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Abstract. For a class of discrete velocity models of kinetic theory we prove
exponential nonlinear conditional stability of the constant basic state in the slab
[0,1].

1. Introduction and Main Results

In the context of kinetic theory of gases, discrete velocity models manifest several
peculiarities in both the mechanical aspect and the mathematical feature. The
conspicuous number of papers on this subject confirms the augmenting interest
of scientists in this field [for a recent survey, see Illner and Platkowski (1988)].

Among the most interesting models, the generalized 2n-velocity model seems
to be appropriate because it preserves all mathematical difficulties and reflects
the structure of the full Boltzmann system. In particular, the stability of a flow
in a bounded domain is an open question, even for one-dimensional motions. It
is well known that several papers provide existence and uniqueness of solutions
with "large" initial data, in one space dimension, cf., e.g., Nishida and Mimura
(1974), Tartar (1981), Beale (1986), Bony (1987), Cabannes and Kawashima
(1988), Toscani (1989), Slemrod (1989). Moreover, recently Kawashima (1983)
first proved, for the Cauchy problem an algebraic asymptotic decay in time of
solutions toward a constant (non-zero) Maxwellian. However, the norm there
used is a little complicated and, even though it is proved to be equivalent to the
norm of PF1'2, the explicit constants cannot be given. On the other hand, it is
known that explicit bounds in time for solutions to nonlinear prolems is of the
utmost importance for numerical approaches, where the errors are computed in
the norms in which the stability occurs, cf, e.g., Heywood and Rannacher (1982).

The objective of this paper is to propose a new method for studying nonlinear
stability for a discrete velocity model in a slab. Such a method was inspired by
the recent theory proposed by Galdi and Padula (1990) and can provide explicit
bounds in time for solutions to nonlinear problems. One essential idea in the
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work of Galdi and Padula (1990) is the construction of a Ljapounov functional
for the perturbation such that

i) it is explicit and easily computable;
ii) it is suitable for studying the boundary value problem;

iii) it provides exponential decay in bounded domains.
In this paper, in order to not obscure the lines of the reasoning, we confine

ourselves to study the stability of a constant basic state with respect to one
dimensional perturbations. As a consequence, sometimes our assumptions are less
important in the applications, but still they are a first attempt in the direction
of finding an unifying approach for the study of the stability in the fields of
continuum and discrete fluid dynamics.

Let us assume the mass density Ft(x, t) = F(x, vί91) of a gas particle at position
x depends on one spatial direction only, say i, for all time t. We shall call x the
space variable in this direction. Moreover, let us consider a discrete 2π-velocity
model in a bounded interval Ω which, after rescaling, we call (0,1). Here we
prove the exponential nonlinear conditional stability of the constant equilibrium
state

Fi(x9t) = s9 i = ±U . . . , ±n.

This is achieved into the very large range of boundary conditions:

unperturbed inflow data at x = 0 and x = 1; (1.1a)

periodic boundary conditions together with the conservation
of the mass and of the first n odd momenta; (1.1b)

partially specular reflecting boundary conditions with ascribed
inflow motion (the specular reflection is not included. (1.1c)

Of course, all the above boundary conditions must be compatible with the
constant Maxwellian s. Concerning the admissible velocities we set, for some
n>2,

Vj = - v-j, and Vj φθ for j = 1, ..., n

and, in addition, vt φ Vj for some ij, with i,j = 1, ..., n.

Such a model, in particular, excludes the conservation of any mass density.
The main result we achieve is given by the following theorem:

Stability Theorem. Any regular perturbation {fi} to the constant state verifying one
of the conditions (1.1) decreases monotonically and exponentially decays in time to
zero, in the norm ofW1>2(0,1), provided that the initial data are "sufficiently small/'

Specifically, for any initial data, bounded by some value depending on 5, n, Vi
only the perturbation decays with a relaxation rate again depending on s, n9 V[.

As can be checked from the proof of the theorem, the stability region for the
initial data is always bounded, even in the case of periodic boundary conditions.
Such bounds represent to our opinion the influence on the stability of the
nonlinearities (linked to the collision mechanism). Moreover, nonlinearities play
a crucial role also in the choice of the region of the flow. As a matter of fact, for
dealing with nonlinear terms we need to use the Poincare inequality which fails
in unbounded regions. This gives

Corollary. The constant state Fj(x,t) = s is linearly stable in any interval I in ]R,
with respect to any perturbation satisfying at the finite boundary planes (if any) one
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of the boundary conditions (1.1). Moreover, the spatial L2-norm of the derivatives
of the perturbation is in L2(0,oo) in time.

We would like to draw some other consequences of our approach. One
interesting feature is that it explicitly furnishes the influence on stability of the
boundary terms, which, in fact, act as stabilizing factors. Another immediate
consequence is the pointwise exponential decay of the perturbation. However, in
this case we deduce

maxesssup \ft\ < Aexp(—ct),
ί

with A a constant depending on the initial data and strictly greater than
max,esssup l/fl, and /, (0) = ff. This estimate does not imply the decay for
such a norm from time ί = 0, a result which is confirmed by the numerical
analysis.

A third consequence is that the a priori estimates here deduced on perturbation
can be used to prove global in time existence, by means, e.g., of the iteration
scheme of Kaniel and Shinbrot (1978), cf. also, Babovsky (1984).

Finally, we like to notice that the Maxwellian state s + ε cannot be considered
as a perturbation to s. In fact, as will be seen in Sect. 2, the required compatibility
conditions applied to the constant perturbation /,- = ε imply ε = 0. Moreover,
setting Fi = s\ + /,- and Ft = S2 + U the mass densities corresponding to the
evolution of s\ + ff, s2 + ff from our stability theorem we deduce

\Ft - Ft\ < \ft\ + \fi\ + |5i - s2\ < \sι - s2\ + Irflίexpί-ciί) + exp(-c2ί)}

with suitable constants c, , c, depending on su S2> n, Vi and the initial data only.
We feel optimistic that the method introduced here can provide successful

results also for more general problems. In particular, we refer to that concerning
unbounded intervals and the two dimensional case, preserving the basic state
Fi = s. More general basic states or more general discrete velocity models [see
Gatignol (1975, 1977), Monaco and Longo (1985)] are also to be worked out.

Note. Since this paper was completed, one of us (M.R) was kindly acquainted by
Professor N. Bellomo with a preprint by Professor S. Kawashima entitled "Exis-
tence and stability of stationary solutions to the discrete Boltzmann equation."
That paper deals with the full discrete velocity model and provides exponential
in time decay for a norm of the perturbation to any steady state Fi(x) which is
supposed to be only close a Maxwellian. However, such an approach suffers from
the same drawback of Kawashima (1983), since the norm with respect to which
stability is proved, is equivalent to the norm of Wι>2 through constants whose
explicit value can not be given.

Last but not least, the authors are grateful to the referee for the constructive
comments and suggestions on the earlier version of the paper.

2. Mathematical Preliminaries

In the sequel we will denote by I? the usual Lebesgue space of square integrable
functions φ on [0,1] and by || || the corresponding norm. W1*1 denotes the
Sobolev space of functions φ with
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While the symbols φt and ψi as well as σ, and δί will always be used for scalar
functions (in L2, W1*2 resp.), the symbols w, v and w will represent vector valued
functions of the form

u = (υ w) = (0i, . . . , φn;ψu . . . , ψn)

for fixed given n e N. We define the L2-norms for vector valued functions in the
usual way:

n n

IIH||2 = | | » | | 2 + | |W||2 :=

Since it will not cause confusion, the corresponding Sobolev spaces are again
denoted by L2 and W1'2. The scalar product in L2 will be denoted by ( , •).

One of the main mathematical tools will be the following result which is a
generalization of the well-known Poincare inequality:

Theorem. Suppose X and Y Banach spaces with X a Y. Suppose further \ - \κ to
be a semίnorm on X and K a X a subspace such that
a) for all u € K, \u\κ = 0 implies u = 0;
b) K is close in the norm | |χ ;
(a) and b) of course imply that K is a Banach space with norm \' \κ)
c) the set

{ueK: | |tt||y

is compact in Y.
Then there exists a constant yo > 0 such that for all u G K

\\u\\γ < 7o Mκ (2.1)

Proof Assume that (2.1) does not hold. Then for any n e N there exists aun e K
such that

K l | y = l, (2.2)

and

\un\κ<\ (2.3)

Obviously, un converges in the norm | \κ to 0. Furthermore, we can choose a
subsequence UK converging weakly to some element u e K and because of the
compactness assumption c) in the norm || \\γ to some element u e Y. Therefore,
u = u = 0 which contradicts (2.2).

Remark. This inequality generalizes the Poincare inequality of Coscia and Padula
(1989), and Padula (1986), Lemma 3 p. 5.

However, a generalization of condition c) can also be provided, Sobolev (1963,
Theorem 2, p. 64).

The Poincare inequality as stated above will be applied in different versions,
depending on the kind of boundary conditions we are using. We will distinguish
three cases, all with

X = w12, Y =L2

but with different K:
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Case 1. (zero boundary conditions)

K :={u e X : 0/(0) + ^-(0) = 0, φi{\) - ψi(l) - 0, i = 1, ..., n}

Case 2. (periodic boundary conditions)

1
n

0

ί A f f

K :=lueX : u(0) - M(1), ^ / Φ / W ^ = 0, / !Fz (x)dx = 0, i = 1, . . . , n

«ll : = l«-χll2+ X I l^ i-Φjl l 2 ;

Case 3. (partially reflecting boundary conditions)

K :={ueX : {φi + Ψ,) (0) = ;., ( ^ - f;) (0),

( ^ - Ψi) (1) = ! , # / + Ψi) (1), i = 1, . . . ,«},

where Ai are constants such that 0 < λι < 1,

\u\l : = | |«x | |2.
We have to show in all cases that X and | \κ satisfy the conditions a), b), c) of
the theorem.

Condition a). In all cases,

\u\κ=0

implies
| | t t x | | = 0

and thus

φi = cu ψi = di

for appropriate constants ct and dx. In case 2 it follows in addition

Uj

so that
Ci = Cj for all i, j .

From the definition of K we get immediately c\ = 0, for all ΐ = 1, ..., n, in cases
1, 2, 3. Moreover, in case 2, the conditions

1

ίψt(x)dx = 09 Ψi(x)=dl9

o

imply dι = 0. Finally, in cases 1, 3, c\ = 0 and the boundary conditions imply
di = 0.

Condition b). Choose any sequence u^ in K converging with respect to | \κ.
We deduce that then u^ converges in L2 to some element ux. From this follows
pointwise convergence of u^ to some bounded function u with derivative ux. u
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is again an element of W1>2, and because of the pointwise convergence it satisfies
also the equations in the definition of K.

Condition c). We find

{u: \\u\\γ + \u\κ<l}^{u: \\u\\L2 + \\ux\\u < 1} c {u : | | M | | ^ U < 1},

and the latter set is compact in L2.

These arguments show that inequality (2.1) is applicable in all three cases of
interest. In particular, the constant yo can be computed numerically by solving
the variational problem of finding

ueK \u\κ

There is another inequality which we are going to use in the sequel. It reads:

Lemma. For any φ e WU2{[091]),

sup\φ(x)\2<(2-\\φx\\ + \\φ\\)'\\φ\\. (2.4)

X

Proof. Choose x e [0,1] such that

1

φ2(x) = Jφ2(x)dx.
0

Then from Schwartz' inequality,

2 _

x x 1

J(φ2)x(s)ds + φ\x) < 2 • j \φ • φx\ds + J φ2(s)ds\Φ(x)\Z =

A consequence of (2.1) and (2.4) is

S U P | M ( X ) | < 7 I |M|X (2.5)
X

for any u e K and any of the three cases considered above. Also in the unbounded
case there is a pointwise estimate for functions in W1*2. Suppose for example Ω
to be unbounded from below, and φ e Wι>2(Ω). Then Schwartz' inequality yields

X

φ2{x) = J 2-φx φds<2 \\φ\\ \\φx\\. (2.6)

3. Statement of the Problem and an Appropriate Ljapunov Functional

Depending on the situation of interest, numerous discrete velocity models have
been treated. In this paper we use a generalized Broadwell model with In
velocities v±i9 i = 1, . . . , n , cf. Broadwell (1964), Gatignol (1975). The set of
admissible velocities has been defined in Sect. 1. The set of equations describing
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the time evolution of this model of gas in a slab (which for simplicity is rescaled
to [0,1]) is

Here, the symbol — denotes the partial spatial derivative in direction i, and

Vf is - as in Sect. 1 - the corresponding component of v, . One particular steady
solution to these equations is represented by the homogeneous distribution

Fi = s9 ί = ±h . . . , ± n (3.2)

for some arbitrary constant 5 > 0. (However, this is not the only steady homo-
geneous solution.) In order to clarify the main ideas we restrict to this simplest
solution as a basic flow.

Depending on the boundary conditions, we restrict ourselves to solutions
satisfying - according to (1.1) -

Unperturbed inflow conditions:

F+,(0, ί) = s, F-i(l, t) = 5, i = 1, ..., n; (3.3a)

Periodic boundary conditions:

Fi(0,t) = F,(ί,t), i = ±ί,...,±n (3.3b)

and the compatibility conditions

ή + F-t(x, t))dx = 2ns,
n J.

£ / (Fi(x,

t f + 1 ί Fi(x)dx = Mk9 k = 0, . . ., n - 1, (CC)

*=±i {

which ensure conservation of the mass and of the first n odd momenta. However,
in order to include the solutions (3.2), the momenta have to be zero, this is
equivalent to the condition

1

(Fi(x, t) - F_,(x, t))dx = 0, i= 1, . . . , « . ( C C ) 3

o

Of course, the conservation laws associated to (3.1) imply that (CQi^ are satisfied
for all time t > 0 once the initial data satisfy (CC)i,3. This case, even though of
minor relevance in applications is included here in order of completeness.

Partially reflecting boundary conditions:1

_ j ( l , ί ) = λiFi(ί9 t) + bi9 i = l 9 . . . 9 n 9 (3.3c)

1 Notice that, while (3.3a) coincides with (1.4) i p. 2 of Kawashima (preprint), the relations (3.3c)
have not been considered before in such generality
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where λ\ are constants such that 0 < λ\ < 1, and hi are non-negative constants.
Furthermore, it is assumed that the basic flow (3.2) solves these equations, namely,

s = λiS + bu i = 1, . . . ,« .

Denote by /,- the perturbation of the flow:

The kinetic equations for

σi '•= fi+f-il ί= U •••> n

a n d

σ, :=fi-f-i; i= 1, ..., n

can be easily derived from (3.1) as
n \ n 1 n

σu + υtδk = 25 Σ(σj - σt) + - ^(σj - σf) - - ^(δj - δf\
7 = 1 7 = 1 7 = 1

δn + Viσix = 0 , i = 1, ..., w, (3.4)

where the subscripts ί and x denote partial derivatives. As one can check immedi-
ately, the perturbed flow F, satisfies one of the three sets of conditions described
in (3.3), if the vector-valued function w(x, ί),

w = (σi, ..., σn, δu . . ., <5n)Γ

is in the coresponding subspace K of Wι>2 as described in Sect. 1. In particular,
the compatibility condition (CC) reads

/ σ,(χ, t)dx = 0, / <5, (x, ί)dx = 0, i = 1,..., n (CC)
i = 1 o o

and the boundary conditions are

unperturbed inflow conditions:

σt(0,t) + δι(0,t) = 0,

σi(l,t)-δ,(ί,t) = O, i = l , . . . , n; (3.5a)

periodic boundary conditions:

σt(0,t) = σ,(l,t),

δi(O,t) = δi(l,t), i = l,...,n; (3.5b)

partially reflecting boundary conditions:

σ,(0, ί) + δ,(0, t) = λ,(σ,(0, t) - δ,(0, ί)),

σi(l,t)-δi(l,t)=λ,(σi(l,t) + δi(l,t)), i=ί,...,n. (3.5c)

It is worth to notice that, for periodic boundary conditions (3.5b) the perturbation
u belongs to K of case 2. Actually, from

\u\κ = 0

we deduce σ, = c, and <5, = dμ with c, , di constants and σ, = σj for all
i,j = \,...,n. From equation (CC')2 we deduce d, = 0 for all i = 1,..., «.
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We now reduce the problem of stability to the study of the evolution of some
norm of at and δ^ One physically meaningful norm would be for example the
sup-norm. In the sequel we prefer the stronger norm of W1*2.

The problem is set in L2 as follows: We want to study the time evolution of
an appropriate Ljapunov functional related to the solution

u = (σi, ..., σn, δu .., δn)
τ

in L2 of

— u = (S + M)u + Nu
όt

with the linear symmetric operator S bounded in L 2 :

Su= f - 2 s ^ ( σ i —σj), ..., - 2 s ^ ( σ w - σy ), 0, ..., 0

V j j

the linear operator M bounded in W1'2:

Mu = - (vιδix, . . . , υnδnχ, ι>i<7ix, . . . , vnσnx)
τ

and the nonlinear operator N:

We want to study the role on stability played by the operator M. This operator
verifies always the condition

(MM, U) < 0

(see second step of Sect. 4). Results obtained in Galdi and Padula (1990) suggest
to look for possibly stabilizing effects coming from the coupling functional

(Su,Mu),

which here is a sum of terms of the form

1

δix σj dx.

o

Partial integration of these terms yields terms of the form

1

/ δi σjx dx.

o

This motivates us to introduce the following two functionals:

1

u{
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and

The Ljapunov function E to be investigated is a linear combination of the two
norms in W1*2:

Eo '.=\ Nil2

and

Eι :=\\\ux\\2

and the two functional F\ and ¥2. We end up with

E :=E0 + μΈ1+λ F1+τλ F29

where μ, λ and τ are positive coefficients. Since we want E to be positive, we
impose the following sufficient restriction on μ, λ and τ :

^ = ( l + τ ) < ^ , (3.6)
y/u In

where
ι;m = min{t;/, i = 1, ..., n}.

4. The Evolution Equation for E

Taking scalar products from (3.4) and performing some elementary calculations
leads to the following results:

Λ T?

—± = -s-X2 + Bo + NQ,
at

~

^ί=-T-Y + Z
at

with the nonnegative terms

X2 = Σ\\σj-σif,
hi

UJ

hj
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(X, 7, Z, S, and T being the nonnegative quantities related to these equations),
the terms with indefinite sign

I2 = 4 S V - (α* - σf, (5IX - δjx) - V — J— (σix, σjx - σix),

ι,J,k ι,J J

I3=4sn-Y - (σjx - σix, δt) - V —— V j — {δix, δjx - δix),
Uj * Uj

the boundary data

i

JC^I1 + 2 - V - ^-σ (x) σ (x)\l

Uj j

= - 2 Σ(δi(x) - δj (x)) <M*) IJ + 2 £ ί ^ ^ (5; (x) ^IX(x) |o,

ι,J ι,J J

and the third order terms originating from the nonlinearities on the right-hand
side of (3.4):

Uj Uj

Uj Uj

= Σ^ <σl -σ''δ* - *j*) - Σ I. <δk - δ ? ' δ * - δi*) -
ijk l ijk

((j σf) δ ) Σ
Uj ι Uj ι

Combining all these terms, we end up with

ftE = -D + I+IΣ+N, (4.1)

where

D = s - X2 + (μs - λ (1 - τ)) Y2 + λ (1 - τ) Z 2 + λ S2 + λτ T2,

I = λΊ2 + λτΊ39

IΣ = Bo + μ - Bι + λ £ 2 + λτ B3,

jV = JVo + μ JVi + /I' Â2 + Λ<τ AΓ3.

In order to show that the right-hand-side of (4.1) is strictly negative for appro-
priate choices of μ, λ and τ, we proceed in several steps:

First Step: Bounds for I. The following calculations don't make use of the Poincare
inequality and thus are valid also in unbounded domains.
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We assume in advance

τ < - and λ < ^ - .

Then

^s- X1 + !j λS2 + λτT1.

Define

a :=min

ym = minli;/, ΐ = 1, ..., n}.

and recall that

From condition (1.2b) we obtain a > 0.
Employing the Cauchy Schwartz inequality and the inequality

we conclude

2xy <ε x2 + -y2 for ε > 0
ε

1/2

y/2υ,

vm v2λs

Similar procedures lead to

ri

<
y/2Jμs

D

and

1/2

τγ2+λs

2

< • (λτ T2 + λZ2)

D.
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Integrating by parts we obtain

Model

<

<-

<

Uj

-1

2vm<

2υm<

1

Vi j

sβ
\Jasλτ

s/n

Jasλτ

\B\

λτT2)

•D + \B\

with the boundary part

Collecting all these estimates, we end up with

I τ l ^(in-y/lλs b Vλ 2Vn3sλτ b-

yβ
4nsλτ

for

c = 4 max
b-Vλ

9 υm'y/a9

We conclude that for any positive values c and ε and any positive numbers a,
b, 5, μ, the parameters λ and τ can be chosen small enough such that

|/| ^ c D + ε |J9|.

For the time evolution of E follows then from (4.1):

d

dt ~

Of course we will fix c later on to be smaller than 1.

(4.2)

Remark. The bound c for / was obtained by applying only the Schwartz inequality.
Therefore it is valid also for unbounded domains. In the particular case Ω = R,
the vanishing conditions at infinites yield:

IΣ+ε \B\=0

since u G Wι>2. In this case, (4.2) provides linear stability (cf. Corollary in Sect. 1).

Second Step: The Boundary Data. We want to prove that the boundary data we
chose (i.e. u belonging to K) always have a non-destabilizing influence.

In the periodic case (case b), the condition (3.5b) and Eq. (3.4) assure that

Therefore, the boundary data do not influence the linear stability condition

The following calculations are related to the unperturbed inflow case (case a):
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From (3.5a) we deduce

σ, • δi\l

0 = \ (σf(l) + σ?(0)) + \ (tf (1) + <5,2(O)).

This furnishes a dissipative term in (4.2). Furthermore, from

σu(0) = -δtt(0),

δu(ί)= M l ) .

and (3.4) follows at the boundary points xe{0,l} :

7 Σ 4 Σ
Taking squares leads to

γ σf + δl) + ti(γ V±σix •δlx = -γ- {σfx + δl) + ti(γj (σj - σf

^ ( Σ (*J - °ή ( Σ ^J - rt - (δJ - δ'

with the sign on the left-hand side being + for x = 0 and — for x = 1.
From this we obtain

where

Vu Wi being the nonnegative quantities defined by

further

= ̂ 2 - Σ I. \ (Σ (σ>
|B| + λB2 + λτΰ3 (4.3)
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and

x=0 I V ij Vl

101

u

Again we have to estimate Iβ in terms of Dβ and D. To begin with the first
term on the right-hand side of (4.3) we write, denoting by x simultaneously the
boundary points 0 and 1:

= ] Γ - (σj (*) ~ σi(χ)) 'Vk(x)-n'Σ ~ (σJ W ~ σi(χ)) ' σί(x)

Now

- (σj(x) - σi(x)) - σk(x) — ]Γ |σ,-(x)| \σk(x)

and also

so that

n ^ ~ ( σ ; W - σ ΐ ( x ) ) ' σ i ( x )
2n2

From

i(x) - σ ; (x)) σix(x)

y

- σj (x)\2
1/2

(

1/2

7=
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Σ ' σj(x)σix(x)
hj

we obtain as an estimate for B2:

Similarly,

and

\B2\<

\B3\<

8n

Vn-yβ

8w

Vm yβ

WΪW2^J^_DB

Vb)-DB.

n
la

(y/ϊ+ Vb) ^

Collecting all terms, we end up with

|/!,| < ^ - (2μs2 + sλτ + λ (1 +
Vm yH

Obviously we can for any c > 0 choose μ and (depending on μ) λ small enough
such that

\IB\<C-DB.

For the case c we do not go through all calculations but indicate the main
arguments.

In the partially reflecting case, the boundary conditions give

with

r< =
ί+λι

Since 0 < A; < 1, we find a positive constant CQ such that

Furthermore, following the same arguments adopted in case α, from the evolution
Eq. (3.4), we deduce

*i = Σ M-

+ T24(D] - 5 T1 [^(0) +

where

5,(1) =

5,(0) =

σ ; - σt) - { (σ2 - σf) + \ (<52 - «5

{ - 2s(σj - σ,) - ± (σ2 - σ2) + \ (δf - ,52)}(O).
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Hence, we easily obtain

B1 < -

A

with a positive constant cu a scalar product / which - as well as the terms B2
and B3 - can be controlled as in the cases before, and a third oder term N which
can be stimated like the other terms of N (compare the third step).

We conclude: In all cases, for proper choices of the Lagrange coefficients μ, λ
and τ we have

^E <-m D + N -n DB+NB (4.4)
at

with suitable positive constants m and n. Actually DB represents a dissipative
effect due to the boundary data. In this regard, the boundary data we choose can
also be stabilizing.

Remark. Since the inequality of (4.4) is still true for unbounded Ω, again linear
stability is obtained and the Corollary in Sect. 1 is completely proven.

Third Step: The Nonlίnearίty. Here, we use the generalized energy method by
Galdi and Padula (1990). Precisely, we shall prove that

N+NB<f(E){D+DB)

with a strictly increasing function / on R + with /(0) = 0. We recall the results
from Sect. 2 stating that

\\u\\<yo \u\κ, (4.5)

sup|tφc)| < 7 i -\u\κ (4.6)
x

for any solution u = (σi, . . ., σn, (5i, .. ., δn)
τ of (3.4) in K. Furhtermore, from

inspection of | \κ follows immediately,

M | < / i D, (4.7)

MU'o £, (4.8)

where

h = max \ -—, -
{λτa s

/o = max < 4n, — > .

We will now investigate step by step all terms contained in N and NB:

< 5 Σ {/ \°j - σ< ι \σJ+σ< ι 1 * * 1 d χ + f \δj - δΛ \δJ + δ*\ wdχ)
Uj

< Σ sup \σt\ • { ( I K II + ||σ, | l) 2 + (ll<3; II + \\δi\\)2}
Uj

< y i \u\κ • Σ ( 1 1 ^ II 2 + I k y II 2 + l l ^ l l 2 + 1 1 ^ I I 2 )
w

2 ^ . (4.9)
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For μN\ + λτ N3 we obtain

\μNι+λτN3\

1 f σ + VΣ /1f σ* + — δ * • ^σJ - σ'2w + \tf -δ'^dx
u Vi

f σ* + - ^ * | | {sup |σ,•+σ,| (\\σJx\\ + \\σix\\)||f ^||
+ sup\σj - σ,\ • (\\σJx \\ + \\σix\\) + sup \δj + δ,\ (\\δjx |

\u\κ • Σ I f σix+ ψδi\\ • {\\σix\\ + \\σJx\\ + \\δix\\ + \\δjx

\NB\<^- sup \u\ χ χ (σ}(x) + δf(x))
Vm x=o i

+ ^ (sUPι«i)2 Σ Σ ( ^ ) + ^ 2

\'2σix + ~υ7di\\ + n σ «l l 2 + ιiσ^'

Ui

<2yι-2n-(μ2+4-(—) • γϋ + l) \uκ\
3. (4.10)

N2 can be estimated similarly as No, and we find

|ΛiV2| < — sup|u| Y(\\σκ\\ + ||σ,-|l + fell + 11̂/11) (ll^ll + ll^xll)
Vm ^

< - sup M n2 Σ (2||σ, ||2 + 2||<y2 + 2μ i χ | | 2 )
Vm

λn2

< — 7i -(270 + 1) \u\3

K. (4.11)

Equations (4.9)-(4.11) yield together with (4.7) and (4.8)

\N\<c \u\2

K <c k- y / ϊ φ • VE=:

with the constant c explicitly given above.
For NB the following relations hold:

1

with g(E) strictly increasing and g(0) = 0.
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We want to mention that these estimates require the use of the Poincare
inequality and thus cannot be transferred to unbounded domains:

Fourth Step: Decay of E. The calculations of the previous steps allow us to state

^ E < - (m - c VΈ)D -(n- g(E))DB . (4.12)

Assume that the initial energy £(0) satisfies

>} (4.13)

Then E(t) is initially decreasing. As a consequence, (4.13) is satisfied also by E(t).
This induces monotonicity:

£(ί 2) < E(t\) for tι > t\,

and
00 00

/ D(t) at < oo, / DB(t) at < oo.

0 0

Moreover, from Poincare's inequality follows

-D<-rE, r > 0 . (4.14)

Therefore

^E<-r (m-c JE(d)) E.
at

GronwalΓs lemma now yields

E(ή < £ ( O ) exp{ -r- (rn-c

proving exponential decay of E. In particular, from (2.5) we obtain exponential
decay in the ess-sup-norm for u and consequently for /, (x5 t). However, in the
latter norm we do not deduce, any more, the decay from the beginning because
£(0) strictly increases (equality holding only for constant data) such a norm. A
further confirmation of such a fact might be numerical calculation.
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