered distribution in Rw with microsupport ES (/): given p, w,
with e.g. Iu\ = 1, such that uφESp(f), it is known by definition of ESp(f) (see [9])
that F(τu,p;y), as defined in Eq. (1), decays exponentially with τ for all sufficiently
small values of y > 0 with a rate at least proportional to γ at small y. We define
d(p, u) = (euclidean) distance of u to ESp(f); p(p, u) = Sup {p'; uφESp> (/), Vpr such

p'-°
that \pf -p\< p'}, with ρ(p9u)>0 since uφESp(f) (see [9]). We then state

Theorem 10.
(i) F decays exponentially as τ -> oo for any y>0.
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(ii) Vf/>0, 0 < τ / < l , the rate of exponential fall-off of F(τu,p;y) in τ is at least
equal to

[d(p,u)(l-η)Y/4y

for all sufficiently large values of y (y> y'0(p, u, η\ where y'Q may tend to infinity as

(iii) Vp' <p(p,u\ the rate ofexponential fall-offofF in τ is at least equal to p'2y
for all sufficiently small y (y < y"Q(p,u, p')).

More generally
(iv) Vf/, 0 < ^ < 1, there exists oc(p,u,η)>O such that, given any α' <oc(p9u,η),

the rate of exponential fall-off of F in τ is at least equal to cc'y for

y ̂  —μzd(p9 w)(l — η). It is at least equal, for any y > 0, to

S u p
0

Remark. In general, α(p, u, η) < p(p, w)2, α(/?, w, η) -> p{p, u)2 as η -• 1 and α(p, u, η) -• 0
as η^O.

Sections 2 and 3 present particular cases of interest in which more precise
results, consistent with those of Theorem 10, are obtained.

1.2 A Convolution Theorem. Let fι, f2 be tempered distributions on R" such that

ESp(f1)nESp(f2) = φ (44)

(apart from the origin) at a given point p. The product f1f2 is then well defined

locally and ESp(f1f2) satisfies the relation (see e.g. [9])

ESp(fJ2) c {II II = ttl + u. u.eES^l u2eESp(f2)}, (45)

where ESP is understood as a closed cone with apex at the origin.
We assume below that the product f1f2 is also well defined everywhere. Given

p, left implicit below, let αx(w,7), α2(w,γ) be rates of exponential fall-off in τ of
F^τ u^p^y) and F2(τ\u,p,y) respectively, or possibly lower (continuous) bounds
on the latter8. Actual rates are known to satisfy in particular the following proper-
ties: α σ > 0 if uφESp(fσ\ σ= 1,2 and, on the other hand (see Appendix 1.1 and
(14)), ocσ(u,y) is close to pσ(p,ύ)2y when y/\u\ is small. (In contrast to Appendix 1.1,
|w| may be different from 1.) These properties will be assumed also on possible
lower bounds. We then state

Theorem 11. Let u be any given point outside the right-hand side of (45). Given u
and y > 0, the rate of exponential fall-off in τ of F(τ; w, p, y) is at least equal to c
α(w,y), where c is a fixed constant (5Π) independent of u,p,y and <x(u,y) > 0, where

(46)

8 Namely, e.g. Fγ is assumed to satisfy bounds including the exponential fall-off factor
exp - 0Lι(u,γ)τ and further factors such as those given in (2), (10)
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Remark. The constant c can probably be chosen equal to one. The proof given
below introduces some technical losses and gives c < 1. A slightly improved version

y

of Theorem 11 can be obtained on the other hand with - replaced by ηy and

(1 — η)γ in ocι and α2 respectively.

Proof (Outline). By writing fJ2(p')e~yτlp'~pl2 in the form / 1 (/7 / )^" ( y / 2 ) τ | p ' " p | 2 x
fi{pf)e~{yl2)Ap ~p|2> F c a n be written at least formally as the convolution product

F{τ; u, γ) = f Fx (τ;t>, Iy)F2(τ; u - v, \y)d(τυ). (47)

The result (46) follows heuristically, with c = 1, up to convergence problems in t;
of the integral.

We now explain how to make this proof rigorous (with c < 1). Given w,y, let
α 0 = α(w,y), let r 0 = (αo/y)1/2 and let ^ 1 ? ^ 2 be C0 0 functions with compact support
around p in the region \p — p'\<(l— εjro, εx > 0 small, and equal to one in the
region \p - p' | < (1_- ε2)r0. By writing 1 = ̂  + (1 - ^ ) = ̂ 2 + (1 - ^ 2 ) , / ^ is
written as (fγφγ)(f2^2) plus other terms whose contributions to F decay expo-
nentially in τ with rates at least equal (or arbitrarily close) to (1 - £2)

2rlyβ =
(1 — ε2)

2α0/2, in view of the vanishing of 1—ψi or l — ψ2 in the region
IP' — P\ < (1 ~ ε2) ro The first contribution can be written in a form analogous to
(47) except that Fl9F2 are replaced by the generalized Fourier transforms Fί9F2 of
φ1f1 and ̂ 2 / 2 respectively. The rates of exponential fall-off of Fx and F2 in τ are

at least equal (or arbitrarily close) to Inf α J M,- 1,(1 — ε2)
2α0/2 and

Inf α2ί w,- 1,(1 — ε2)2α0/2 , so that ά 0 is at least equal (or arbitrarily close) to

(1 — ε2)
2α0/2. Convergence can now be established along the following lines. For

\v\ large enough, u — v& —v and, in view of the condition (44), i -space can be
divided into sectors centered around given directions in each of which at least

v>- ) o r α 2 ί —v9- I is > — = -^-. Since, on the other hand, it is close t o p i(tf,p)2-

or ρ2(ύ,p)2- J at large |i?|, i.e. small y/|i?|, px{v,p)>r0 (or p2(ί5,p)>r0). In these

conditions, results of [9], Appendix 3 ensure that f\ or F2 satisfies, around the
direction ύ considered, and for large enough |ι;|, uniform bounds including the
product of a rapid fall-off factor in τ\v\ and of an exponential fall-off factor

exp — (1 — ε 2 ) 2 r 2 - . The desired convergence follows from the rapid fall-off factors,

and a uniform rate of exponential fall-off of the integral of the form cst α 0 is
obtained. Q.E.D.

Appendix 2: Local Momentum-Space Decompositions

Given any real point /?, the general mathematical decomposition theorems of [8,9]
allow one to derive, from Theorem 5 of Sect. 3, corresponding local momentum
space decompositions of T/δ(Σpk) or Tamp/δ(Σpk\ into sums of boundary values,
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from specified directions, of functions analytic in "local tubes" around p. Such
results have first been established in a different way in [5]: see Sect. 1. If one is
not interested in precise analyticity domains in complex space but only in the
number of terms and in the directions of analyticity, results follow from the micro-
support properties (29), as already explained in [6]. More precise results can be
established from Theorem 5 as follows. Given /?, let r be any > 0 number such
that r < r*mp(p), for some subsets /. For simplicity, we consider below the case
r < r*mp for all / such that r*mp(p) > 0. Let F a m p(x,p|x 0) be the generalized Fourier
transform of famp defined by Eq. (1), except that y|x| in the factor
exp — y\x\ \p' — p\2 is replaced by x0, when x 0 is a supplementary real variable.
(No link with time components of the points xf.) Theorem 5 entails a bound on
\F\ including the factor e~r2χo when (x,x0) lies in the union of the regions
0 ^ x 0 < dj(x)/2r (for all sets / such that r < r*mp(p)). This region, at x 0 = 0, is the
complement of the cone Σ = f] Σl9 where Σ1 is the cone in x-space defined by the

condition dj(x) = 0. Following [5], Σ is contained in the union of (a finite number
of) well specified cones Cβ which are closed convex salient cones in x-space with
apex at the origin modulo global space-time translations. The more detailed
analysis then entails bounds on \F\ including the factor e~'2χo outside the union
of regions Sβ in (x, xo)-space, x o ^ 0 , whose traces at x o = 0 and x 0 == 1 are the
cones Cβ and sets C^υ respectively. Announced local decompositions of TΛmp/δ(Σp'k)
then follow from results of [8,9]. If one e.g. expresses famp/δ(Σpf

k) in terms of the
variables p'19...9p'N-19 one obtains a corresponding decomposition, in the region

N — 1 N — 1

Φ(p')<r, where Φ ( p ' 1 5 . . . , ^ . 0 = Σ Wk-Ph\2 + IPN'PNW P'N= - Σ ^ as a
k=\ fc=l

sum of boundary values of analytic functions from the directions of the cones Γβ

dual to the restrictions at xN = 0 of the cones Cβ, These functions are analytic in
the local tubes, defined [8] with respect to Φ, whose bases Bβ are the polar sets
of the sets C{^ (taken again at xN = 0).

Appendix 3. Macrocausality Properties
of Collision Amplitudes - A Simple Example

We consider below a 2 -• N — 2 process in which the initial energy-momenta pί9p2

are not equal and the initial trajectories (Pi,Wi), (p29u2) do not meet: see Fig. 3.
This is the type of situation studied in [4] (at N = 2), and is one of the situations
treated in [7], by different methods (see comments at the end). On the other hand,
the analysis of [4], as also to some extent [7], is carried out in a somewhat
simplified framework, in comparison with ours. We start here from results of Sect. 2
on Γ a m p and wish to establish results on connected amplitudes Sc({<pitT}).

Whatever u 3 , . . . , uN are, u = (u1,..., uN) is non-causal since the initial trajectories
do not meet. Given any γ > 0, a lower > 0 bound on the rate of exponential decay,
depending on the angle φ and \u1-u2l uniform with respect to p 3,...,pN 9 w3,..., uN,
can be established by introducing e.g., around each initial trajectory, a "security
zone" composed of points vt (i = 1,2) which either lie at a distance of ut less than
d(wi,w2)/3 or are such that the angle of the direction I ^ - M , and p£ is less than
p(φ) = φ/3. The integration domain in (39), i.e. t -space, is then divided into (i) the
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space time
(momentum) / j (energy)

•

Fig. 3. Two initial trajectories in a 2 -*• N process

set of points v = (vu...9υN) such that either υλ or v2 or both lie outside their security
zone (ii) its complement (both vλ and v2 lie inside). In case (i), a minimal rate of
exponential fall-off is provided by Theorem 8 (of Sect. 4.1) (with u replaced by
vί — uλ or v2 — u2) In case (ii), a minimal rate is obtained from results of Sect. 3
relative to T a m p . The rate of fall-off obtained for each v is Sup7 β*mp(p, v; γ), where
β*mp is defined in Sect. 3. Relevant sets / to be considered are composed of one
of the initial indices 1,2 and some (or all) final indices, the Sup being obtained for
a set / that depends on v.

The minimal rate obtained tends to zero if φ->0 (existence of points v causal
with respect to T a m p , in particular v1 = v2, inducing rates of fall-off of fUτ or

f2τ that tend to zero as φ->0, since p(φ)->0), as also if φ - > - (high energies)
4

because the relevant set / for some points v is the complement of one initial index,

e.g. 1, and rj(p) which is the distance of px eH _ (μ) to K_ (2μ) tends to zero as φ -• - .
4

Results are analogous, at least qualitatively, to those obtained in [4,7], which
exploit analyticity properties of scattering functions derived from locality and
spectrum (as also Lorentz invariance), namely momentum transfer analyticity in
the Lehmann ellipse. (As noticed in these works, better results, with a rate of decay

that does not tend to zero as φ ->-, can be derived from analyticity in the Martin
4

ellipse whose derivation makes further use of unitarity.)
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