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Abstract. The geometry of the Teichmϋller space of the super Riemann surfaces
is examined. The Weil-Petersson Kahler form is calculated in terms of the super
coordinate functions which provide local coordinates for the super Teichmϋller
space. It is shown that the Kahler form on the super Teichmϋller space is closed.

1. Introduction

The purpose of this paper is to show that the Weil-Petersson Kahler form on the
super Teichmϋller space for the compact super Riemann surfaces of genus h ^ 2 is
closed. As for the ordinary (non-super) Riemann surfaces, it is known that the
Teichmϋller space is a complex Kahler manifold, and hence the Kahler form is
closed. A Kahler metric, defined in terms of the Petersson product for the auto-
morphic forms, was introduced by Weil [1]. The Weil-Petersson metric may
naturally project to the moduli space because it is invariant under the covering
transformations.

Wolpert [2] gave a description of the Fenchel-Nielsen deformation [3] in
terms of quasiconformal mappings. The Fenchel-Nielsen vector fields ί̂ , which
are generators of the deformation, were found to be related to the geodesic length
functions l#, introduced by Fricke and Klein [4] to provide local coordinates for
the Teichmϋller space. He showed a duality formula,

ω(ί*, )=-<//*, (1)
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where ω is the Weil-Petersson Kahler form, and also the cosine formula,

where the sum is over the cosines of the angles at the intersections of the geodesies
α and β on the Riemann surface. He also evaluated the Lie derivatives tΛtβlγ in
terms of the hyperbolic geometry of the geodesies and showed the quadratic
reciprocity relation,

tΛtβly + tβtyla + tytJβ = O. (3)

This identity leads to the conclusion that ω is a closed 2-form,

dω = 0. (4)

Here we will present the analogous results for the super Teichmϋller space.
We shall begin with a review on the super Beltrami equation for the super Riemann
surfaces along the line of our previous analysis [5] in the next section and we refer
to the super Teichmϋller space in Sect. 3. In Sect. 4 we evaluate the Lie derivatives
of super cross ratios and Grassmann odd super Mόbius invariants [6] along
geodesies. We show a superanalog of the linear reciprocity relation of the twist
derivative in Sect. 5. The quadratic reciprocity relation is also presented and its
proof is given in Sect. 6. In Sect. 7 we introduce the Weil-Petersson Kahler form
ω on the super Teichmuller space and we show that it is actually a closed 2-form.
The final section is devoted to discussions.

2. Preliminaries

In this section we will review the Beltrami equation for the super Riemann surfaces
along the line of our previous analysis [5].

A super Riemann surface (SRS) having compact body with / i^2 holes is
represented by a homogeneous space SH/SΓ [7-9] with a superanalog of the
Poincare geometry. The super complex upper half-plane SH is the universal
covering space of the SRS with one even and one odd complex coordinates z and 0,
respectively,

S// = {7 = (z,0)|Imz>O}. (5)

Note that Im z > 0 means that Im z 0 > 0 with z 0 being the body part of z. We shall
use such a convention for inequalities throughout this paper for simplicity. SΓ is
a super Fuchsian group, a discrete subgroup of superconformal automorphism
SPL(2,JR) of SH. The supergroup SPL(2,R) consists of such transformations as,

cz + d {cz + df

cz + d cz + d

where α, b, c and d are Grassmann even and α and β are Grassmann odd parameters



Symplectic Geometry of the Super Teichmϋϊler Space 55

with1

aά — bc— 1, α, ft, c, deR,

α = fo, J8 = ij8. (7)

Our convention of the "super" real axis R s is2

R s = {z*|Imz = 0, 0 = i0}, (8)

and hence all the parameters in (7) are real in this sense. Note that the above
transformation (6) is, of course, superanalytic and also a superconformal transfor-
mation,

Dz-ΘDΘ = 0, (9)

D S A + βA. (10)
dθ dz }

A super Fuchsian group SΓ is generated by 2h elements {AhBi} (i= 1,2,..., ft)
satisfying a condition,

Each element of the generators contains three Grassmann even and two odd
parameters and the condition (11) is invariant under At -> MAtM~l, Bt -> MBiM'1,
MeSPL(2,R). Then the set of generators actually depends onβh-6 Grassmann
even and Ah —A odd parameters. SΓ acts properly discontinuously on SH and all
its elements are hyperbolic, i.e., the reduced subgroups, where odd parameters are
put to zero, consists of hyperbolic elements.

The Beltrami equation for the ordinary Riemann surfaces is given by,

wE = μwz, ZEH, (12)

where μ is a Beltrami differential defining a (— 1, l)-tyρe tensor on the Riemann
surface. The super Beltrami equations proposed in [5] are given by,

Γ 'Q β 1

Dw — ηDη = v< dw + ηdη (Dw — ηDη) >,
1 2 Y J (13)

_ Γ 'β β "j

Dw — ηDη = — σ< dw + ηdη (Dw — ηDη) >,

1 We adopt such a convention of complex conjugation as,

The real part Res and imaginary part Ims are defined by

-(X + X), for even X, \-(X-X\ for even X,

\-(X-iX), for odd X, \-(X + iX), for odd X
12 \2i
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where D is given in Eq. (10) and

4_, a
dz dz \ j

§00, (15)

and (v, σ) = ~μ are our super Beltrami differentials. They are Grassmann odd tensors
under SPL(2,R) of weight (-^,0) and (-1,^), respectively;

z\ ίc?) = [β2(T)Ϊ7(TJ-1]σ(7), Ω(z) = (DΘ). (16)

We shall explain the derivation of Eq. (13). It does not seem easy to get the
super-extended version of the Beltrami equation (12) as it stands. So we rewrite
the Beltrami equation as

dw = dzhl + dzh +,
(17)

dw = dzh+ +dzh_,

where complex-valued coefficients hb

a (α, b = ±) satisfy integrability conditions,

dhχ=dh+_9 dh~=dhZ, (h+=h^). (18)

Hence only h+_ (or, h~ =h*) may be regarded as an independent variable and it
involves the degree of freedom of the Beltrami differential μ. In fact,

μ = h+_/h+

+. (19)

Equation (17) actually represents the relation between the set of basis 1-forms
in both coordinate systems. The super Beltrami equations should be similar to
that. In considering the question, we should bear in mind that the basis 1-form
dz is a tensor under the Mobius transformations, the automorphism of the complex
upper half plane, while the flat basis 1-forms E+ =dθ and E~ =dθ are not tensors
under the automorphism SPL(2,R) of SH, although the rests, E++ =dz + θdθ and
JEΓ" = dz — θdθ, are tensors of weight (—1,0) and (0, — 1), respectively. Hence we
shall seek for tensors corresponding to dθ and dθ. The proper basis 1-forms having
tensorial transformation laws under SPL(2, ΊR) are found to be,

E+(z) = dθ + l(^-{dz + θdθ), (20)

where Y is a ( — \, —\)-tensor (15) and E++ and E+ are tensors of weight (—1,0)
and ( — ̂ ,0), respectively.

The super Beltrami equations corresponding to (17) are

EA(w) = EB(z)Hl, (21)

with H% satisfying the integrability conditions. The analysis of the integrability
condition for the flat basis 1-forms EA can be done and the corresponding coefϊί-
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cients H^ should take the form [5],

57
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(22)

with

(23)

Equation (23) implies that ξ = H^+ and φ = H+_+ are independent Grassmann
odd superfields and hence involve the super Beltrami differentials. £'s (20) and £'s
are related,

Ί o - * ϊ
Y

(MΛ

B(z)) =

0

0 1

0 0

V0 0

0

1

0

DY

Y
0

1

(24)

and hence so are HA and HA,

HA

B(Ί) = (M - ι (25)

We find that H + + = H ^ + and then we get the super Beltrami differentials defined

by,

σ = H ! + / i / ^ . (26)

And the super Beltrami equations are given by (13). The result of the analysis of
the integrability conditions agree with the fact from the 2D supergravity theory:
Howe [10] showed that the independent components of E^δE^, where E^
are supervielbeins, are //+, /J+ + , H++ and their c.c. and the degrees of freedom
of the super Weyl and local Lorentz transformations are involved in H\ and
its c.c.

Next we shall solve the super Beltrami equations. In fact we examine the
linearized equations (cf. Refs. [11,12]). We extend the Beltrami differentials to the
super lower half-plane SL by reflection. According to our convention of the "super"
real axis (8), the super Beltrami differentials on SL should be

iσ(z, - iθ\ iv(z9 - iθ) ~zeSL. (27)
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We normalize the mapping 7-> vv at z = (0,0), (1,0) and (oo,0) as

vv = (O,O) at 7 = (0,0),

vv = (l,*) at 7 = (1,0),

vv = (oo, finite) at 7 = (oo, 0). (28)

The third condition means that w/z2 ->0 and τ//z->0 for z-> oo at θ = 0. We can
take such a normalization due to the symmetry of the solution vv(7), i.e., if vv is a
solution, then vv = Aw, AeSPL(2,1R), is also a solution.

Rewriting the variables w, v and σ as

vv = z + vv, η = θ + ή, v = v, σ = σ, (29)

we obtain the linearized super Beltrami equations,

Dw-ή- ΘDή = v, Dw - ΘDή = -σ zeSH,

Dw-ή- ΘDή = ΐv(z, - i0), Dvv - ΘDή = - iσ(z, - iθ) zeSL,

with the normalizations,

w = 0 for 7 = (0,0), (1,0),

ή = 0 for 7 = (0,0),

~* > for z ^ o o , 0 = 0.
ή/z^O J

We shall solve the equations as follows: expanding each variable in 0,

vv(7) = vv°(z) 4- 0vvθ(z) + Θw\z) + θθwθθ(z), etc.,

we rewrite Eq. (30) in components,

(30)

dw°-2ήθ = vθ,

dw~θ-2ήθd = vθ~θ,

= σθ,

(31)

(32)

(33)

dwθ 4- dή° = σ^, etc.

These equations can be solved by the use of potential integrals: for example,

z-t
(34)

where /(z) is an arbitrary analytic function, which is determined through the
normalization conditions (31). The solution to Eq. (30) with the boundary condi-
tions of Eq. (31) is found to be

+ - J d2t[_R(OΛ%z)σ\t) +
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- A J d2t [Λ<°>(ί, z)σ°\t) - iRP\ϊ, z)d*W], (35)
2π

- ±- f Λ [tf <°>(ί, z)σ*(ί) - ΐΛ<°>(f, z
2π

where
_ , Λ I W x 1 \ — z

ί - z t \-t

(36))

t — z t

Here use has been made of an assumption that

vfz) = σ(7) = 0 for 7 e R s . (37)
This is based on the following analysis of the transformation laws of the super
Beltrami differentials (see Eq. (16)): the transition function Ω takes the value of
χN±ll2(Φl) on the fixed points, with χ and N being the sign factor and the norm
function, respectively [13]. Hence vfz) and σ(~z) vanish on every fixed point. Since
the bodies of fixed points are dense on R, we assume that the fixed points are
"dense" on R s, and we get Eq. (3.7). [Unfortunately we have not given a rigorous
meaning of "dense" on R s so far, and hence we just assume (37).] Note that Eq.
(37) does not mean that each coefficient in the expansion with respect to θ vanishes.
Especially, the values of σθθ(z) and σ\z) (or σ\z)) on R can remain arbitrary.
Equation (37) implies (cf. 32))

v°(z) = vθ(z) + iv\z) = σ°(z) = σθ(z) + iσ\z) = O for z = z. (38)

Due to the properties of the super Beltrami differentials (37) we see that the solution
w (35) maps the "super" real axis R s onto itself,

(39)

In fact w(3c), JC = (x,α)eR s, is given by

w(x) = - f d2t [K(<U)(i, x)σ\t) + RS0Λ% x)σ*(ή]

— J d2t [R(0)(ί, x)σθ\t) - iRi0\t9 x)ά
2πH

T- ί d2tlR(0\u x)άθ~θ(t) - iRi0\t, z)d#(t)l

— dx f d2t[p°>ιXux)σ\t) + R(0Λ%x)OHt)-]. (40)
2π H
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Note that we should be careful in calculating dR{0Λ)(t,z) and dR(0Λ)(t,z) of ή(z)
in (35). They are evaluated as,

- δ f d 2 t [ Λ < ° 1>(t,z)*i

In H

: - ( 3 + 3){<i2ί[Λ(O 1 ) ( t l : ) ^ ί ) -
2π H

ΊΓeR,

+ j Λ[<5(ί z)
In

= — dx\ d2tlRiOΛ%x)σ\ή + fl(°'1)(f,x)<^(r)] + -^(x) . (41)
2π H 2

In Eq. (40), we find that vv[/!](?), ? e R s , is determined by only σ(7), more precisely
by σ (̂z) and σ™(z) [11], and hence we may write vv[σ]("z), T e R s . Those equations
are used in the next section.

3. The Super Teichmϋller Space

The Teichmuller deformation of SRSs is characterized by the isomorphism of the
super Fuchsian groups. The super Teichmuller space ST(SΓ) is the set of equi-
valence classes in the isomorphism under 5PL(2,1R). The super Teichmuller
space STh(SΓ) of compact SRSs of genus h{ ̂  2) is a 6h — 6 even and Ah - 4 odd
dimensional supermanifold3. The body of STh(SΓ) is the ordinary Teichmϋller
space Th(Γ) with spin structure. STh(SΓ) is described more definitely as follows:
let wμ be the solution of the super Beltrami equations. Consider the isomorphism

fr°m SΓ to a deformed super Fuchsian group SΓ*;

AeSΓ. (42)

The relation j [T^i] ~j\jfii\ means that there exists a SPL(2,1R) transformation M
such that

A\ji2\ = MoA\jil~]oM-1 for VAeSΓ. (43)

Then STh(SΓ) is a set of the equivalence classes of the isomorphism^/!].
We shall be interested in the local structure of STh(SΓ). We consider the

deformation corresponding to an infinitesimal super Beltrami differential εμ;

(44)

3 The super Teichmϋller space should be regarded as a superorbifold due to the Z 2 identification
of the odd coordinates [11]



Symplectic Geometry of the Super Teichmϋller Space 61

and

δz
(45)

ήΓμ](Az) = ^ ^ i

where A~z = (A(z)9 A(θ)) takes the same form given by (6). Using Eqs. (35) and (45)
we obtain

(i) 4 [ μ ] = 0 f o r μ = (v,0).
(ii) A\jx] is superholomorphic, i.e., Zλ4[μ](z) = 0 and Dλ\jx](θ) = 0.

The first result together with Eq. (44) implies that only the super Beltrami
differential of μ = (0, σ)-type is relevant for our purposes here. Let SB(SΓ) and
SQ(SΓ) be the complex supervector spaces of (— l,j) differentials and superholo-
morphic f-differentials, respectively. We shall define the complex (anti) linear
mapping A from SB(SΓ) to SQ(SΓ): the solution >/[μ](7) in (35) is a linear func-
tional of the super Beltrami differential μ = (v, σ) in the real sense. A complex linear
functional can be obtained by

= - J d2tR{0){t, z)σ^ή + -d J d2tR{0Λ\t9 z)σ*{t\ (46)
π ππ H

which is a functional of σ(T), or σ (̂z) and σθΰ(z), and superanalytic for ΊίeSH.
Operating DA on Φ we get

= - - f ΛdfdWί σ ( 0 _ . (47)
πsfl ( ί-z + iίβ)3

One can see that the right-hand side is a superholomorphic f-differential from the
transformation low under SPL(2,M)BA for each quantity in the above equation;

- 3

Adtdtdξdξ = LΩA(7)Ω A(Ύ)]dtdtdξdξ, ΩA(7) = D(AΘ). (48)

Then the mapping A is defined by,

/l[σ](z) = - - ί dtdtdξdΣ_ σ{t\- 3 , (TGS5(SΓ). (49)

Note that ( - 1 , ̂ -differential σ in (49) is an element of SB(SΓ) and hence it is
either Grassmann even or odd. We find, for any element S in SQ(SΓ), that
Y2SeSB(SΓ) and

]=S. (50)
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Proof.

s ] ( z ) - - f dhάH 5 ( 7 ) y

(t-z + iξθ?

= f d2td2ξ 1 (Imί) — 3ί — ξθ + ξξ
πSH (t-z) L (t-z) J
4i c .Ί Γ (Im ί)S (ί) (Imί) _ Λ / X Λ |

-z) 2(ί-z)

+ 2\(t-z) ( t - z ) 2 + 3 ( t - ;

= J_ J fcS(x) , -v-/ = 5(:?) Q E D (51)
2πi - oo x — z

It is useful to introduce a complex linear mapping H :SB(SΓ) -* SB(SΓ) defined
by

% ] = ̂ 5 σeSB(SΓ). (52)

We will write as

Im H = SH(SΓ) (space of harmonic super differential),

Ker H = N(SΓ). (53)

Equation (5) implies that H2 = H and hence

SB(SΓ) = SH{SΓ) 0 N(SΓ). (54)

Now we show that the following four conditions are all equivalent [14] : 4

(a) A\JL\ = 0 in SH for VΛeSΓ.

(b) w[σ] = 0 on R s .
(c) Λ[σ]=0inSH.
icii ii I u j ^ u in ij/7.

Proo/. (c)<ί>(d). This is due to (52).

/l[σ](T) = 2D4Φ[σ](T) = 2 ^ φ [ σ ] ( ? ) = 0. (55)

From the definition of Φ (46) and the boundary conditions for ή(~z) in (31), the
above equation yields that Φ[σ](T) is a polynomial in ~z as,

4 The proof of (a)=>(b) is based on the analysis below Eq. (37) and hence is not rigorous
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where α's are complex constant parameters. And this implies

$d2tR{θXt,z)σ°<>(t) = 0,

(57)

-d j d2tR(OΛ)(t,z)σ^t) = a, + a2z, ΊeSH,
π H

and hence j d2tR(OΛ\t,z)σθ(t) is a polynomial in z. Then from Eq. (40) we get
H

vv[σ](^c) = \(a2 + ά2)x2 + (fli H- flx)x + (real const.),

Due to the boundary condition for vv(7) in (31), all the (real) coefficients on the
right-hand side should vanish and we get to the condition (b).

(b)<t>(c). The condition (b) implies

- i d
2π{ v ' " (59)

δx J d2tR(°Λ\t,x)σ\t) = -JR
(O4)(i,x)d«(ij,

H

Then Φ[σ~\(~z) can be superanalytically continued in the whole supercomplex plane

-ldhR{0\t,z)^Ht) + -d^d2tRΦΛ\t,z)^Ht) for zeH,

7 I" m

-ld1tRiO\t,z)σβ«(t)--d\d2tE^Λ\t,z)σ%t) for zeL.
71 H 71 H

Similarly, Ψ[σ~\(z\ defined by

= - f d2tR(°Λ% z)σ\t) - — J d2tRi0)(t, z)σβo{tl (61)
π 2π

can also be superanalytically continued in the whole supercomplex plane S<E.
According to the boundary conditions (31), we get Φ[σ](T) = θ x (const) and hence
Λ[σ](z) = 0.

(a)=>(b). By the use of (45), one can see that vv[σ] vanishes on every fixed
point, and hence it vanishes on R s .

(b)=>(a). This is a direct result of (45) and the condition (ii). Q.E.D.

A natural pairing of SB(SΓ) and SQ(SΓ) is given by the integral,

(σ,S)= J σS, σεSB(SΓl SeSQ(SΓ). (62)
SH/SΓ

Then we find

(<7,S) = 0 for VSeSQ(SΓ). (63)
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Proof. For any σeSB(SΓ) and SeSQ(SΓ), we shall show an equality,

f σS= j Λ[σ]Sr2. (64)
SH/SΓ Stf/SΓ

_ 4/ 1
Let X( ί ,7) = — . Then the right-hand side of (64) is evaluated as

π( + iξθ)3

i d2zd2θϊ f d2td2ξK(7,z
SH/SΓ \_SH

ϊ
\_S

J d2zd2βΓ J d2td2ξK(7,Ύ)σ(t)]s(z)Y2

/SΓ \_A(SH/SΓ) J

I ΔU I/I I U LU is-ΓV^ I , 6 )U\ I ) ID

AeSΓSH/SΓ

AeSΓA-HSH/SΓ) \_ SH/SΓ J

= J d2td2ξσ(Ύ)\ $ d2zd2ΘK(t,Ύ)S(7)Y2]
SH/SΓ \_SH J

= J σΛ[7 2 5]= j σS, (65)
SH/SΓ SH/SΓ

where use has been made of Eq. (50). Then (63) has been proved. Q.E.D.

4. iS7>L(2,R)-Invariant Coordinate Functions

First we consider a local super coordinates for the super Teichmϋller space STh(SΓ).
We shall see that the Grassmann even coordinates can be essentially the same as
those for the ordinary Teichmϋller space Th{Γ) which is the body oϊSTh{SΓ). Fricke
and Klein established that local coordinates for Th(Γ) are given by an appropriate
set of geodesic length functions. The (non-super) geodesic length functions are
invariant under the Mόbius transformations, however, they are not under
SPL(2,JR). We shall give the SPL(2, R)-invariant length functions. (The action of
SPL(29JR) extends to the boundary R su{oo}.) Let (zx,~z1,~z^~zA) be the super
cross ratio defined by,

^ ^ z^zt-zj-θftj. (66)
Z 1 4 Z

14Z23

This is invariant under SPL(21R) and its body is actually the ordinary cross ratio
invariant under the Mόbius transformations. Let α be a geodesic on SH/SΓ
corresponding to an element AeSΓ and 7A = (rA, vA) and ~aA = (aA,μA) be repelling
and attracting fixed points for the element A, respectively [13]. Then the super
length la is give by,

la = log(A7,797A9aΛ) for V7eK,-{7Λ9aA}. (67)

Note that the body of la is precisely the (non-super) length for the element of the
Fuchsian group corresponding to AeSΓ. An appropriate set of those length
functions /α provides the Grassmann even coordinates for STh(SΓ).
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Next we consider Grassmann odd coordinates. Let λz be a SPL(2, R)-invariant
odd quantity defined by,

^ = [ 2 ^ , 2 3 ] = , β123 =
Ul2Z23Z3l)

Note that the ordering of the three points in each λz is fixed (up to cyclic permuta-
tions) by demanding that ( z j - z 2 ) ( z 2 - z 3 ) ( z 3 - z x ) > 0 . Using the invariant we
can provide Ah — 4 odd coordinates. The Teichmuller deformation of the SRS is
described by the isomorphism of the super Fuchsian groups and any matrix element
of a super Fuchsian group is a function of 6h — 6 even and Ah —A odd parameters,
so that the deformation of the SRS is caused by the change of the 6h — 6 even and
Ah —A odd parameters. The Ah —A odd parameters in the generators can be odd
coordinates for the super Teichmuller space STh(SΓ), however, each odd para-
meter, in general, is not SPL(2,R)-invariant and then it will be difficult to get a
SPL(2,]R)-invariant volume form. We present the SPL(2, R)-invariant Ah -A odd
coordinates [6]. Let SΓ be the super Fuchsian group of a reference super Riemann
surface SH/SΓ, {Ah Bt} (i = 1,..., h) generators of SΓ, and {uf ,~vf} and {uf,Ί)f}
the fixed points of the generators Ax and Bh respectively. Then a set of the odd
coordinates {λκ} (K = 1,..., Ah - A) for STh(SΓ) are given by,

{λκ} = { [u*,7?, ufl D?f,T?ί, υfl K,TΓf, u*], [ΐ?ί,TΓf,IΓf] }, ( = 2,3,..., h).
(69)

Since the condition (11) on the generators is invariant under conjugation, one may
regard Ax as "diagonal," i.e., the fixed points of A1 can be put to {(0,0), (oo,0)}.
Then the condition reveals that the parameters in B1 is written by the parameters in
{Ap Bj} (7 = 2,..., h). The {λκ} represent essentially all the odd parameters in the
remaining generators, {Aj9 Bj} (j = 2,..., h). Then {li9 λκ}(i=l,...,n;κ=l,...,Ah-A)

provide the local coordinate system for the super Teichmuller space STh(SΓ) (see
the first footnote in the previous section). In the following we consider the differen-
tials of those coordinates.

For distinct points on R s, ~p = (p, α), ~q = (q, β\ Ύ = (r, 7) and 7 = (s, δ), we define
the superholomorphic odd function Φ(~z; ~p, ~q, 7,7) and even function Ψ(~z; ~p, ~q, 7)
on SH;

Φfz p, q,7,7) = L(1)(7; p,?)L(0)(7;7,7) + L(1)(7;7,7)L(0)(7; p, q)

where

7,7), (70)

Ψ(z; p, q97) = IU°\7; p9 q)L™(z; q97)L<°>(7;7, p)]^

ZpzZqz q-z-βθ p-z-ctθ (p-q)(q-z)

?,?)si=---?^-_£z« (71)
z

PzZ,z p-z-a.θ q-z-βθ

They have the following properties for AeSPL(2,Έί),

Φ(AΎ; p, q,T,7) = Φ(Ύ; A-% A~% A~XT, A~ιl)Ω~\

Ψ(AΎ; p, q,T) =ψ(z;A-ι-p,A-% A~ 1 T ) β 7 3 . (72)
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The Poincare series of Φ and Ψ are given by

AeSΓ

PΨ(z;p,q,7) = £ Ψ(A7;p,q,7)Ω3

A. (73)
ΛeSΓ

Both of them are of weight (f,0) and hence PΦ (PΨ) is an Grassmannian odd
(even) element of SQ(SΓ). [Note that SQ(SΓ) was defined by the vector space of
superholomorphic —differentials, and it involves both Grassmannian even and
odd quantities.] As for the convergence of the Poincare series, we have not given
a rigorous proof. If we put the Grassmann odd parameters zero, we can show that
both of them convergence absolutely on compacts by the standard analysis. Since
both of them are superconformal tensors of weight (f, 0) and both the body part
of PΦ and the odd parameter independent part of P ^ a r e convergent, we can
expect that the Poincare series converge [15].

Let wεμ = (z + εw[/Γ]Cz), θ + ετ/[/Γ|O0) be the linearized solution of the super
Beltrami equation. Then using (40), we get

^ (wεσ( p),
dε

ε=0

*MCp)-*[σ](r)-

p-

w[ί

•I

s —

r](l

αy

α5

>](

Γ) —

— 5

"5)5

ή[σ](q)δ - βή[σ](~s)

-βδ

— aή[σ] (?)

— βή[σ](7)]
— - V

- r - ]8y

Similar calculation leads to

= - R e s

(74)

(75)
SH

Using (72) and (73), we can rewrite the above equations as the invariant pairings
on a SΓ fundamental domain,

^ (
dε ε = 0

e s j d2Z(
SH/SΓ

= -Re s j d2zd2θσ(z)PΨ(z;-p,q,Ύ). (76)
ε = 0 π SH/SΓ
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Let tσ denote a derivative operator (tangent vector) acting on the functions,
(p,~q,7,~s) and [~p,~q,~r~\. The Grassmann even-odd "parity" pG of tσ is assigned
to be opposite to that of the Beltrami differential σ :p G [ ίJ = p G M + 1 (mod 2).
Operating tσ on the length /α of the closed geodesic α associated with AeSΓ, we
obtain

tσla = tσlog(A~s9%7A,aA) = -Rea J d2zd2θσ(-z)PΦ(z;A%%7A,αA). (77)
π SH/SΓ

Let Θα be a superholomorphic f-differential defined by a Poincare series,

®«C?) = Σ θ(C%7A,αA)Ωl
(78)

where <̂ 1> is the cyclic group generated by A. We find

PΦςz;A%%7Λ9αΛ) = 2Θα(T). (79)

Proof. Using (7) ~ (72), we calculate the right-hand side of the equation,

BeSΓ

Φ(B7;A%%7A,~αA)Ωl

= Σ Σ Φ(A"CΎ;AXl,7Λ,αA)Ω3

Anc

Ce(A}\SΓ n=-oo

Σ Σ
Ce<y4>\SΓ n= -oo

;X1 ""T, A~nT)

Ce<Λ>\S/Ί

(-n)-G(l-π)

o (8°)
aA-^\z)-μA^ψ)) j

where
F(m = , G(m = , (81)

An(s)-C(z)-An(δ)C(θ) An(s)-C(z)-An(δ)C(θ)

and they have the following limits;

μA-C(θ)
(n -v oo),
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1

lim G(ή) =
aA-C(z)-μAC(θ)

1

(n->oo),

(82)

{rA-C(z)-vAC(θ)

Thus we get

PΦ(~z;A%797A,aΛ)

μA-C(θ) vA-C(θ)ίL^(CΎ;TA,aA)\
aA-C(z)-μAC(θ) rA-C(z)-vAC(θ)

1 1

rA-C{z)-vACφ) aA-C(z)-μAC(θ)

μA-C(θ) \ μΛ-C(θ)

>})*rA - C(z) - vAC(θ) aA - C(z) - μAC(θ)J aA - C(z) - μAC(θ)\

(83)

We see that the right-hand side is 26>α. (See Eq. (71).) Q.E.D.

For the coordinate functions {/,-,λ κ } ,( i=l~n;κ=l~4h — 4), we get

ίσ/i = - R e s J d2zd2θσθh
It SH/SΓ

2 (84)

tσλκ = -Res j d2zd2θσΞκ,
π sH/sr

where

Equation (84) implies that the cotangent vectors, dl{ and dλκ, correspond to the
superholomorphic f-differentials <9; and Ξκ, respectively. The Grassmann even-odd
"parity" pG of dlt and dλκ are opposite to those of <9t and Ξκ respectively, similarly
to the case of tσ and σ.

5. The Super Fenchel-Nielsen Deformation

In the theory of the ordinary Riemann surfaces, the Beltrami differential

ta = -(lmz)2φa, (86)
π

where φa is a holomorphic quadratic differential, which corresponds to the θ-
component of 6>α, is identified with the tangent vector to the Fenchel-Nielsen
(FN) deformation about the closed geodesic α [2]. One generalization of the FN
deformation for the super Riemann surface would be that ία(τα) is the tangent
vector to the "even (odd) FN deformation" if ία and τα are derivative operators
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associated with the (—1,^-differentials5,

t^-Y2ΘΛ,
π

τa^-Y2Ξa. (87)
π

The even FN deformation is essentially the same as the ordinary one, however,
the geometrical description of odd FN deformation is obscure so far. Equation
(87) gives the correspondence between the elements, ία and τa9 of the tangent space

to the super Teichmϋller space and the elements, - Y2 Θa and - Y2Ξ%, oϊSB(SΓ).
π π

Then we find the linear reciprocity identity of the FN deformation;
tAlB + (-)ABtBlA = 0, (88)

where we have used the convention that tA = (ία, τa), lA = (/α, λa) and the sign factor
{-)AB is an abbreviation of (-)^[U]PG[/B] = ( ^ P G ^ I P G M

Proof. From (84) and (87), we get

ία/, = ̂ R e s J d2zd2θiY2ΘaΘβ=-tβla, (89)
71 SH/SΓ

ίΛ = 4 R e ί d2zd2θiY2θ.Ξa=-τ.la, (90)
7C SH/SΓ

4 d2zd2ΘY2ΞaΞb = τbλa. Q.E.D. (91)

In order to evaluate the integrals we rewrite the above equations as,

tjβ= Σ t(C- 1 r i l ,C- 1 β i l ) log(BT ϊ T,r B ,α B λ (92)
Ce<A}\SΓ

ί Λ = Σ t(C-17A,C-ιaA)[~bi,~b2,~b3l (93)
Ce</l>\SΓ

τA= Σ τίC-^.C-^C"1^)^^,^! (94)
CeO4>\SΓ

where we have introduced the derivative operators t(Ύι,~s2) and τ(T2,~s2,~s3), 7/GR S ,

acting on (zl9Ύ29139ΎA) and I~zl9~z29"z3']9 %s1Ra9 as (recall (70) and (78) for
definitions)

= ^ R β s I d zd uiY (y\Z] si, s 2 ) Φ ( z ι ZΛ, z2, z 3 ) Z4.)) (95)
π 2 SH

5 We use a convention that S β is a superholomorphic f-differential corresponding to a cotangent
vector dAa = d["fl1,"fl2»"fl3]
6 Both of them satisfy the assumption (37)
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z2
d 2 z d 2 e y 2 ^ ( z ; ^ ^ ^ ( z ; 7 ^ , 2 3 , 2 4 ) , (96)

SH

^ R e s J d2zd2θiY2θ(-z;-sί9-s2)ψςz;Ίl9-z29ΊJ9 (97)
π s//

= ^-Re s J d2zd2ΘY2Ψ(z;7l9729Ί3)Ψ(z;'zl972973). (98)
π SH

Note that these equations are invariant under the cyclic permutations of {7J. Let
SJSJ be a geodesic with the endpoints ~sh 77 , separating SH into two regions. [The
ordering of sf and s ; defines the left and right regions.] We have the following lemma.

Lemma 1. For ztelRs (/= 1,2,3,4), we have

I i = i

~ ( z i > 51> 5 2 ? ^σίi)) " " (Zτ(i) > 5 1> 5 2 ? Z ί ) "+" ( Zh 51> 5 2» Z t ( i ) )- '

XJPC?») , 7ΓΓ2

ίii θ j i y + f ί i ί ^ + bήθtιiJ + Z-^ΘSΛ (100)
zij zki zij zki J

( Z ? ? ? ) Γ

A L ίz z z ) 1 / 2

. ^sis2g(0 . θs3Siσ(i) ^sιs2τ(i) ^s3sit(Q

4

+ y
z z z
ΔSlS2ΔS2S3ΔS3SιJ

'2

θjσ(i)τ(i) , θs2S3σ(i) , ®sxs2σ(i) ^S253τ(i) ^sis2t(i)

Ziσ(i)Ziτ(0 Ziσ(i)Zs2s3

 Ziσ{i)Zsιs2

 Ziτ(i)Zs2S3 Ziτ{i)Zs\s2

1 3 ^ 7 7 7
T ^ΓT T T l - V , , s i S 3 ^ ^ ΔsιiΔs2S3Δjk

z i Z2 Z3J - L / Z);^ T^JT:
s2,
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= -Y y^sH~z\ Zs2J
Zs3Sl

zjk

[6 - (73,"z/ ,Tί,T2) - (~s2,~zj9~zh~s3) - (su~zj9~zh~s2)

-(72,7pΎhl1)-(73,7kiΎhl2)-(72,~zk97h73)

-(7uΊk,Ίh72)-(7^7^,7^, (102)

where

(i) The suffices {ίj,k} take {1,2,3} in cyclic order.
(ii) σ and τ are the elements of the permutation group S4 given by

ί1 2 3 4\ Λ 2 3 4\
σ = \ I τ = [ . (103)

\3 4 1 2) \4 3 2 1/ K '
(iii) χ^Sj(~zk) is the left characteristic function;

1 if ΊkE ίthe left r e g i o n of^> (104)
θ otherwise.

(iv) XLSj(~zk) can be replaced by —χζSj(~zk)> where χSRJ(~zk) is the right characteristic
function.

Proof Equations (95) ~ (98) are evaluated cumbersomely but straightforwardly
by the use of contour integrals, yielding (99) ~ (102), respectively. Q.E.D.

As an explicit example, let us consider a configuration of {%,~Zj} illustrated in
Fig. 1. [Here and hereafter, in the figures the "super" real axis is represented as a
circle in order to give an information of only the ordering of the points.] Then
Eq. (100), for example, becomes

Z 2 3 ^ i 1 ^ ι Z s ^ Ω ι Z s 2 l / J , Z S 2 l
^5131

1 J

4

Z 2 , T 1 ( S " 2 ) } 1 / 2 [ 7 1 ( T J . T J .

(105)
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Fig. 1. A configuration of five points on R s which is represented schematically as a circle. The
left and right regions are for the geodesic s^s2

In general, the right-hand sides of Eqs. (99) - (102) are functions of the SPL(2,R)-
invariants, (*, *, *, *) and [*, *, * ] , so that we can compute derivatives of all orders.
It is now clear that Lemma 1 gives the right-hand sides of Eqs. (92) ~ (94) explicitly.
In particular, the derivative of the length function reduces to

tjβ = Σ [ * P D ( 7 B ) { ("B, ~rD> "D> ~rB) - (7B, 7D, ~aD, ~aB)}

D(aB){(rBi7D,~aD9aB) - {aB,7D9aD97B)}]9 (106)

where ΎD (aD) denote the repelling (attracting) fixed point oί D~ιAD.

Proof. Equation (92) is evaluated as follows:

*Jβ= Σ tiC'Ύ^C-'a^logiBΎXr^aβ)
Ce(A)\SΓ

oo
Σ Σ t{B-nD-l7A,B-»D-'aA)\og(B7,l,7B,aB). (107)

De(A)\SΓ/(Byn= - oo

Due to Lemma 1 we find
oo

Σ t(B-n7D,B-»aD)\og(BΎX7B,aB)
n= — oo

oo

= Σ t(7D,aD)log(B"+1r,Bn7,7B,aB)
n — — oo

= \ Σ
£ n= - o o

- (aB, 7D, aD, Bn+17)- (Bn+1T, 7D, aD, aB)}

+ χ^aD(BnΎ){(-aB,7D,aD,Bn7) - (BnΎ,7D,-aD,aB)

- (7B, 7D,~aD, B"7) + {B"7,7D, aD,7B)}

+ Xi?aD0:B){(Bn+17,7D,aD,7B)-(7B,7D,aD,B»+17)
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- (Bn7, 7D,aD, 7B) + (rB, TD,aD, Bn7)}

+ * P D ( aB) {(B"7,7D, aD, 7B) - (SB, 7D, ΈD, Bn7)

-(Bn + l7,7D,aD,aB)-(aB,7D,aD,Bn+17)}l. (108)

The summation with respect to n yields

Σ t(7D, aD) log (Bn+17, Btt7,7B,aB)
n= — oo

= 1 lim lχ?°°(BN7){{7B,7D,aD,BN7)-(BN7,7D,aD,7B)

Z N-*ao

- (aB9 TD9 aD, BNΎ) - (BNΎ9 7D, aD, aB)}

+ χΓD(B-N7){(aB,7D, aD9B~NΎ) - ( β ^ T , 7 D , αD, αB)

- (7B, 7D, ~aD, B~N7) + (B- NΎ,7D9 ~aD9 7B)}

+ ti*D(rB){(B"T97D9aD97B) - (rB97D, aD,BNΎ)

- (BN7,7D9 aD9 aB) - (aB97D9 aD9 B
NΎ)}]. (109)

N }aB for ΛΓ^oo,
Due to the equation, lim [ £ " 7 ] = 1 " ' , we get (106). Q.E.D.

N [7B for ΛΓ->-oo

Now we proceed to the second derivatives of invariant functions. We give a
theorem here, whose proof will be given in the next section.

Theorem. Let tA,tB and tc be Fenchel-Nielsen tangent vectors corresponding to the
invariant functions 1AJB and lc, respectively. Then

t t 1 -4- ( \A(B + C)f f / . / \C(A + B)t f / _ (\ ΠifYl
lAlBlC^~\) tBtCίA~r\~) tctAlB — \). IIAU)

6. Proof of the Theorem

We shall prove the theorem in the previous section. We may show the following
equations written in components,

(a) tatβly + tβtγla + tγtjβ = 0, (111)

(b) tatβλc + tβτcla + τctjβ = 0, (112)

(c) taτbλc + τbτclΛ - τctaλb = 0, (113)

(d) τaτbλc + τbτcλa + τcτaλb = 0. (114)

Our method is based on a direct computation with Lemma 1.

Proof of case (a). Let laJβJγ be given by

Zα = log (AΎ9 7, ax, ̂ 2 ) , lβ = log (57,7, ~b1, "fc2), /y = log (C7,7, ̂ , ~c2\ (115)
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and we introduce a function F for three pairs of points ^,^/,Λ 6 ^s (Uj,k = 1>2),

Γ ^ 1 , ^ 2 , 7 2 ) - ( r 2 , ? 1 , ? 2 , 7 1 ) } . (116)

From Eq. (106) we obtain

VA = Σ Σ FiX-^Y-'ajlhl (117)
y \ < y \ K >

VΛ= Σ Σ FίP-^lβ-^λ (118)
Pe<B>\SΓQ6<C>\SΓ/<κ>

V Λ = Σ Σ F ί Λ - ^ I S " 1 ^ ! ^ (119)
Ke<Λ>\SΓSe<fl>\S/7<C>

Due to SPL(2,R)-invariance, Eq. (118) is rewritten by

tβtyla= Σ Σ
Pe<*>\SΓQe<C>\SJ7<ii>

= Σ Σ
PeSΓKB} Q6<C>\SΓ/<i4>

Σ Σ Σ
< > < > \ < Λ >

X Σ FibJX-^Y-'A). (120)
> \ < > xe<c>\sr

Similarly we find

at-βh~ 1^ Lu f(Y ai\bj\X Ck) (121)
}

Thus Eq. (Il l) becomes

:i\γ-'Ίij\bk)}=Q. (122)

This equation comes from the following lemma:

Lemma 2. F satisfies a cyclic identity,

?7 |7Jk |Λ) = 0 for phqj97ke^a9(ij9k= 1,2). (123)

/ The configurations of the three pairs of points on R s are classified according
to the configurations of the geodesies, p^p2, q^q2 and r\r2;

(I) A geodesic does not intersect the remaining geodesies.
(II) A geodesic intersects the remaining separated geodesies.

(Ill) Three geodesies intersect each other.

We begin with case (I). Due to the symmetry we may assume the configurations
in Fig. 2. Then Lemma 1 readily leads to

F(Pt\qj\7k) = Ffttfilqj) = F{qj\7h\ p{) = 0. (124)
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q2

75

Fig. 2. Two kinds of representative configurations of three pairs of points where one of the
geodesies, represented schematically by lines, does not intersect the others

Fig. 3. A representative configuration of three pairs of points where one of the geodesies intersects
the remaining separated geodesies

Thus Eq. (123) holds in case (I).

For case (II) we get from Fig. 3,

, βl9

( 1 2 5 )

Due to some identities of the (super) cross ratios,

(126)
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P2

Fig. 4. A representative configuration of three pairs of points where three geodesies intersect
each other

we find

F(Pι\qj\7k) + F(qj\7k\pt) = 0. (127)

The case (II) has been proved.
Case (III) reduces to case (II). In fact the direct calculations of Fig. 4 yields

F(Pt\qj\Th) = t(pl9 p 2 ) χ p ( F > = { χ p ( ? 2 ) + x Γ W l z Γ 2 ^ ) * ,

Fζqjftlpt) = t(quq2)χ?2(Pi)* = {zfVi) + XΓ2(Pi)}x?2(Pi)*, (128)

F(rk\Pt\qj) = ί f r ^ - Γ a J χ p ^ ) * = {χp2(?i) + Zp2(?2)}zίΓ>2(?2)*>

where we have written only the relevant characteristic functions explicitly to
simplify the expressions. Then the cyclic sum of F's becomes

Σ f = Σ. pa)+ Σ F(2)+ Σ f(3).
cyclic cyclic cyclic cyclic

(130)

(131)

(Pi)*, (132)

^ ^ i ) *, (133)

F(2)(Tk\ p,\qj) = χ r ( ? 2 ) χ f P 2 ( ? 2 ) * , (134)

Fa\qj\7k\Pi) = 0, (135)

rx)*, (136)

(137)

H ? Γ 1 ) * , (138)

where use has been made of the identity,

{x?Z2(?3) + zP2f?3)}xP*(*) = o. (139)

Each cyclic sum, ^] F(i) (i = 1,2,3), corresponds to a configuration in case (II) and
cyclic

it vanishes. Thus Eq. (123) holds in case (III). Lemma 2 has been proved. Q.E.D.

Then case (a) has been proved. Note that the decomposition of £ F in (129) is
represented diagrammatically as c y c l ι c
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Pi

Pi

P2

Fig. 5. A diagrammatic representation of the decomposition law in Eq. (129)

Proof of case (b): For λc = ["Ci,~c2,~c3], we have

Xe(A}\SΓYe(B)\SΓ

The linear reciprocity (90) leads to

] . (140)

= - Σ Σ
> \ < >We define a SPL{2,R)-invariant function for ~sh~Pj,~qke1Sts, ( i = 1,2,3; j , f e = 1,2),

^(^J?Jl?fc) = τ(T 1 ,T 2 ,T 3 )χp 2 (?J{(? 2 ,p 1 ,p 2 ,? 1 )-(? 1 ,p 1 ,p^

+ τ(T 1 ,7 2 ,7 3 )χp 2 (? 2 ){(? 1 ,p 1 ,p 2 ) ? 2 )-(^ 2 ,p 1 ,p 2 ,^ 1 )} . (142)

Similarly to Eq. (120) we get

τctjβ= Σ Σ
PeSΓ Qe<>l>\SΓ/<β>

= Σ Σ (143)

Then Eq. (112) holds due to the following Lemma:

L e m m a 3 . For any seven points, ~sh~βj and ~qk ( ΐ = 1 , 2 , 3 ; j , / c = 1,2), on R s , a n

equation holds,

(144)
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Proof. The configurations oϊ~sh~pp and ~qk on R s are classified into two graphs;

(I) G = 0. (p^p2 does not intersect q^q2)
(II) GΦO.

By the symmetry, the configurations of case(I) are represented diagrammatically in
Fig. 6. [We have omitted the configurations where t(p1,~p2)

t(Qi^Άi)Pi->~Si->~${\ =
i ^ 2 ^ 3 ] = 0 ] For the left diagram in Fig. 6 we have

S2S3 \ S1S2 S2«3 S3S1

1 / 2

(145)

Z Z \ 1 / 2

> S l > 5 2 J

ZP2Sl

ZSiS3

ZS3P2 \\

I

Z Z \ 1 / 2

2 ^ z \

i / l
Z SlS 2

Z S2S 3

Z S3Sl

z z (z z z \ 1 / 2

^S253^P2S1 / ΔPiS3ΔS3S^SlPι \ Γ*>tΓZ 77 ϊ Γ7ί T 7 1

8 1 / •- ' ^ ' ̂ 2)iPl> S 3 ' S l J

(146)

After tedious calculations, we obtain

= 0. (147)

The above Eq. (147) holds also for the other diagram in Fig. 6. Hence in case(I),
(144) has been shown to hold.

As for case(II), we have essentially four diagrams to consider (see Fig. 7), and,
explicit calculation for the first two diagrams in Fig. 7 yields the same equations
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Pi

Fig. 6. Two kinds of representative configurations of seven points ph qt and s, (i = 1,2; j = 1,2,3)
where p^p2 does not intersect ^

Fig. 7. Four kinds of representative configurations of seven points p(, qκ and Sj (i = 1,2;jf = 1,2,3)
where p̂ P2 intersects 7^

as

Sil Pjl?fc) = 0. (148)

The remaining diagrams are decomposed into the sums of known diagrams:

Equation (144) holds for each diagram on the right-hand side of the above

diagrammatic equations, and hence Eq. (144) holds also in case(II). The Lemma 3

has been proved. Q.E.D.

From Eqs. (140), (141) and (143), we find

tatβλc + tβτcla + τctjjβ

= Σ Σ {HX-lauX-la2)t(Y-lbu !, c 2 ,7 3 ]

(149)
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Pi

Fig. 8. Diagrammatic representations of the decomposition laws for the last two configurations
in Fig. 7

This vanishes due to Lemma 3. Case (b) has been proved.
Case (c) and case (d) are shown similarly and we just give outlines of the proofs

below.

Proof of case (c). Due to the linear reciprocity (88), or (90), Eq. (113) can be written
by

= 0. (150)

Since

τ,ίA= Σ Σ
Qe(AC)\SΓYeSΓ

Xe(A)\SΓYeSΓ
T(c1,-c2,-c3)t(X-ia1,X-1-a2)lY-lbi,Y-lb2,Y-1b3-],

(151)
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we get

= Σ Σ {t(X-1auX-1a2MY-1buY-lb2,Y-lb3)[_-cl,72<7^
Xe(A)\SΓYeSΓ

1^uY-ib2,Y-1b3-]}. (152)

We have a lemma, which is proven similarly to Lemma 2 and/or Lemma 3:

Lemma 4. For any eight points % (i = 1,..., 8) on R s , an identity holds,

-τ(x6,ΊcΊ,~xs)t(xί9~x2)l~x3,Ίc49~xs'] = 0. (153)

Due to this lemma, Eq. (152) vanishes. Hence case (c) has been proved.

Proof of case (d). We have a lemma:

Lemma 5. For any nine points "3cf (i = 1,..., 9) on IRS,

^ 1 ^ 2 ^ 3 M 4 ^ 5 » Ϊ 6 ) P 7 ^ 8 . Ϊ 9 ] + τ(x4, X5, X6)τ(ϊ7ί X8, Xg)^, X2, X3]

4-τ(3c 7 ,x 8 ,x 9 )τ(x 1 ,x 2 ,x 3 )[x 4 ,x 5 ,x 6 ] = 0.

(154)

Due to this lemma, Eq. (114) is proved.
We have proven the theorem in Sect. 4.

7. The Super Weil-Petersson Kahler Form

We begin with reviewing the Kahler form' in the length functions on the ordinary
(non-super) Teichmuller space for the compact Riemann surfaces H/Γ of genus
h ̂  2. Let B(Γ) and Q(Γ) be the vector spaces of Beltrami differentials and holo-
morphic quadratic differentials, respectively. A natural pairing of B(Γ) and Q(Γ) is
given by the integral,

(μ,φ)= J μφ, μeB{Γ\ φeQ{Γ). (155)
H/Γ

A mapping Λ:B(Γ)-+Q(Γ) is given by (cf. (49)),

where dσ(t) is the Euclidean area form. The kernel of the mapping A is defined
by N(Γ). Then B(Γ)/N(Γ) and Q(Γ) are identified with the holomorphic tangent
and cotangent spaces of the Teichmuller space Th(Γ\ respectively [14]. For any
μeB(Γ) and φeQ(Γ) (cf. (64)),

j μφ= J Λ[μ]φ(Imz)2, (157)
H/Γ H/Γ
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so that N(Γ) is orthogonal to Q(Γ). Multiplication by i is the automorphism J of
B(Γ)/N(Γ\ which defines the complex structure of Th(Γ). The Hermitian product
for the Weil-Petersson metric is

h(μ,v)= J Λ[μ]Λ[v](Imz)2, for μ,veB(Γ). (158)
H/Γ

Accordingly the Hermitian metric g9 the real symmetric form, is given by,

0(μ,v) = 2Re/ι(μ,v), μ,veB(Γ). (159)

and the Kahler form ω is

), μ9veB(Γ). (160)

Let ta be the tangent vector to the Fenchel-Nielsen deformation about α (cf.
(86)). Due to Eq. (157), ω(ta,tβ) is calculated as

ω(ta9tβ)=-2lm J Λ[tJΛ[tβ](Imz)2

H/Γ

= -2Im j Λ[ta](--Θβ

H/r \ π

= 2 Re J taθβ = tjβ, (161)
H/Γ

which leads to the cosine formula (2).
Since the Weil-Petersson metric is Hermitian, the linear reciprocity identity

of the Fenchel-Nielsen deformation follows [2];

*Jβ + hl* = 2 R e h(t*> ~ tiβ) + 2 R e Mtβ> ~ K) = 0, (162)

hence ω is, in fact, a 2-form;

ω(ta,tβ) + ω(tβ,ta) = 0. (163)

The exterior derivative of the Kahler form ω is evaluated as

dω(ta9 tβ, ty) = tΛω(tβ9 ty) - tβω(ta, ty) + tyω(ta, tβ)

tβ]9ty) + ω(lta9ty]9tβ)-ω(

= tptjy + tatylβ + tytβla9 (164)

and the last expression vanishes due to the quadratic reciprocity relation [2]. Then
ω on the Teichmiiller space is closed. The Kahler form is expressed in terms of
geodesic length functions. Let /t ( i = l , . . . , n ) provide local coordinates for the
Teichmiiller space Th(Γ). Let ωij = ω(thtj) and (Wu) be the inverse of (ω o ). Then
ω is given by [2],

ω = - Σ WjkdljΛdlk. (165)
j<k

Now we consider the Weil-Petersson Kahler form on the super Teichmiiller
space. We define the super Hermitian product h on SB(SΓ)/N(SΓ) (super Weil-
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Petersson product) using (49);

h(σuσ2) = ε(σ2) J Λ[σJΛlσ2]Y2, σuσ2eSB{SΓ)/N(SΓ\
SH/SΓ

where the phase factor ε(σ)η is given by

— 1, for evenσ,

1, for oddσ.

It satisfies

h(iσuσ2) = ih(σuσ2). (168)

Let ί̂  = (ία, τα), ίβ = (fy, τb) be Fenchel-Nielsen tangent vectors associated with

the super Beltrami differentials, σA = ( -Y2Θa,- Y2Ξa ), σB = I - Y2Θβ,-Y2Ξb J,

\π π / \π π /
respectively. The Riemann metric g on the super Teichmϋller space STh(SΓ)
induced by the super Hermitian product h is

, tB) = {h(σA, σB) + {-)ABh{σB, σA)}

(σA,σB). (169)

Multiplication by i in SB(SΓ)/N(SΓ) defines the complex structure J of STh(SΓ).
And the Kahler form ω is

ωta, h) = 9(JtA> h) = 2 R e s M ^ , σB)

=-2lmsh(σA,σB). (170)

Using (64) and (166) we find

ω(ta,tβ) = ̂ Rea J d2zd2θiY2ΘαΘβ, (171)
7Γ S///SΓ

4 J .S f c , (172)
n SH/sr

\Rcs J ^ z r f ^ y 2 ^ , , , (173)

Due to Eqs. (89) - (91) we get

<o(tA,tB) = tΛlB. (174)

The linear reciprocity (88) of FN deformation shows that ω is actually an exterior
2-form on ST^SΓ);

ω(tA, tB) + (-)ABω(tB, tA) = tAlB + (-)ABtBlA = 0. (175)

7 This factor appears due to our convention of the complex conjugation and the definition of
the real part of a Grassmannian odd quantity
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The exterior derivative of ω is evaluated as

dω(tΛ, tB, tc)

= tAω(tB,tc) + (-)Λ<B+cHBω(tc, tA) + (-f<A+Bkcω(tA, tB)

, tBl tc) - (-rB+C)ω(ίtB,td tA) - {-)C(A+B)ω(ίtc, ί j , tB)

- it A, hVc -(-)AiB+C)ίtB, ICVA -{-)CU+B)ίtc, tA-]lB. (176)

The last expression vanishes due to the theorem of the quadratic reciprocity in
Sect. 5 and hence the Kahler form ω on the super Teichmϋller space is closed,

dω = 0. (177)

Now we shall show that FN tangent vector tA is a Hamiltonian vector for the
Kahler form ω, i.e., the Lie derivative LtAω vanishes. Let ItΛ be the inner product
of a form with a vector tA [16]. The 1-form ItAω evaluated on tB is

This implies that

or equivalently,

ItA

(

ItΛω is closed,

u(tB) ='• ω(tA> h)

•tAιB

- -{-)A%IA

• -dlA(tB).

= ~dlA,

(178)

(179)

ω(tA9)=-dlA. (180)

Then the Lie derivative LtAω vanishes,

LtAω = dItAω + ItAdω = 0. (181)

That is, the Kahler form ω is invariant under the local flow generated by the FN
tangent vector tA.

The Poisson bracket {, }P is determined by the equation,

'[u,,B]ω=-<ΦΛ>«P ( 1 8 2)

Then we obtain

{lA,lB}P = ω(tA,tB). (183)

Proof. We evaluate the left-hand side of (183) on tc using (178) and (110),

= -(-)C(A+B)tctAlB

= -d(tAlB)(tc)

= -d(ω(tA,tB))(tc). Q.E.D. (184)
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8. Discussions

We have analyzed the symplectic geometry of the super Teichmϋller space. We
have shown that the Weil-Petersson Kahler form ω on the super Teichmϋller
space is a closed exterior 2-form. The Fenchel-Nielsen tangent vector has been
shown to be a Hamiltonian vector for the Kahler form. Unfortunately we have not
shown that the Kahler form has maximal rank at each tangent space; sdet ωAB φ 0.
We have not shown that the super Teichmϋller space has the complex structure;
however, according to D'Hoker and Phong [17], they showed the integrability
condition for the almost complex structure. Hence we have seen that the super
Teichmϋller space is a Kahler supermanifold.

As for the super Beltrami equations, we have not discussed in the global context
the existence of the homeomorphic solutions. This problem was investigated by
Hodgkin [12] with slightly different super Beltrami equations. He showed the
global existence of the Bers embedding for the super Teichmϋller space. The
complex structure due to the Bers embedding is to be examined further.

In terms of the functions {'/} = { ' P Ό (ί = 1,2,...,n; /c = 1,2,...,4ft — 4)
providing the local coordinates of the super Teichmϋller space, the Kahler form is

ω = £ WBAdlAAdlB, (185)
A,B

where the matrix (WAB) is the inverse of ({-)BωAB) = ((-)Bω(tA,tB)). The
Grassmann odd elements of the matrix (WAB) do not vanish, in general, however,
there should exist the 5PL(2,R)-invariant canonical local coordinates {XhΘκ}
{ί = 1,..., 6/z — 6; k = 1,..., 4h — 4), in terms of which the Kahler form takes a simple
expression,

3Λ-3 4Λ-4
ω== Σ dX2i_xΛdX2i+ Σ dΘκΛdΘκ. (186)

i = 1 K = 1

The Grassmann even part will be some superanalog of the lengths of the closed
geodesies and twisted angles, however, the Grassmann odd part is unclear so far.
To give those coordinates explicitly is an interesting problem.
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