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Abstract. The geometry of the Teichmiiller space of the super Riemann surfaces
is examined. The Weil-Petersson Kéhler form is calculated in terms of the super
coordinate functions which provide local coordinates for the super Teichmiiller
space. It is shown that the Kdhler form on the super Teichmiiller space is closed.

1. Introduction

The purpose of this paper is to show that the Weil-Petersson Kéhler form on the
super Teichmiiller space for the compact super Riemann surfaces of genus 4 =2 is
closed. As for the ordinary (non-super) Riemann surfaces, it is known that the
Teichmiiller space is a complex Kahler manifold, and hence the Kéhler form is
closed. A Kéhler metric, defined in terms of the Petersson product for the auto-
morphic forms, was introduced by Weil [1]. The Weil-Petersson metric may
naturally project to the moduli space because it is invariant under the covering
transformations.

Wolpert [2] gave a description of the Fenchel-Nielsen deformation [3] in
terms of quasiconformal mappings. The Fenchel-Nielsen vector fields ¢, which
are generators of the deformation, were found to be related to the geodesic length
functions [, introduced by Fricke and Klein [4] to provide local coordinates for
the Teichmiiller space. He showed a duality formula,

o(t,,)= —dl,, 1)
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where w is the Weil-Petersson Kéahler form, and also the cosine formula,

Oty ty) =tly= Y, cosb,, )
peaf#tp
where the sum is over the cosines of the angles at the intersections of the geodesics
a and $ on the Riemann surface. He also evaluated the Lie derivatives ,t,l, in
terms of the hyperbolic geometry of the geodesics and showed the quadratic
reciprocity relation,

tatﬂl'y + tﬁtyla + t'ytalﬂ = 0. (3)
This identity leads to the conclusion that w is a closed 2-form,
dw =0. 4)

Here we will present the analogous results for the super Teichmiiller space.
We shall begin with a review on the super Beltrami equation for the super Riemann
surfaces along the line of our previous analysis [5] in the next section and we refer
to the super Teichmiiller space in Sect. 3. In Sect. 4 we evaluate the Lie derivatives
of super cross ratios and Grassmann odd super Mobius invariants [6] along
geodesics. We show a superanalog of the linear reciprocity relation of the twist
derivative in Sect. 5. The quadratic reciprocity relation is also presented and its
proof is given in Sect. 6. In Sect. 7 we introduce the Weil-Petersson Kahler form
w on the super Teichmiiller space and we show that it is actually a closed 2-form.
The final section is devoted to discussions.

2. Preliminaries

In this section we will review the Beltrami equation for the super Riemann surfaces
along the line of our previous analysis [5].

A super Riemann surface (SRS) having compact body with h =2 holes is
represented by a homogeneous space SH/SI" [7-9] with a superanalog of the
Poincaré geometry. The super complex upper half-plane SH is the universal
covering space of the SRS with one even and one odd complex coordinates z and 0,
respectively,

SH = {Z =(z,6)|Imz > 0}. (5)

Note that Im z > 0 means that Im z, > 0 with z,, being the body part of z. We shall
use such a convention for inequalities throughout this paper for simplicity. ST is
a super Fuchsian group, a discrete subgroup of superconformal automorphism
SPL(2,IR) of SH. The supergroup SPL(2,IR) consists of such transformations as,

_ az+b oz + f
Z—oZ= + s
cz+d (cz+d)?
1
9_}§=az+ﬂ+01+zﬁa’
cz+d cz+d

(6)

where g, b, c and d are Grassmann even and « and f are Grassmann odd parameters
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with?
ad—bc=1, a,b,c,deR,
a=ia, PB=ip. (7
Our convention of the “super” real axis R, is?
R, = {Z|Imz=0, § =i}, 8)

and hence all the parameters in (7) are real in this sense. Note that the above
transformation (6) is, of course, superanalytic and also a superconformal transfor-
mation,

D7 —8D§ =0, 9)
o 0

D=—+6—. 10
00 oz (10)

A super Fuchsian group SI” is generated by 2h elements {A4;,B;} (i=1,2,...,h)
satisfying a condition,

h
L] (BB ) = 1. (1)

Each element of the generators contains three Grassmann even and two odd
parameters and the condition (11)is invariant under 4, MA;M "', B, MB,M %,
MeSPL(2,R). Then the set of generators actually depends on 6k — 6 Grassmann
even and 4h — 4 odd parameters. SI” acts properly discontinuously on SH and all
its elements are hyperbolic, i.e., the reduced subgroups, where odd parameters are
put to zero, consists of hyperbolic elements.

The Beltrami equation for the ordinary Riemann surfaces is given by,

w;=uw, zeH, (12)

where p is a Beltrami differential defining a (— 1, 1)-type tensor on the Riemann
surface. The super Beltrami equations proposed in [5] are given by,

-0__
Dw—nDn=v{6w+n6n—J(Dw—r/Dn)},
2Y
B (13)
_ _ i0—6
Dw—nDn=—oc 0w+n6n—T(Dw—r1Dr]) ,

! We adopt such a convention of complex conjugation as,
X+Y=X+Y, XY=YX
2 The real part Re, and imaginary part Im, are defined by

1 _ 1 _
—(X+X), forevenX, —(X —X), forevenX,
Re,X =1 Im, X = 1’
5(X —iX), foroddX, E(X +iX), forodd X
1
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where D is given in Eq. (10) and

_ 0 -0 0 ~ 0

D=-24102, 0=2, (5=2), 14
00 0z 0z < 52) (14)

Y=Imz+160, (15)

and (v, o) = U are our super Beltrami differentials. They are Grassmann odd tensors
under SPL(2,R) of weight (—3,0) and (— 1,1), respectively;
WZ)=QEME), ol7)=[Q*2)Q(F) ' 1e(Z), QF)=DI. (16)

We shall explain the derivation of Eq. (13). It does not seem easy to get the
super-extended version of the Beltrami equation (12) as it stands. So we rewrite
the Beltrami equation as

dw=dzh? +dzh?,
dw =dzh, +dzh_,
where complex-valued coefficients h® (a,b = 1) satisfy integrability conditions,

Oht =0h*, Oh;=0hn>, (h=h3). (18)

(17)

Hence only h”* (or, h] = E) may be regarded as an independent variable and it
involves the degree of freedom of the Beltrami differential u. In fact,

=h*/ht. (19)

Equation (17) actually represents the relation between the set of basis 1-forms
in both coordinate systems. The super Beltrami equations should be similar to
that. In considering the question, we should bear in mind that the basis 1-form
dz is a tensor under the Mobius transformations, the automorphism of the complex
upper half plane, while the flat basis 1-forms E* =d0 and E~ = df are not tensors
under the automorphism SPL(2,R) of SH, although the rests, E** =dz + 6d6 and
E~~ =dz — 0d#, are tensors of weight (—1,0) and (0, — 1), respectively. Hence we
shall seek for tensors corresponding to df and d. The proper basis 1-forms having
tensorial transformation laws under SPL(2,IR) are found to be,

E**(Z)=dz + 646,
(dz + 6d0), (20)

i0—0
E*(Z)=df+"
2Y
ET(Z7)=E""(Z), E"(Z)=E"(7),
where Y is a (—3, —3)-tensor (15) and E** and E™ are tensors of weight (—1,0)
and (—1,0), respectively.
The super Beltrami equations corresponding to (17) are

E4(W) = E%(Z)HA4, 1)

with Hj satisfying the integrability conditions. The analysis of the integrability
condmon for the flat basis 1-forms E# can be done and the corresponding coeffi-
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cients H should take the form [5],

Dé+h* Dy —k* Dh Dk
(H) = Dy —k* DE+h* Dk D——h , @)
k
W ¢ k h
with
Dh=DK, 2hk+ Dy —D¢=0,
Dh=Dk, 2hk+ Dy —DE=0. (23)
Equation (23) implies that ¢ = H** and Y= H** are independent Grassmann
odd superfields and hence involve the super Beltrami differentials. E’s (20) and E’s

are related,
EA(Z) = E¥Z)MAZ),

1o -2
Y
DY
My@)=|0 10— (24)
00 1 0
00 0 1
and hence so are Hf and HZ,
H3(Z) = (M~ H§(Z) HADIM (). (25)

We find that H1* = HX* and then we get the super Beltrami differentials defined
by,

v=H"/H,
c=H**/H}. (26)

And the super Beltrami equations are given by (13). The result of the analysis of
the integrability conditions agree with the fact from the 2D supergravity theory:
Howe [10] showed that the independent components of EYJEZ, where Ej
are supervielbeins, are HY, Hi*, H** and their c.c. and the degrees of freedom
of the super Weyl and local Lorentz transformations are involved in H} and
its c.c.

Next we shall solve the super Beltrami equations. In fact we examine the
linearized equations (cf. Refs. [11,12]). We extend the Beltrami differentials to the
super lower half-plane SL by reflection. According to our convention of the “super”
real axis (8), the super Beltrami differentials on SL should be

io(z, —i0), iv(z, —iB) ZeSL. (27
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We normalize the mapping Z —»w at z =(0,0), (1,0) and (c0,0) as

w=(0,0) at 7 =(0,0),
w=(l,%) at z =(1,0),
w = (o0, finite) at Z =(00,0). (28)

The third condition means that w/z2—0 and #/z—0 for z— 0o at § =0. We can
take such a normalization due to the symmetry of the solution W(Z), i.e., if w is a
solution, then w = Aw, AeSPL(2,R), is also a solution.

Rewriting the variables w,v and ¢ as

w=z+Ww, n=0+4, v=v, o=d, (29)

we obtain the linearized super Beltrami equations,

Dw — 1§ — 6D7j = v, Dw—0Di= —d zeSH, 0)
Dw — i — 0D = iv(z, —if), Dw — 6Dy = —id(z, —if) zeSL,
with the normalizations,
W=0 for Z=(0,0),(1,0),
=0 for Z=(0,0),
)
v'v/z -0 for z—00,0=0. (31)
1/z—0

We shall solve the equations as follows: expanding each variable in 0,
W(Z) = Wo(z) + 0W%(z) + 0W(2) + 00w (z), etc, (32)

we rewrite Eq. (30) in components,

Wl — 0 =0, Wl =62,

oWl — 2'-’0 =, Woo + ’76 =g 33)
00 ’70 — ‘;o, Wl = _0.6’

ow® — 2% =% | 6w + 3% =%, etc.

These equations can be solved by the use of potential integrals: for example,

o0 1 "(t
Wo(z)=——[d? +f(z), zeH, (34)

TH

where f(z) is an arbitrary analytic function, which is determined through the
normalization conditions (31). The solution to Eq. (30) with the boundary condi-
tions of Eq. (31) is found to be

WwlH1(Z) = 30%(7) + 6[6(7) — 30D6(7)]

+ l “‘ d2t[R(°'1)(t, Z)d'é(t) + R(O’“(t_, z)o'T(t)]
TH
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— 21 j d?*t[RO)t, z)d‘oa(t) — iR, 2)3%(t) ], (35)
T H
1[E1(Z) = $¥(Z) — 30D6(Z)]
1 - I
- —2— _f d?t[RO)t, z)6%(t) — iR\OXF, z) 6%8(t) ],
TH

+ Zia § d2t[ROI(t, 2)6%(r) + RO V(F, 2)69(1) ]
T H

where
RO, 7) = 1 _1—z+ z ,
t—z t 1—1t
1 1
ROt z) = ———. (36)
t—z t

Here use has been made of an assumption that
wZ)=0(Z)=0 for ZeR, 37
This is based on the following analysis of the transformation laws of the super
Beltrami differentials (see Eq. (16)): the transition function 2 takes the value of
xNE12(#1) on the fixed points, with y and N being the sign factor and the norm
function, respectively [13]. Hence w(7) and ¢(Z) vanish on every fixed point. Since
the bodies of fixed points are dense on R, we assume that the fixed points are
“dense” on R, and we get Eq. (3.7). [Unfortunately we have not given a rigorous
meaning of “dense” on IR, so far, and hence we just assume (37).] Note that Eq.
(37) does not mean that each coefficient in the expansion with respect to 6 vanishes.
Especially, the values of 6%(z) and ¢%z) (or ¢%z)) on R can remain arbitrary.
Equation (37) implies (cf. 32))
Vo(2) = V(z) + iV¥(z) = 6%(2) = 6%(z) + ie%(z) =0 for Z=1z. (38)
Due to the properties of the super Beltrami differentials (37) we see that the solution
W (35) maps the “super” real axis IR onto itself,
WEZ)=W), i(Z)=1i(Z), ZeR, (39)
In fact (%), X = (x,a)elR,, is given by

WE) = L [ d2[RO(, x)6%2) + ROVE, x)690)]
TH
- ;‘—n [ RO 06" () ~ iR X)6%(1)],
(%) = =5 IR0~ ROE50]),

+ 20, | d*[ROV(t, x)6(1) + ROV x)57(0) ). (40)
2n H
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Note that we should be careful in calculating dR-V(t,z) and R V(F, z) of #(Z)
in (35). They are evaluated as,

9 5] 1RO, 2670 + ROV, 2570)]
2n H

ZeRg
0

= —(0+ ) [ d®t[ROV(t, 2)6%(t) + ROV(F, 2)6%(t)]
2n H

ZeRg

+ g [ d2[8%(t — 2)6%(t) + 63(F — 2)6%(1)]

H

ZeRg

=2 5, [ d*[ROV(t, x)6%(t) + ROV (E, x)d%(0)] + = 67(x). 1)
2n H 2

In Eq. (40), we find that Ww[H1(Z), ZeR,, is determined by only o(Z), more precisely
by 6%(z) and 6%(z) [11], and hence we may write w[¢](Z), Z€R,. Those equations
are used in the next section.

3. The Super Teichmiiller Space

The Teichmiiller deformation of SRSs is characterized by the isomorphism of the
super Fuchsian groups. The super Teichmiiller space ST(SI") is the set of equi-
valence classes in the isomorphism under SPL(2,IR). The super Teichmiiller
space ST,(ST") of compact SRSs of genus h( =2) is a 6h — 6 even and 4h — 4 odd
dimensional supermanifold®. The body of ST,(SI") is the ordinary Teichmiiller
space T,(I") with spin structure. ST,(SI") is described more definitely as follows:
let W* be the solution of the super Beltrami equations. Consider the isomorphism
j[i] from SI” to a deformed super Fuchsian group ST'*,

jTRY: A~ ATR,
A[f]=w'oAo(W¥)™!, AeST. 42)
The relation j[7i;] ~j[1i,] means that there exists a SPL(2,R) transformation M
such that
AlF,]1=Me-A[fi,J°M~' for VAeST. (43)
Then ST,(STI") is a set of the equivalence classes of the isomorphism j[7].

We shall be interested in the local structure of ST,(SI'). We consider the
deformation corresponding to an infinitesimal super Beltrami differential J;

jlefl:A— A + eA[H], (44)

3 The super Teichmiiller space should be regarded as a superorbifold due to the Z, identification
of the odd coordinates [11]
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and
A(z) 0A(2)

wli1(AZ) = wla1(7) +ilal(z )—+A[ﬂ]()

45)
0A(0 (7]
iTE)(AZ) = iR )—L’+ WE1(E )wmm(e)

where AZ = (A(z), A(0)) takes the same form given by (6). Using Egs. (35) and (45)
we obtain

(i) AL#]=0 for 7 = (»,0). .
(i) A[u] is superholomorphic, i.e., DA[,u](z) 0 and DA[ZH](6) =

The first result together with Eq. (44) implies that only the super Beltrami
differential of 7 = (0, 0)-type is relevant for our purposes here. Let SB(SI") and
SQ(ST) be the complex supervector spaces of (— 1,3) differentials and superholo-
morphic 3-differentials, respectively. We shall define the complex (anti) linear
mapping A from SB(SI") to SQ(ST"): the solution #[ 1 ](Z) in (35) is a linear func-
tional of the super Beltrami differential zi = (v, ) in the real sense. A complex linear
functional can be obtained by

@[0]1(7) =a[u1(Z) + in[in]1(Z)
! | d*tROF, 2)59%(t) + Qa [ A2t ROV, 2)a0(2), (46)
TH mT H

which is a functional of (%), or 6z) and ¢%(z), and superanalytic for ZeSH.
Operating D* on @ we get

D“@[a](_z’)=§jd2t[ 70 3 "a(t)4]

TH (F—2)? (f—2)
o(7)
—— | dtdtdéd 47
ﬂs'L ; ég(t—z+zé€) @7

One can see that the right-hand side is a superholomorphic 3-differential from the
transformation low under SPL(2,IR)>4 for each quantity in the above equation;

o(AT) = [2,(T)*2,(7)'1o(7),
A —z+iE0) > =[Q(T)R(Z)] *(F—z +iE0) 3,
AdtdidedE = [Q ,(T)R (T)]dtdidEdE, 2 4(Z) = D(AD). (48)
Then the mapping A is defined by,

ﬁ
(f—z+iZ0)*
Note that (— 1,5)-d1ﬁ°erent1al ¢ in (49) is an element of SB(SI") and hence it is

either Grassmann even or odd. We find, for any element S in SQ(SI), that
Y2SeSB(SI") and

Alel(Z)= —— j' dtdidedE oeSB(ST). (49)

A[Y2§]=S5. (50)
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Proof.
= . 4i S(7)Y?
A[Y2S —— [ d*td?e——
LY'516z) s I ; é(t’——z+i£_9)3
0
T SH (f—2)? (t—2)
_ 4 jd%[-(]“f‘ 95°0) , 5 dm ) s"(t)o]

TH (t—2) (f—2z2)?

_g . 1 _ t—z o
_mjid t@t[((t__z) 2(f—z)2>s ()

31—z =2 \g ]
+‘((t‘—z> =22 - )> (19
_ 17 S°(x) + 68%(x)

27:1_00 X—z

=8(7). Q.E.D. (51)
It is useful to introduce a complex linear mapping H:SB(SI")— SB(ST") defined
by
H[o6]=Y?A[6], ceSB(SI). (52)
We will write as
ImH=SH(SI') (space of harmonic super differential),
Ker H = N(ST). (53)
Equation (5) implies that H?> = H and hence
SB(SI')=SH(ST")@® N(ST"). (54)
Now we show that the following four conditions are all equivalent [14]:*

(@) A[f#]=0in SH for VAeST.
(b) w[e]=0o0n R,
() A[e]=0in SH.
(d) H[c]=0 in SH.

Proof. (c)<>(d). This is due to (52).
(©)<=>(b).
Ale](Z)=2D*®[¢](Z)=202®[c](Z) =0. (55)

From the definition of @ (46) and the boundary conditions for 7(Z) in (31), the
above equation yields that @[¢](7) is a polynomial in 7 as,

®[o1(Z) = O(a, + a,2), (56)

* The proof of (a)=>(b) is based on the analysis below Eq. (37) and hence is not rigorous
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where a’s are complex constant parameters. And this implies
[ d*tROF, z)a9%(t) = 0,
! (57)
l - =, p—y
—0 [ d*tROV(f,2)ab(t) = a, + a,z, ZeSH,
T H

and hence | d*tR‘"(f,z)a9(t) is a polynomial in z. Then from Eq. (40) we get
H

Wwlo1(X) = 3(a, + ay)x* + (a, + a,)x + (real const.),
ilo1(%) = J(a, + Ba)x + (@ + @) (58)

Due to the boundary condition for W(Z) in (31), all the (real) coefficients on the
right-hand side should vanish and we get to the condition (b).
(b)<>(c). The condition (b) implies

o _ Y
— [ d?tROt, x)698(t) = iRO(F, x)9(t),
2n IJ; (59)
3, [ d*tROV(t, x)6%(t) = — ROV(E, x)69(1),
H

Then @[6](Z) can be superanalytically continued in the whole supercomplex plane
SC,

! | d*tROXZ, z)o%(t) + ga [ d*tROV(E, 2)%(t) for zeH,

o617 ={ " " . (60)
L[ @R, 2)000(t) — -~ & [ d*ECV(e, 2)0%e) for zeL.
TH T H

Similarly, ¥[6](7), defined by
¥Y[ol(Z) = wlh1(Z) + [iE](Z)
= ! [ d2tRO1¢, 2)6%(t) — 9 | d*t ROt z)699(1), (61)
TH 2rn H

can also be superanalytically continued in the whole supercomplex plane SC.
According to the boundary conditions (31), we get @[6](Z) = 6 x (const) and hence
A[61(7) =0. .

(a)=(b). By the use of (45), one can see that W[o] vanishes on every fixed
point, and hence it vanishes on R,.

(b)=>(a). This is a direct result of (45) and the condition (ii). Q.E.D.

A natural pairing of SB(SI') and SQ(ST') is given by the integral,
(6,8 = [ oS, ¢eSB(SI), SeSQ(SI). (62)

SH/ST
Then we find

6eN(SI)=(0,8)=0 for VSeSQ(SI). (63)
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Proof. For any 6eSB(SI") and SeSQ(SI'), we shall show an equality,

[ oS= [ A[sISY~ (64)
SH/SI” SH/SI”
. 4 1 . . .
Let K(t,Z)=————————. Then the right-hand side of (64) is evaluated as

T (t —Z +iE0)?

f dzzdzﬂ[ | dztdzéK(_t',E')a(T):IS(‘z’)Yf

SH/ST SH

=y | dzzdzo[ | dztdzéK(_t',”z’)a(?)]S(’z’)Yj

AeST'SH/ST A(SH/ST)

=y dz(Az)dz(AO)[ | dz(At)dz(Aé)K(A_t',A_z’)a(A—t'):IS(A’z’)Yiz

AeSI A~ Y(SH/ST) SH/SI"

= d%dzga(?)[ f dzdeHK(T,E')S(E’)Yf]
SH

SH/ST
= [ oA[Y*S]= [ oS, (65)
SH/ST SH/ST

where use has been made of Eq. (50). Then (63) has been proved. Q.E.D.

4. SPL(2,R)-Invariant Coordinate Functions

First we consider a local super coordinates for the super Teichmiiller space ST},(ST).
We shall see that the Grassmann even coordinates can be essentially the same as
those for the ordinary Teichmiiller space T,(I") which is the body of ST,(ST"). Fricke
and Klein established that local coordinates for T,(I") are given by an appropriate
set of geodesic length functions. The (non-super) geodesic length functions are
invariant under the Mobius transformations, however, they are not under
SPL(2,R). We shall give the SPL(2, R)-invariant length functions. (The action of
SPL(2,R) extends to the boundary R,u{o0}.) Let (Z,,Z,, 73, Z,) be the super
cross ratio defined by,

(?1’?2,73,?4)=ﬂs Zij=zi'_zj—6i0j' (66)

Z14223

This is invariant under SPL(2IR) and its body is actually the ordinary cross ratio
invariant under the Mobius transformations. Let o be a geodesic on SH/SI”
corresponding to an element AeSI” and 7, = (r4, v ) and d, = (a4, u,) be repelling
and attracting fixed points for the element A, respectively [13]. Then the super
length [, is give by,

I, =10g(A5,5,7y,d,) for VSeR,—{F,d,). (67)

Note that the body of [, is precisely the (non-super) length for the element of the
Fuchsian group corresponding to AeSI". An appropriate set of those length
functions I, provides the Grassmann even coordinates for ST,(SI").
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Next we consider Grassmann odd coordinates. Let 1, be a SPL(2, R)-invariant
odd quantity defined by,

0123
b
(212223231)1/2

Note that the ordering of the three points in each 4, is fixed (up to cyclic permuta-
tions) by demanding that (z, — z,)(z, — z3)(z3 — z;) > 0. Using the invariant we
can provide 4h — 4 o0dd coordinates. The Teichmiiller deformation of the SRS is
described by the isomorphism of the super Fuchsian groups and any matrix element
of a super Fuchsian group is a function of 6h — 6 even and 4h — 4 odd parameters,
so that the deformation of the SRS is caused by the change of the 64 — 6 even and
4h — 4 odd parameters. The 4h — 4 odd parameters in the generators can be odd
coordinates for the super Teichmiiller space ST,(SI"), however, each odd para-
meter, in general, is not SPL(2,R)-invariant and then it will be difficult to get a
SPL(2,R)-invariant volume form. We present the SPL(2, R)-invariant 4h — 4 odd
coordinates [6]. Let ST be the super Fuchsian group of a reference super Riemann
surface SH/ST, {A;, B;} (i=1,...,h) generators of SI', and {#{, 7/} and {u?,v?
the fixed points of the generators 4; and B, respectively. Then a set of the odd
coordinates {4,}(x=1,...,4h —4) for ST,(ST") are given by,

(A} = ([BATLULY, U4, 74,54, (4405, (G4 T475]), (j=2.3,....h).
(69)

Since the condition (11) on the generators is invariant under conjugation, one may
regard A, as “diagonal,” i.e., the fixed points of A; can be put to {(0,0), (c0,0)}.
Then the condition reveals that the parameters in B, is written by the parameters in
{A;,B;} (j=2,...,h). The {A,} represent essentially all the odd parameters in the
remaining generators, {4, B;} (j=2,...,h). Then {I, A} (i=1,...,mk=1,...,4h—4)
provide the local coordinate system for the super Teichmiiller space ST,(ST") (see
the first footnote in the previous section). In the following we consider the differen-
tials of those coordinates.

For distinct points on R, p = (p,«), § =(q, B), ¥ = (r,7) and 5 = (s, §), we define

—_— — — — —

4. =[7,,7,,Z5]= 0123 = 01253+ 0,231 + 032,, + 60,0,05.  (68)

D(z;7,4,7,5) = LZ; 5, §)LZ; 7, 5) + LYZ; 7, 5)LOZ; P, 9)
+ LYZ; 9, 4)LY(Z; 4, 5)LV(Z; 7, 5), (70)
Y(z;7,9,7) = [LZ; 5, 9)L(Z; 4, 7)LOZ; 7, )],
where
OEpg="m L fOrelmaf
zpzzqz q—z—ﬂ@ p—z—oc@ (P—‘I)(q_z)
0 - _
Ty i P e S A (1)
Zp2qz P—2z—0al q—z—pO

Y(AZ;7,4,7)= V(A7 ', A71q,A7'7)Q 3 (72)
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The Poincaré series of @ and ¥ are given by

PO(Z;P,4,7.5)= ), ®(AZ;P,4,7,5)Q%,
AeSI’
PY¥(Z;7,4.7)= ) W(AZP,4,7)025 (73)
AeSI’

Both of them are of weight (3,0) and hence P® (P¥) is an Grassmannian odd
(even) element of SQ(SI"). [Note that SQ(SI") was defined by the vector space of
superholomorphic 3-differentials, and it involves both Grassmannian even and
odd quantities.] As for the convergence of the Poincaré series, we have not given
a rigorous proof. If we put the Grassmann odd parameters zero, we can show that
both of them convergence absolutely on compacts by the standard analysis. Since
both of them are superconformal tensors of weight (3,0) and both the body part
of P® and the odd parameter independent part of P¥ are convergent, we can
expect that the Poincaré series converge [15].

Let W = (z + ew[1](Z), 0 + ei[71]1(Z)) be the linearized solution of the super
Beltrami equation. Then using (40), we get

d oo
2 O (B), W7 (@), W (7), W (%)

e=0

— (7.7 g){W[GJ(E) —wla](s) —n[o1(9)é — Bila](5)
q—s—po
+ wlo1(p) — wla1(¥) — 1ilo1(P)y — an[a1(¥)
p—r—oay
_ Wwlal(p) — wlol(s) —7ilo1(4)d — wila](5)
p—s—ad
_ wlol(q) —wlal(7) —1ila1(q)y — Biilo] (7)}
q—r—Py
=(—Ei_rl§2Res j d*zd*00(Z)D(Z;P,G,7,5). (74)
T SH

Similar calculation leads to

d 1
— [ (), w(q),w°(¥)]| ==Re, | d*2d*00(Z)¥(Z;P,4.7). (79
de T SH

e=0

Using (72) and (73), we can rewrite the above equations as the invariant pairings
on a SI" fundamental domain,

A oo —poi— —pg (= —og (=
‘(WW(P): weo‘(q)’ weo‘( r )9 wsa( S ))
de

£=0

_PLT g | 24%00()POE T,

T SH/ST

1
=—Re; j' d*zd*06(Z)P¥Y(Z;P,4,7). (76)
e=0 T SH/ST

d
5 0w (P), w(q), W ()]
€
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Let ¢, denote a derivative operator (tangent vector) acting on the functions,

(7,4,7,5) and [7,q,7]. The Grassmann even-odd “parity” pg of ¢, is assigned
to be opposite to that of the Beltrami differential a:ps[t,]=pslo] + 1 (mod2).
Operating t, on the length I, of the closed geodesic a associated with 4eST, we
obtain

- = 1 _ e e =
tl,=1,108(A%5, 5,7y, d)=—Re, [ d*°2d*00(Z)PP(Z;A5,5,74,4d,). (77)
T SH/ST

Let ©, be a superholomorphic 3-differential defined by a Poincaré series,

@a(f) = Z @(C_Z: ?A,EA)Qé,
Ce(A\ST (78)

O(Z 7, 9) = — LO(Z; 7, 9 LV(Z; 7. 9),
where {(A) is the cyclic group generated by A. We find
P®(Z;A5,5,7,,d,) =20,(7). (79)
Proof. Using (7) ~ (72), we calculate the right-hand side of the equation,
P®(7; A%,5,7,,dy)
= Y @(BZ;AS,5,74,d )02}

BeSI"

©
= Z Z d)(A"C—i’ AEE ?A’ ZiA)'(2f:nC
Ce{AM\SI n=—

©
= Y Y {LVCFATTE ATF)LOCE; Ty d)
Ce{(AX\SI n=—
+ IV(CF; 7y, G, LO(CF; A1 "5, A7)
+ L(CZ; A "S, A7"S)[V(CZ, A5, d ) LNCZ; Ty, d )} 22

= Y I:L‘O’(C_z’;?A,?iA) Y. {F(1—n)—F(—n)}

Ce(AM\ST n=-—oo

+ LYNCZ; 7y, dy) i {G(—n) —G(1—n)

R 1a— C(0) 3
e 0
where

Fin=— OO G- : )

A"(s) — C(z) — AMS)C(0) A"(s) — C(z) — A"(6)C(0)
and they have the following limits;
] C(G)c g "
im £y = 4~ €O~ €00
n v,— C(0) (n— — o),

ra—C(z) —v,C(0)
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lim G(n) ={ “4 (Z)l— #aC(0) 2
' (n—> — o).
ry,—C(z)—v,C(9)
Thus we get
PO(Z; A5,5,7y, d4)
_— [ LO(CE; 7,4,5,1){ wa=CO  v,—CO) }
Cecd\sT a,—C(2)—uCO) ry—Cl2)—v,CO)

+ L (CZ,rAsaA){<rA_C(Z)_vAC(9) a,—C(z) — usC(6)

+( -cO —C(0) ) - C(0) }] R
ra—C(2)—v,C0) a,—C(2)—pyC0))ay,—Cl2)—p, CO)S |

(83)
We see that the right-hand side is 20,. (See Eq. (71).) Q.E.D.
For the coordinate functions {I,4,}, (i=1~n; k=1~ 4h—4), we get
2 2,32
t,i="Re, [ d*2d*000,
T SH/ST
5 (84)
t,h=-Re, | d*zd*0¢E,,
T SH/ST

where
{E@)} = GPY(Zul, V1. 3)IX; =44, 97,4}, 9%, (j=2,3,....,h)}.  (85)

Equation (84) implies that the cotangent vectors, dl; and dA,, correspond to the
superholomorphic 3-differentials ©, and £, respectively. The Grassmann even-odd
“parity” pg of dI; and dA, are opposite to those of ®; and =, respectively, similarly
to the case of ¢, and o.

5. The Super Fenchel-Nielsen Deformation

In the theory of the ordinary Riemann surfaces, the Beltrami differential
= L(Im2)?§, (86)
T

where ¢, is a holomorphic quadratic differential, which corresponds to the 0-
component of @,, is identified with the tangent vector to the Fenchel-Nielsen
(FN) deformation about the closed geodesic a [2]. One generalization of the FN
deformation for the super Riemann surface would be that ¢,(z,) is the tangent
vector to the “even (odd) FN deformation” if ¢, and t, are derivative operators
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associated with the (— 1,3)-differentials®,
i o=
t,—>—Y*@O,
T

1 _
Y5, 87)

The even FN deformation is essentially the same as the ordinary one, however,
the geometrical description of odd FN deformation is obscure so far. Equation
(87) gives the correspondence between the elements, t, and 1,, of the tangent space

. ] — 1 _
to the super Teichmiiller space and the elements, Ly ©,and~Y2ES of SB(ST).
n n

Then we find the linear reciprocity identity of the FN deformation;
talg +(—)"Ptgl =0, (88)

where we have used the convention that ¢, = (t,,7,), |, = (I,, A,) and the sign factor
(_ )AB is an abbreviation of (_)PG[‘A]PGUB] = (__ )PG[’A]PG['B]'

Proof. From (84) and (87), we get

2 —

tly="-Re, [ d°2d*0iY?0,0,= —1,, (89)
T SH/ST”

tde=Re, | d2d0iY?8,5,= —1,l, 00)
T SH/ST
2 —

T hp = — Re, j d*2d*0Y*E,E, = 1,4,. QED. 1)
T SH/ST

In order to evaluate the integrals we rewrite the above equations as,

tly= Y C 'F,,C~'d,)log(BT,T, s ds), 92)
Cel{AX\ST’

tihy= Y HC YTy, C YG)[by, b, B3], 93)
Ce{AM\SI"

=y WCT'4,C7YG,,CT1G,)[b, by, bs], (94)
Ce{AX\ST

where we have introduced the derivative operators (5, 5,) and 7(5;, 55, 53), 5;eR,,
acting on (Z,,7,, 75, Z4) and [Z,7,,75], Z;€R,, as (recall (70) and (78) for
definitions)

t(sl’ s2)(zla 22523, 24)
(?1’?29?3»74) 2_120:vV2—=.— — —_— = = —
=222 Re, [ d22d0iY? O(Z;51,5,) (7571, 72, 75, 2), (95)
T SH
5 We use a convention that =, is a superholomorphic 3-differential corresponding to a cotangent

vector dA,=d[d,,d,,d,]
6 Both of them satisfy the assumption (37)
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(51,55, 53021, 2,5, 23, Z4)

(Z1,75, 73, Z4) e e b o —
= i;z*’lzes [ d22d*0Y*¥(Z;5,,52,53) 97,21, 72, 23, Z4),  (96)
SH

t(51,5))[Z1, 25, 23]

1 — e
= Re, | d’2d*0iY?O(7;5,,5,) V(Z,71, 75, 73), 97)
n SH
T(§1’§2,§3)[717—221_Z.3]
1 _ - =
=—5Re, [ d2d?0Y>V(Z;5,,5,,53) V(7, 71, 75, 75). 98)
T SH

Note that these equations are invariant under the cyclic permutations of {7;}. Let
§;5; be a geodesic with the endpoints s;,s;, separating SH into two regions. [The
ordering of s; and s; defines the left and right regions.] We have the following lemma.

Lemma 1. For z;eR, (i=1,2,3,4), we have

- (Z1,73,23,24) - = = =
151, $2)(Z1, 25,23, Z4) = *’—é,‘ Z Xs'sz(zi)[(zq(i), 51, 82, 2;)
=1

— —

— (20515 S35 Zow) — (Zeiys S15 525 ) + (21,51, 525 Zoy) 1,
99)

— == = = Zjk
t(sy, SZ)[ZI’ZZ’Z:s]_' Z Xs'sz(zi) ’ 12
4i=1 Z,5,(212223731)

[;U OSzu + ;”0szkt SZlaqu +— Zoa 51ki]’ (100)

ij ki ij ki
(51, 52, S3)(Z1, 22, 23, Z4)

- = = - 4
__(Zla Z3, 23, 24)[ z X;’BJ(—Z:) Zi5123253

- 4 L )1/2

i=1 (2515225253 $351
{ Oia(i)r(i) + Osmd(i) + Bsaslﬂ(i) _ osmt(i) _ esmt(i)}

Zia(i)zir(i) Zig(i¥2sis2  ZioZsss1 Zirti)Psisa Zinli)esas

is,Z
5’33 ZisyZs3s,
+ Z A (Z) =
i=1 ( Slszzszss S3Sl)

. eia(i)r(i) oszs3d(i) 031sza(i) Oszsgt(i) Oslszt(i)
+ + — - ,

Zig(i)Zinti) Zia(i)zszs3 Zia(i)zsm Zir(iyeszss  Zin(i¥sysa

(101)

Zs1iZs253% jk

T(§1’§2’§3)[717_Z'2’_Z’3] =3 z XSISJ x
z=1 (212223231) (Zslszzszs3zsssl)

‘[6‘(§2a3}»2’§1)—(§1,7js3},?z)—(—53, Zja Zis s])

1/2

e —

— (51,72, 21, 83) — (52, 24, 23, §1) — (51, 24, 2, 5)

],
- (?37?10-21"?1) - (—51’—2;5—2':"?3)]

N
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s’;}a(? Zszizsgslzjk
AL\ 2 1/2
1 (212223231) (stszzszsszsssn

‘[6— (?3’7]'3—2}’?2) — (55, ?j,?i,g‘s) - (§1a7js

M e

OO0 | b

)1/2

?is ?2)
- (§2’ 7j5 —z’i’ T9‘1) - (§’3a -Eln _Z.ia Ts.2) - (3:2’ _Z‘k92’ ?3)
~(_§1’?k’_z.i’§’2)—(_§27—Z’ka—z’i’_s’1)]’ (102)
where
(i) The suffices {i,j, k} take {1,2,3} in cyclic order.
(i) o and t are the elements of the permutation group S, given by

1 4 2
o I N G| (103
341 2 4 3 21

(i) x{'\s’(_z’,() is the left characteristic function;

S 1 if Z,e{the left region of §3;},
xf’(zk)={ f 2 {the left region of §3;} (104)

0 otherwise.
(iv) Xf’l(?,‘) can be replaced by — y5%(Z,), where y55i(Z,) is the right characteristic
function.

Proof. Equations (95) ~ (98) are evaluated cumbersomely but straightforwardly
by the use of contour integrals, yielding (99) ~ (102), respectively. Q.E.D.

As an explicit example, let us consider a configuration of {7, Z;} illustrated in
Fig. 1. [Here and hereafter, in the figures the “super” real axis is represented as a
circle in order to give an information of only the ordering of the points.] Then
Eq. (100), for example, becomes

t(?l ] _52) [?1 H E.2’ E’3]

223 Zsi1 Zs,1 Zs,1 Zs,51
= 1,2[L0s212+L0s23'1 +—sz‘9s11z+s—20s131:|
4z,,,(212223231) 212 Z31 Z12 Z31
. 223zs11:l
s1gn|:~——
_ Zs15:%12 = 2 T VST T T OoVT 3T O3 T \W\\2re = =
9’ b b 2 b b b b ’ b b
= 4 {(Z5, 71,25, $1)(51,22, 21, 52) (51, 21, 23, 52) } /2 [52, 21, 25 ]
. _Zzszm*
sign| ———
| Z¢,5,213 | e e Ny = s s N = = — —_ - —
+___;1_52___{(_)(22’zl’z3, 51)(51,23,21, sz)(snzpzz, S2)}”2[52’ 21923}
. _2232511—
sign| ——*~
| Z5,s,221 . e = e > = > — (= — — — —_ = =
+%_{(_)(Z3a 21,23, SZ)(Sl,zlaZZ’ 52)(519 Z3, 21,52)}1/2[519 Z3, zl]
[ i
: Z2325,1
sign| ——*
L 25152231 (= — — — = — — — = — — — —_ = =
+—:‘££—_{(22521,23,Sz)(sl,zlazs,52)(51’22,21952)}1/2[51523,21]-

(105)
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S2

Z

23
$4

22

Fig. 1. A configuration of five points on IR, which is represented schematically as a circle. The
left and right regions are for the geodesic s7s,

In general, the right-hand sides of Egs. (99) ~ (102) are functions of the SPL(2,R)-
invariants, (, *, *, x) and [*, *, %], so that we can compute derivatives of all orders.
It is now clear that Lemma 1 gives the right-hand sides of Eqgs. (92) ~ (94) explicitly.
In particular, the derivative of the length function reduces to

talﬂ = Z [X;Dap(?B) { (HB’ _':D’ 7iD’ 7:B) - (78, 7D, ED’ —a.B)}
De{AY\ST'/{B)
+ X;,Dap(?iB) { (7Ba 7:D: ziD’ a.B) - (ZB’ ?D, aD? _’:B) } ]’ (106)

where 7, (dp) denote the repelling (attracting) fixed point of D~ *AD.
Proof. Equation (92) is evaluated as follows:

tolg = Z t(C™'7,, C™'d,)log (BT, 7,75, dp)
Ce(AM\ST
= ¥ Y tB~"D"'F,, B "D"'d,)log(BT, T, Fpds). (107)
De{AY\SI'/{BY)n= -

Due to Lemma 1 we find

©
Y. HB™"Fp, B~"dp)log (BT, T, Fs, dp)
n=-—0o
©
= Y Fp,dp)log(B"**T,B"t, Ty, dp)
n=-—owo
1 2 ~
= E Z [XZD“D(B"+ l?) { (?B’ 7:Da aD, Bn * 1_{) - (B"+ 1?a7ba HD, 7:B)
n=-o

- (EB’ 7:Da HD’ Bn * 1-{) - (B” * I_f, 7D’ ED, 7iB)}
+ XZDaD(B”?) { (?iB’ 7:D9 _dD5 Bn?) - (Bn79-?Ds zfDa _a'B)
- (73’ 70’ HD’ Bn_f) + (B"?a?D’ ED9 ?B)}

r’,;zp-' Bn+1"—‘ = ZVY_ (5 7 Bn+1—t’
+ 12*P(7R){( t,7p,dp, Tg) — (75, Tp, dp, )



Symplectic Geometry of the Super Teichmiiller Space 73

— (B"t, 7p, Gp, Tg)+ (¥, Tp, Gp» B"?)}
+ P2 () {(B"T, ¥, Gy Fg) — (g Fi» Gy B'T)
_(Bn+l t, rD’ aD> aB)_(HB,7D’_ZiD’B"+1?)}]' (108)

The summation with respect to n yields

2 t(Fp, dp)log (B"* T, B"T, T, Gp)

n=-—o

_5 hm [X'DaD(BNt){("B’ Fp» dp, BNT) — (BT, 7, dp, ')
N

— (g, Tp, dp, BNT) — (BVT, Tp, Gp, dg) }
+ 1P2(B~NT){ (g, Fp» dp» B~NT) — (B~VT,Fp, dp, dp)
— (T, Tp» dp, B™NE) + (B™NT,Fp, dp, 75)}

'DaD( 75){(B"t, 7, dp, 75) — (T, Tp, dp, B'T)
—(B™NT, 7p, dp, Fg) + (T3, Tp, dp, BTNT)}

+ £*2(Gg) { (B~ T, ¥, Gp, F5) — (@, Fop, G, B~NT)

— (BVT, 7p, dp, dp) — (dg, T'p, dp, BYT) } 1. (109)

dg for N- oo,

Due to the equation, lim [B¥7] = { , we get (106). Q.E.D.
N

7g for N-> —o0

Now we proceed to the second derivatives of invariant functions. We give a
theorem here, whose proof will be given in the next section.

Theorem. Let t,,tp and t; be Fenchel-Nielsen tangent vectors corresponding to the
invariant functions 1, lg and I, respectively. Then

tAtBlC + (_)A(B+C)tBtClA + (—)C(A+B)tctAlB = 0. (1 10)

6. Proof of the Theorem

We shall prove the theorem in the previous section. We may show the following
equations written in components,

(@ tutpl, Htgtl, .kl =0, (111)
(®)  ttph A+ tptd, 4 Tl =0, (112)
© t1A -+ 1Tl — Tt A, =0, (113)
d) 7,74 + TpT AL + T T A = 0. (114)

Our method is based on a direct computation with Lemma 1.

Proof of case (a). Let I,,1;,1, be given by

l,=10g(AT,7,d,,d,), ly=log(BT,7,b,b,), l,=log(CT,T,€,,5,), (115)
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and we introduce a function F for three pairs of points 7;, q;, 7, €R; (i,j,k = 1,2),
F(BIG51 %) = B1 P2 (F){ (Fs G0, G 1) — (F1, 610, T2, T2))
+ (P15 77'2))({’7"(72){(71, G192, 72) — (T2, 41, 42, 71)}- - (116)
From Eq. (106) we obtain

ttly= Y Y F(XT'CIYT'G|by), (117)
Xe{C)\ST Ye{A)\SI'/{B)

tot =3 Y F(PT'BIQTIT (4, (118)
Pe(B)\SI" Qe(CY\ST/{A)

ttgl,= Y Y F(R'G|S™'B,|C)) (119)
Re{AY\ST Se(B)\ST'/{C)

Due to SPL(2,R)-invariance, Eq. (118) is rewritten by
tptyle = Z Z F(3i|PQ—IFj|PEk)
Pe(BY\ST Qe{CH\SI/<4)

= Y Y F(bl(QP) 'GP ')
PeST/{B) Qe{(CH\ST/{A)

= Y y Y F(b(QA"Y)" 1T Y 'G,
Ye(AY\ST'/{B) Qe{C)\ST/{A)n=—
= ¥ Y F(b|X T Y1G)). (120)

Ye(AY\ST'/{B) Xe{C)\SI'

Similarly we find

tt,= Y Y F(Y7'G|b|XT1E). (121)
Xe{CH\SI" Ye(AY\ST'/{B)

Thus Eq. (111) becomes

{F(Y™'G,|b}| X 'C,
Xe{CH\SI' Ye{A)\ST'/{B)

+ F(b,| X™1C,| Y Y@, + F(X ~'€,| Y ~'G,| b,)} = 0. (122)
This equation comes from the following lemma:
Lemma 2. F satisfies a cyclic identity,
F(pilq;IT)+ F(7lP:l4;) + F(4;|7:|P)=0 for 7,G;,TeR,(ij,k=12). (123)

Proof. The configurations of the three pairs of points on IR, are classified according
to the configurations of the geodesics, p,p,, 4,4, and 7¥,;

(I) A geodesic does not intersect the remaining geodesics.
(IT) A geodesic intersects the remaining separated geodesics.
(ITT) Three geodesics intersect each other.

We begin with case (I). Due to the symmetry we may assume the configurations
in Fig. 2. Then Lemma 1 readily leads to

F(ﬁilzjjl7k)= F(?klﬁilqj) =F(Ej|7k|ﬁi) =0. (124)
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r.
1
9
T
9

r
2
a I P4

Py P2 %
P2

Fig. 2. Two kinds of representative configurations of three pairs of points where one of the
geodesics, represented schematically by lines, does not intersect the others

f2

Py [

Q4 q,

f

Fig. 3. A representative configuration of three pairs of points where one of the geodesics intersects
the remaining separated geodesics

Thus Eq. (123) holds in case (I).
For case (II) we get from Fig. 3,

F(ﬂl?ilﬁj) =0,
F(pilq;17) = t(Pr, P71, 41, 425 72) — (V3. 41, G2, T1)}
=(71’61’62’?2){(71'1’$1’-i7’2972)_(_"‘Zsﬁl’ﬁz’_q‘l)
—(F1,P1, P2 T2) + (F2, P15 P2s 1)}
— (72,91, G2, T){(42, P15 P2, 72) — (T2, P15 P2, 42)
—(F1, P10, P25 T2) + (72, D15 Pan T1) (125)
F(Tjj|7k|ﬁi) = t(ap?fz){(ﬁz,?n?z,ﬁ]) - (51,71,72s$2)}
= —(ﬁz’?1’7z’-ﬁl){(ﬁ1aﬁuﬁz:ﬂ)—(71,61,52,ﬁ1)
— (72,41, G2, 71) + (71,41, 45, 72)}
+ (P 71, P2, D) {(P2, 415 G2, 71) — (F1, 41, G2, P2)
— (72,41, G2, 7)) + (71,41, 45, 75) }-
Due to some identities of the (super) cross ratios,
(71>?2,_Z‘3,—Z.4) = (?Za 71,73” E'3) =(74,73,—52, E’1),

(?19?29?3a?4)(?2’ ?5’?65 E.4) = (?1’?2’?35?6)(719?5’ E’65 E’4»)’ (126)
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P4 q,

ry T2

a4 P2

Fig. 4. A representative configuration of three pairs of points where three geodesics intersect
each other

we find
F(P:14;(7) + F(4,| 7| P) = 0. (127)

The case (IT) has been proved.
Case (III) reduces to case (II). In fact the direct calculations of Fig. 4 yields

F(BiG;17) = t(P1, Py I, )» = {(B¥2(q,) + yBP2(7,) ) i (7 )%,
F(G| 7| P = 6(G1, T)d2(Py)* = (157 + 2205} 7(P 1)+, (128)
F(F7:1d) = t(Fy, F)2E 2 (G,)* = {172(F) + 17(42)} 12 72(4,) *,

where we have written only the relevant characteristic functions explicitly to
simplify the expressions. Then the cyclic sum of F’s becomes

S F=Y FV4 Y FO4+ ¥ FO), (129)
cyclic cyclic cyclic cyclic
FO(P,14,17) =0, (130)
FOF(P:1G) = 6B ?(q,)*, (131)

F(l)(q]l "k[ P:) = {qu("l) + quqz(Pz) + Xq'qz(rz)}X”rz(Pl)*a (132)
FOFIG,T) = (dEP(F)) + 572(Fy) + 52 G) i 0(F )+, (133)

FOFIPIG) = 17 (G)xE7(d)+, (134)
Fm(‘]jl"k“’i): (135)
FOBIG,|7) = xgP(F)xE™(F1) %, (136)
FO(7|7:l4;) =0, (137)
FO(G,| Tl B) = x&™(F)x™(d1) %, (138)

where use has been made of the identity,
(E%(Z3) + 153 (Z) J1E () = 0. (139)
Each cyclicsum, Y, F® (i = 1,2,3), corresponds to a configuration in case (IT) and

cyclic

it vanishes. Thus Eq. (123) holds in case (III). Lemma 2 has been proved. Q.E.D.

Then case (a) has been proved. Note that the decomposition of ), F in (129) is
represented diagrammatically as cyelie
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P1
P4 92
ry r2
r r, -
qy Qs
94 P2
P2
92 "
" rp P2 P
+ +
Py Py Rl 9
Q4 f2

Fig. 5. A diagrammatic representation of the decomposition law in Eq. (129)

Proof of case (b). For A, =[¢,,¢,,¢3], we have

ige= Y Y X7V, XT'@)UY by, YT'B,)[€), €, 6] (140)
Xe{AY\ST Ye(B)\SI"

The linear reciprocity (90) leads to
tpTly = —tgt,he

=- Y Y Y by, YTUby)H(X YA, X Td,)[€), T, Cs) (141)
Xe(AY\ST Ye(B)\ST

We define a SPL(2, R)-invariant function for 5,7, q,eR,, (i=1,2,3; j,k=1,2),
G(5ilF)1G) = 150, 52 TP (@)@, P 1. P2, G1) — (G0, F1. 2 02))
+ 130, 52, ST {(G1, 1. P2 42) — (@2, 1. P2n 40} (142)
Similarly to Eq. (120) we get
ttly= Y Y G(PT'EIQ7YE,|by)

PeST Qe{AX\ST/{B)
= Y Y G(GIX G| YDy (143)

Xe{AM\ST Ye(B)\ST"

Then Eq. (112) holds due to the following Lemma:
Lemma 3. For any seven points, s;,p; and ¢, (i=1,2,3; j,k=1,2), on R, an
equation holds,
871,214+, d2) (51,52, 53] = t(q1,G)t(P 1, P2)[51,52, 531 + G(5:|P;1G,) = 0.

(144)
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Proof. The configurations of s}, p;, and g, on IR, are classified into two graphs;

(I) G=0. (5,p, does not intersect 4,4,.)
() G #0.

By the symmetry, the configurations of case(I) are represented diagrammatically in
Fig. 6. [We have omitted the configurations where t(Py, P,){(q 1, 42)[S1, 52, 53] =
t(G1,G2)t(P1,P2)[S1, 52, 53] =0.] For the left diagram in Fig. 6 we have

1P, P2)1(q 1, 42)[51, 52, 53]

z

— g = e 2

1/2
25,532 —_ = = — —
A A% S3‘12> [Zt(ph p2)[q2, S, s3]

Zslszzszsszsssl

82‘114225381

+ {t@'p?z)lOg[(EuTﬂ,?3,§2)(a1,§1a§3’ ﬁZ)]}r‘jZa ?1,3'3]]
_ szszquSS <zqzszzszsazsaqz

82 z ZSISZZSZSSZ

1/2
> {t(-ﬁ1s D) 10g(61,§1,§3,§2)} (42,52, 53]

419275253 5381

1/2
Zg,5,2, 24153253512, — = = — —
_ 518279283 < 4183538y squ) [2l(P1,P2)[q1, 53, 51]

82014228351 Zslszz.nsazsssl
+ {t(ﬁl’i)’Z) 108[(71.2,3"1,33,3'2)(_4‘2,_5'1’3’3,71‘1)]}m1,§3,§1]]
+ stSZZqzss (Zq1s3zs3szzszq1

82414225253 Zo. .2

1/2
> {t(?l’—ﬁl)10g(62,§15§39§2)}[61,_8.3,?2]’

(145)

$152752583“5381

t(q1,92)(P 1, P2)[51,52, 53]
= PSS+
1/2
4 2y 2o 2 . e e e v
=2 < e Szm) {t(‘h,‘h)log(lh,S3a31,52)}[172s S1,52]

8ZP1PZZS1SZ sxsz25233z

5381

1/2
—HZ”“Z””'<*“Z””‘Z““Z”"l) (21, 32) (P25, 5]

8ZP1PZZS3SI z z ZSJS[

+ {t(ala—qZ) log[(_p’1’§3’§17§'2)(?1’ _§3’§15_I_).2)] } [?2,?1,?3]]

S$152“5253

1/2
Z zZ V4 zZ V4 — . . —_ . —
_ Zsys3%pas ( p152%525 s1p1> {t(qb‘Jz)lOg(Pz,Ss,51,52)}[1?1,82,51]
8217111228182 2315228283ZS3S|
1/2
z z V4 VA V4 BN S
4 52837 Pas ( P153“s3584 W’l) [2t(4,92)[P1,53, 511
8Zp1pzzsm Zsy52Z52532 538
+ {t(_q.l’?iZ)log[(T)’25§’3,3'1,?2)(7”29?39_5‘1’7;1)]}[_ﬁl’TgB’Tg’l]]' (146)

After tedious calculations, we obtain

HP 1, P2)t(q 1, G2) (51,52, 531 —t(q1, )P 1, P2)[51, 52, 531=0.  (147)
The above Eq. (147) holds also for the other diagram in Fig. 6. Hence in case(I),
(144) has been shown to hold.

As for case(IT), we have essentially four diagrams to consider (see Fig. 7), and,
explicit calculation for the first two diagrams in Fig. 7 yields the same equations
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s, g, A2

q4 S5

Fig. 6. Two kinds of representative configurations of seven points p;,q; and s; (i=1,2;j=1,2,3)
where p;p, does not intersect 4,4,

S4 $1
pl s p2
Qqz 2
ay G2 a1
S2
S3 P2 53 P1
Sy S
P2
a a P2
S5 Q2 Py P}
P4 S3 S2 S3

Fig. 7. Four kinds of representative configurations of seven points p;,q;and s; (i=1,2;j=1,2,3)
where p,p, intersects 4,4,

as
t(P1,P)51,52531=0,
t(P1, PG 1, G2) 51,52, 531+ G5 p;1G) = 0. (148)

The remaining diagrams are decomposed into the sums of known diagrams:

Equation (144) holds for each diagram on the right-hand side of the above
diagrammatic equations, and hence Eq. (144) holds also in case(II). The Lemma 3
has been proved. Q.E.D.

From Egs. (140), (141) and (143), we find
taphe + sty + Tot,l,
= Y ¥ {UXTELXTE@Y B, Y T B[, T, T

Xe{AX\SI" Ye(B)\ST"
— (Y by, YT bo)HX T G, X TG, 6, T3] + GG X TG Y T b))
(149)
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Sy S S1
Q4 P2 P4 g a4 d,
= +
P 92 S, P2 P4 P2
S5 S3 s3 G2 s, S5
S1
P
qq 2
+
Sy Q2
S5 P1
S $1 S
P2
qq o P2 Rl a2
= +
Sy qz P1 G2 P2 S3
P4 S3 S S3 Sy P1

Sq

P2

+
o

im
» &

q1 52

Fig. 8. Diagrammatic representations of the decomposition laws for the last two configurations
in Fig. 7

This vanishes due to Lemma 3. Case (b) has been proved.
Case (c) and case (d) are shown similarly and we just give outlines of the proofs
below.

Proof of case (c). Due to the linear reciprocity (88), or (90), Eq. (113) can be written
by

L Thhc — Tptyhe — Tt yhp = 0. (150)
Since

Ttdy= Y Y w(YC,L YO YE)UQ G, Q7 dy)[ by, by, bs]
Qe{ACY\SI' YeSI"
= Y Y €, Tn )X X T Ta)[Y by, Y T b, Y b,
Xe{AD\SI" YeST (]5])
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we get
taTb’{c - Tbtaj'c - Tctaz}'b

= Z\ Y {UXTYaL, X T G)UY T by, Y T by, YT UBL)[€), 6, Cs)
Xe{AX\SI' YeSI"

—t(Y B, Y Yb,, Y b )X " Vd,, X " Vd,)[ T, o, Cal
— (T, o CHX T Vdy, X TGy [Y T By, Y 1B, YT B,]). (152)
We have a lemma, which is proven similarly to Lemma 2 and/or Lemma 3:
Lemma 4. For any eight points X; (i=1,...,8) on R, an identity holds,
H(X 1, X2)T(X3, X4, Xs5) [ X6, X7, Xg] — T(X3, X4, X5)1(X1, X3) [ X6, X7, Xg ]
—1(Xg, X7, Xg)t(X 1, X,)[ X3, X4, X5]1=0. (153)
Due to this lemma, Eq. (152) vanishes. Hence case (c) has been proved.
Proof of case (d). We have a lemma:
Lemma 5. For any nine points X; (i=1,...,9) on R,
©(X 1, X2, X3) (X4, X5, X6) [ X7, X5, Xo] + (X4, X5, X)T(X7, X5, Xo) [ X1, X5, X3]
+ (X7, Xg, Xo)T(X1, X5, X3) [ X4, X5, X6 ] = 0.
(154)

Due to this lemma, Eq. (114) is proved.
We have proven the theorem in Sect. 4.

7. The Super Weil-Petersson Kihler Form

We begin with reviewing the Kahler form'in the length functions on the ordinary
(non-super) Teichmiiller space for the compact Riemann surfaces H/I™ of genus
h=2. Let B(I') and Q(I") be the vector spaces of Beltrami differentials and holo-
morphic quadratic differentials, respectively. A natural pairing of B(I") and Q(I') is
given by the integral,

(#,¢)=Hf u¢, peB(I'), ¢eQ(I). (155)
r
A mapping A:B(I')— Q(I') is given by (cf. (49)),

AR = I U %) jdolo. ueB(r) (156)

where do(t) is the Euclidean area form. The kernel of the mapping A is defined
by N(I'). Then B(I')/N(I") and Q(I") are identified with the holomorphic tangent
and cotangent spaces of the Teichmiiller space T,(I"), respectively [14]. For any
ueB(I') and ¢peQ(I) (cf. (64)),

[ np= | Alule(mz), (157)

H/T H/I'
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so that N(I') is orthogonal to Q(I"). Multiplication by i is the automorphism J of
B(I')/N(I'), which defines the complex structure of T,(I"). The Hermitian product
for the Weil-Petersson metric is

huv)= [ A[u]A[vI(Imz)%, for u,veB(I). (158)

H/I
Accordingly the Hermitian metric g, the real symmetric form, is given by,
g(p,v)=2Reh(p,v), u,veB(I). (159)
and the Kihler form w is
o(u,v)=g(Ju,v)= —2Imh(y,v), p,veB(I). (160)

Let ¢, be the tangent vector to the Fenchel-Nielsen deformation about o (cf.
(86)). Due to Eq. (157), w(t,, t,) is calculated as

oltyty) = —2Im | A[t,]A[t;](Imz)?

H/I’
=—2Im | Z[zg(—’@,,)
H/T us
=2Re | t,0,=t,,, (161)
H/I’

which leads to the cosine formula (2).
Since the Weil-Petersson metric is Hermitian, the linear reciprocity identity
of the Fenchel-Nielsen deformation follows [2];
tolg + tgl, = 2Re h(t,, —its) + 2 Re h(tg, —it,) =0, (162)
hence w is, in fact, a 2-form;
o(t,, tg) + w(tg, t,) = 0. (163)
The exterior derivative of the Kéhler form w is evaluated as
do(t,, tg,t,) = t,w(tg,t,) — taot,,t,) + t,o(t,, tg)
— o[ty 1], 1) + ([t 1,1, 15) — 0([24, 2,1, 2,)
= totgl, +tgt Do+ bty — [ty tgll, + [t £, — [t5, 2,11,
= tyt,l, + tit,lp + gl (164)

and the last expression vanishes due to the quadratic reciprocity relation [2]. Then
o on the Teichmiiller space is closed. The Kahler form is expressed in terms of
geodesic length functions. Let [, (i=1,...,n) provide local coordinates for the
Teichmiiller space T,(I'). Let w;; = w(t;, t;) and (W;;) be the inverse of (w;;). Then

w is given by [2],
w=—Y WudlAdl,. (165)

i<k

Now we consider the Weil-Petersson Kihler form on the super Teichmiiller
space. We define the super Hermitian product h on SB(SI")/N(ST") (super Weil-
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Petersson product) using (49);
h(s,,0,) =¢(0,) j A[O'l]A[O'z]YZ, 01,0,€SB(ST)/N(ST’), (166)

SH/SI”

where the phase factor ¢(o)” is given by

£(0) = —1, for eveno, (167)
1, for oddo.

It satisfies
ho,0,) =&(0,)e(0,)h(05,04),
h(ioy,0,) =ih(o,05). (168)
Let t, =(t,,7,), ty = (t5,7,) be Fenchel-Nielsen tangent vectors associated with
1 i

S ~ 1
the super Beltrami differentials, o, = <i Y20, - Y25a>, op= < Y20, - Y25,,>,
T 4 4 n

respectively. The Riemann metric g on the super Teichmiiller space ST,(ST")
induced by the super Hermitian product h is

gty tp) = {h(GA’ op) + (“‘)ABh(aBa O'A)}
=2Re h(o4,05). (169)

Multiplication by i in SB(SI")/N(SI") defines the complex structure J of ST,(ST").
And the Kihler form w is

w(ty,tg) =g(Jt4,tg) =2 Re h(io 4, 05)

= —2Im h(o 4, 0p). (170)
Using (64) and (166) we find
2 _
oty tg) = — Reg f dzdeGin@a@p, (171)
T SH/ST
2 —
w(t,, Tp) = — Re, _[ d*zd*0iY* 0,5, (172)
T SH/ST
2 _
(1, 7,) = — Re j d’zd*0Y*E, 5|, (173)
T SH/ST
Due to Eqgs. (89) ~(91) we get
o(t 4, tg) =t4lp. (174)

The linear reciprocity (88) of FN deformation shows that w is actually an exterior
2-form on ST, (ST);

ot 4, tg) + (—)*Poltp, t 1) = t4lg + (—)*Btpl, = 0. (175)

7 This factor appears due to our convention of the complex conjugation and the definition of
the real part of a Grassmannian odd quantity
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The exterior derivative of w is evaluated as
dw(t 4, tp,tc)
= tq0(tp, tc) + ()T Otgooltc, t4) + (=) Ptcw(t 4, tg)
— o([tg,tg], 1) — (= V"B O0([tg, tc] t4) — (=) Pa([tc, 4], tp)
= tatgle + (=)* P Ottcly + (=) Ptct 1
—[tastdlc — (=) B+ OLtg, tdly — (=) PLic, t 1l (176)

The last expression vanishes due to the theorem of the quadratic reciprocity in
Sect. 5 and hence the Kdhler form w on the super Teichmiiller space is closed,

dw =0, 177)

Now we shall show that FN tangent vector ¢, is a Hamiltonian vector for the
Kihler form w, i.e., the Lie derivative L, ,w vanishes. Let I, be the inner product
of a form with a vector t, [16]. The 1-form I, ,® evaluated on tp is

I, ,o(tg) = wt 4, tp)

=14l
= —(=)"Pt5l,
= —dl,(tg). (178)
This implies that I, ,w is closed,
Io=—d, (179)
or equivalently,
oty,)= —dl,. (180)
Then the Lie derivative L, ,w vanishes,
L o=dl, ,o+]I do=0. (181)

That is, the Kéhler form w is invariant under the local flow generated by the FN

tangent vector ¢ ,.
The Poisson bracket {, }, is determined by the equation,

Iy i@ = —d{l4,Ip}p. (182)
Then we obtain
{Llg}p = (t4: t). (183)
Proof. We evaluate the left-hand side of (183) on ¢t using (178) and (110),
I[‘Aytalw(tc) = w([tA’ tB]s tC)
= [t4 5]l
— _(_)C(A+B)tCtAlB
= —d(t Jp)(tc)
= —d(@(ts,t5))(tc). QED. (184)
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8. Discussions

We have analyzed the symplectic geometry of the super Teichmiiller space. We
have shown that the Weil-Petersson Kéhler form w on the super Teichmiiller
space is a closed exterior 2-form. The Fenchel-Nielsen tangent vector has been
shown to be a Hamiltonian vector for the Kahler form. Unfortunately we have not
shown that the Kahler form has maximal rank at each tangent space; sdet w ,5 # 0.
We have not shown that the super Teichmiiller space has the complex structure;
however, according to D’Hoker and Phong [17], they showed the integrability
condition for the almost complex structure. Hence we have seen that the super
Teichmiiller space is a Kdhler supermanifold.

As for the super Beltrami equations, we have not discussed in the global context
the existence of the homeomorphic solutions. This problem was investigated by
Hodgkin [12] with slightly different super Beltrami equations. He showed the
global existence of the Bers embedding for the super Teichmiiller space. The
complex structure due to the Bers embedding is to be examined further.

In terms of the functions {I,}={l,4} (i=12,....,m k=12,...,4h—4)
providing the local coordinates of the super Teichmiiller space, the Kihler form is

w=Y WPl A dl, (185)

A,B

where the matrix (W48) is the inverse of ((—)Bw,p)=((—)Pw(t4,tp)). The
Grassmann odd elements of the matrix (W“8) do not vanish, in general, however,
there should exist the SPL(2,IR)-invariant canonical local coordinates {X, ©,}
(i=1,...,6h—6;k=1,...,4h — 4),in terms of which the Ké&hler form takes a simple
expression,

3h—3 4h—4

w=Y dX,_, AdXy+ Y dO, A dO,. (186)

i=1 k=1

The Grassmann even part will be some superanalog of the lengths of the closed
geodesics and twisted angles, however, the Grassmann odd part is unclear so far.
To give those coordinates explicitly is an interesting problem.
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