
Commun. Math. Phys. 143, 577-589 (1992) Communications in

Mathematical
Physics

© Springer-Verlag 1992

.2

The Realm of the Vacuum

Detlev Buchholz1 and Rainer Wanzenberg
1 II. Institut fur Theoretische Physik, Universitat Hamburg, W-2000 Hamburg 50,
Federal Republic of Germany
2 Institut fur Hochfrequenztechnik, Fachgebiet Theorie Elektromagnetischer Felder,
Technische Hochschule Darmstadt, W-6100 Darmstadt, Federal Republic of Germany

Received April 30, 1991

Dedicated to H. J. Borchers and D. Kastler,
who both celebrated their 65th birthday this year

Abstract. The spacelike asymptotic structure of physical states in local quantum
theory is analysed. It is shown that this structure can be described in terms of a
vacuum state if the theory satisfies a condition of timelike asymptotic abelianess.
Theories which violate this condition can have an involved asymptotic vacuum
structure as is illustrated by a simple example.

1. Introduction

The analysis of the spacelike asymptotic structure of physical states in the Haag-
Kastler framework of local quantum theory [1] is a longstanding problem.
Especially the question of whether these states may be interpreted as excitations of
some vacuum state is of great interest. The significance of this problem is based on
the fact that relevant information on the type of superselection rules, the range of
forces, and the possible statistics of particles is encoded in this structure.

In their pioneering investigation of this problem Borchers, Haag, and Schroer
[2] argued that any physical state Φ of finite total energy ought to look like a
vacuum state Ω at large spacelike distances. More precisely: if A(a) = U(ά)AU(a)~l,
where A is any local observable and U(ά) is the unitary operator inducing the
space-time translation α, one should expect that

lim(Φ,A(a)Φ) = (Ω,AΩ) (1)
a

if a tends to spacelike infinity [2].
After the discovery of soliton states and of topological charges it became clear,

however, that relation (1) does not follow from the basic principles of local
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quantum theory, at least not in low space-time dimensions. There the spacelike
asymptotic structure of physical states can be quite involved and the limit in (1)
need not exist. It is apparent that such states can not be associated with the realm
of some particular vacuum state. In view of these examples one must regard the
status of relation (1) in physical space-time as unsettled. With the exception of
massive theories with a particle interpretation, where relation (1) has been
established in [3], all attempts to clarify the possible asymptotic vacuum structure
of physical states within a general setting have failed so far, cf. the remarks in [4,
p. 101].

As a contribution towards the solution of this problem we exhibit in the present
article an interesting connection between the nature of timelike correlations in a
theory and the spacelike asymptotic structure of states. We will show in Sect. 2 that
relation (1) holds in more than two space-time dimensions whenever there exists a
sufficiently rich set D of local observables A which comply with the following
condition.

Condition of timelike asymptotic abelianess: For any given A e D there exists some
positive number 1 <r<s, 5 being the dimension of space, such that1

sup|Λ||[^*, Λ(x0,x)]Φ|Γ<oo (2)
XQ

for all vectors Φ in the underlying Hubert space.

Because of the spacelike commutativity of local operators, relation (2) holds if
the commutator function ||[,4*,,4(.x0,x)]Φ|| decreases at asymptotic times (uni-
formly in x) like |x0| ~

1 ~ε for some ε > 0. Hence our condition is linked to the notion
of //-asymptotic abelianess in time, cf. for example [5]. But it is weaker in two
respects: first we do not anticipate a |x0| ~

1 ~ ε decay of the commutator function for
all x, this bound may be violated for some set of points x of sufficiently small
measure. And secondly our condition restricts the decay of timelike commutators
only in the strong operator topology and not in the uniform topology. Hence it is
sensitive to properties of the underlying states of interest.

In theories where the timelike asymptotic behaviour of the commutator
function is dominated by contributions due to the exchange of neutral particles
between the localization regions oϊA and A(x0, x) a rough estimate shows that one
has to put r ̂  2 if condition (2) is to be satisfied (cf. the discussion in Sect. 3). Hence
our condition seems reasonable in physical space-time, but is of limited use in
lower dimensions.

The condition r < s, however, is close to being optimal if one wants to derive
relation (1). We will exhibit in Sect. 3 a theory in s = 2 dimensions, where condition
(2) is satisfied for any r>2, but where the limit in (1) does not exist for a single
spacelike direction. A brief discussion of our results is deferred to Sect. 4.

We conclude this introduction with a list of assumptions and some notation: we
proceed from a Hubert space Jf of physical states and a unital *-algebra 91C Sί(3tf}
of local observables whose weak closure has trivial center. (The latter assumption
means that we restrict our attention to a subset of states belonging to a fixed
superselection sector.) On Jf there is a continuous unitary representation #-> U(a)
of the space-time translations 1RS+1 whose spectrum lies in the light cone
V+ ={peJRs+1 :p0^|p|} and which complies with the condition of locality. This

1 The space and time part of the translation x with respect to a given Lorentz frame will be
denoted by x and x0ί respectively



Realm of the Vacuum 579

means that for each A e 91 there is some finite distance d such that

lA*,A(af]=Q for |a|£|α0| + d, (3)

where we adhere to the notation A(a)=U(a)AU(a)~1. Finally we assume, as
already mentioned, that there is some norm dense and ^-invariant set ΐ> C 9ί of
operators A which satisfy the condition (2) of timelike asymptotic abelianess.

2. Spacelike Vacuum Structure and Timelike Correlations

We show in this section that the limit lima(Φ, ̂ 4(a)Φ) exists if |a| tends to infinity,
and we also establish its interpretation in terms of a vacuum state.

To begin we proceed to a more convenient formulation of our condition (2) of
timelike asymptotic abelianess. According to that condition there exists for any
given Aeΐ) some positive number r<s such that the family of maps

6R:^R+ given by

(4)

is pointwise bounded. Each map MXQ is continuous since the integration in (4)
extends only over a bounded region due to locality. Since 3tf is a complete metric
space we conclude that there is some non-empty open subset of iff on which the
family MXo is uniformly bounded [6, Theorem 46.7]. It then follows from the
specific form of MXQ that this family is uniformly bounded on the unit ball ̂  of 3^.
Hence condition (2) is equivalent to the statement that for each A e D there is
some r, 1 ̂ r<s such that

τ^) = sup{(ίΛ||[^^(x0,x)]Φ||01/2^x0elR,Φe^1}<oo. (5)

In the first part of our analysis we will actually rely on a somewhat weaker
condition, viz.

σ^) = sup{(μsx|(Φ,[^^ (6)

Here 3?(E)C3? denotes the spectral subspace of the generator of the time
translations corresponding to the spectrum in the interval [0, £]. (Since E is kept
fixed in the following we do not indicate it as an extra label of σr.) We will see
that the bound (6) already implies that the function a->(Φ,,4(a)Φ) converges if|a|
tends to infinity. Yet in the proof that the limit can be interpreted as expectation
value of A in some vacuum state we have to rely on the stronger condition (5).

Our arguments are similar to the reasoning in [7]. The crucial additional step in
the present analysis is the demonstration that the bounds on commutators of
smoothed-out local operators given in [7] can be improved if the condition of
timelike asymptotic abelianess is satisfied.

Let A e D be any local operator and let /e ̂ (R), g e ̂ (R5) be test functions. We
consider the operators

B = ίdxf(x0)g(x)A(x)9 (7)

where the integral is defined in the weak-*-topology of ̂ (Jf). If Φ e ^(E)ί we get

|(Φ, [B*, β]Φ)| ^ f dx J dy\fMf(y0)\i (|g(x)|2 + |g(y)|2) |(Φ, [A*(x), Λ(y)]Φ)|

^ llglll^)2ίdXoίdjΌl/(*o)/UΌ)l(fl,[d + l*o-JΌl]')1~1/r. (8)
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Here Ωs is the volume of the unit ball in Rs and d is the distance appearing in the
locality condition (3). In the final estimate we made use of locality and Holder's
inequality as well as of condition (6) and the fact that 34?(E) is invariant under
space-time translations.

Next we replace the operator A in (7) by AA(a\ where a eR s+1 is arbitrary. The
resulting integral will be denoted by Ba. Proceeding as in (8) and making use of the
estimate

x) -1 Φ, ί(AA(a))*, (AA(ά)) (y0 - x0, y)] U(x)'1 Φ)\

2 |

Mil

lA*,A(y0-x09y}]

we arrive at the bound

\τr(A)2

0 J dy0\f(x0)f(y0)

(9)

(10)

which holds for arbitrary Φe^. Note that in the derivation of this explicit bound
with regard to a we had to rely on the stronger condition (5).

With this information, which replaces the cruder bounds in Lemma 2.3 of [7],
one can proceed exactly as in the proof of Proposition 2.4 of [7]. The
corresponding result is the following one.

Lemma 2.1. Let A(g) = j dsxg(x)A(x), where AG^IS any local operator and g e
any test function whose Fourier -transform g vanishes in some neighborhood of the
origin. Furthermore, let P(E) be the orthogonal projection onto 3tf(E). Then there
holds for small ε > 0,

+β '2 σr(A) ,\\P(E)A(g)P(E)\\ ^ Cε dsp

where Cε depends only on ε, and d is the distance appearing in the locality condition
(3). Similarly,

\\P(E)(AA(a))(g)P(E)\\
1/2

IPI

where αe!R s+1 is arbitrary.

Let us consider now the function x^>m(x) = (Φ,A(x)Φ), where AeT) and
ΦeJ^(E)i are kept fixed for a moment. We are interested in the regularity
properties of the Fourier transform m of m,

m(p) - (2π) ~s/2 J dsx eipx(Φ, A(x)Φ), (11)
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which is defined in the sense of distributions. Note that m has support in the ball
|p| 5Ξ 2E because of the spectrum condition. For any operator A e D there exists by
assumption some number r<s such that σr(A)< oo. Thus, by the first part of the
preceding lemma, the restriction of m to the region |p| ̂  k> 0 can be represented by
some square integrable function (cf. Theorem 2.5 in [7]), and

lim J dsp |p|s+1+£-s/r|m(p)|2<oo (12)

for any ε > 0. Choosing 0 < ε < (s/r — 1 ) and taking into account that m has compact
support we conclude that also

lim J <fj>|m(p)|<oo. (13)

Hence m can be split into a Lebesgue integrable part, which we denote by T, and a
distribution 3=m—T which is localized at p = 0. The Fourier transform of any
Lebesgue integrable function is continuous and converges to 0 at infinity. Hence
sup |/(x)| < oo, and since also sup |m(x)| ̂  \\A\\ ||Φ||2 < oo we find that d(x), which

X X

can only be a polynominal because of the support properties of α, is constant.
Thus we have shown that m is a complex measure which, apart from an atomic

part at p = 0, is Lebesgue absolutely continuous. Hence there exists for any A e T)
(and consequently also for any A e 21 since T> is by assumption norm dense in 21)
the limit

lim (Φ,^(a)Φ) = ωoμ), (14)
|a|-oo

where ω0(A) is some state on 2Ϊ. Since the weak closure of 21 C &(3tif) is assumed to
have trivial center it then follows from locality (cf. [2]) that

w- lim A(*) = ω0(A) l. (15)
|a|-*oo

It is an immediate consequence of the latter relation that ω0 is invariant under
space-time translations, i.e.

ωQ(A(ά)) = ω0(A) for yle2l, αeR s + 1. (16)

If the functions a-*A(a) were norm continuous, as is the case for C* dynamical
systems, one could show without further input that ω0 is a vacuum state in some
positive energy representation of 21. However, in the present more general setting
we have to rely on the second part of the preceding lemma, which is based on
condition (5). With this input we can show that the functions a-^ω0(AA(ά))
are continuous if A e T). To this end we consider the function

x-H(x) = (*, (AA(a)) (x)Φ) - ω0(AA(a)) , (1 7)

where ΦeJ»ίf(E)ί and E>0 is arbitrary. It follows from the second part of the
preceding lemma and relation (15) that the Fourier transform Γfl of la is Lebesgue
integrable and satisfies

μsp |p| +ι+ -* |Ta(p)|2gCε(l + |fl0Γ
s/r) (18)

for some r < s. Here ε > 0 and a eRs+ x are arbitrary, and the constant Cε does not
depend on a. On the other hand there holds the straightforward estimate for the
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radial mean of la(x)

1

wLε P\AiE q\9\s Ίqϊ
— δ

)__ J 2 \ l / 2

where eeRs is a fixed unit vector, <5>0, and we made use of the fact that Γα has
support in the ball |p| ̂ 2E. Combining this explicit bound in R with the estimate
(18) we see that, for some r<s,

\a0Γ
s^\ (20)

where the function o(R) does not depend on a and tends to zero if R approaches
infinity.2 Recalling the definition of la we conclude that the sequence of continuous
functions

a^]de(Φ9(AA(a))(Qe)Φ) (21)
K o

converges to a^>ω0(AA(a)) uniformly on compact sets of Rs+1 if R tends to infinity.
Hence the latter function is continuous for A e £>. Since ϊ) is norm dense in 91 the
same holds true for any A e 91, and in particular for all hermitian elements. Taking
into account that ω0 is a translational invariant state it follows that a-+ω0(AB(ά))
is continuous for all A, B e 91.

From the bound (20) it is also apparent that the integration of (21) with any test
function f(a) e ^(1RS+1) can be interchanged with the limit #-> oo. Making use of
the freedom to choose the energy-momentum support of Φ in relation (21) as well
as of relation (15) it then follows from standard arguments (cf. Sect. 5 in [8]) that
the Fourier transform of a-^ω0(AA(a)) has support in the light cone V+ if A e T>.
This result can be extended to the function a-+ω0(AB(a)) for arbitrary A, B e 91 if
one notices that a-^ωQ(AA(a)) is, for hermitian A, the Fourier transform of some
positive measure as a consequence of the properties of ω0 established so far.

We finally show that ω0 has the clustering property, and hence is a pure state on
91. To this end we restrict the sequence of functions (21) to the spacelike plane
α0 = 0. It follows from the bound (20) that this sequence converges to a^>ω0(AA(a))
in the limit .R->oo, uniformly for aeRs. Hence in (21) the limits |a|-»oo and R^co
can be interchanged, and making use of relation (15) and the dominated
convergence theorem we see that lim ωQ(AA(^)} = ω0(A)2 for Aeΐ). This shows

|a|-xx>
that ω0 has the clustering property for hermitian operators A e 91, and again this
suffices to conclude that lim ω0(AB(a)) = ωQ(A)ω0(B) for arbitrary A,Bε*Ά.

|a| -»• oo

With this information on the functional ω0 it is clear now that the GNS-
representation of 91 induced by ω0 has all properties required from a vacuum
representation. We collect these results in the following theorem.

2 It is noteworthy that o(R) does not depend on the specific choice of Φe^(E)l either. We
comment on this observation in Sect. 4
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Theorem 2.2. Let 51 be an algebra of local observables on some Hilbert space tf
which satisfies the assumptions stated in the Introduction. Then there exists for any
Ae<Άthe limit

w — lim ^(a)
|a|^oo

where ω0 is some pure state on 91. In the (irreducible) GNS-representatίon (π0,
induced by ω0 there exists a continuous unitary representation a^>U0(a) of the
space-time translations with spectrum in the light cone V+, and

U0(a)π0(A)U0(aΓl=π0(A(a)) for AeM.

The GNS-vector ΩeJ^0 corresponding to ω0 is invariant under the action of the
operators U0(a) and hence represents a (within this representation unique) vacuum
state.

We conclude this section with a remark pertaining to relativistic covariance.
Up to this point we have considered a fixed Lorentz frame. Yet it seems natural to
assume that the condition (2) of timelike asymptotic abelianess holds in any frame.
In that case one finds that the limit (15) exists in all frames and that the resulting
vacuum states ω0 coincide. This is so since in more than two space-time dimensions
the intersection of any two spacelike planes having a point in common contains
some spacelike ray. The asymptotic vacua in different Lorentz frames can then be
identified by using relation (15) along that ray.

We note that the vacuum state ω0 may not be Lorentz invariant, however.
Noninvariant vacuum (ground) states appear in free quantum electrodynamics,
for example. They are obtained by adding to the Fock- vacuum a homogeneous
and stationary electromagnetic background field. If, however, the original
representation of 9ί is Lorentz invariant, then the resulting vacuum state is
Lorentz invariant too, as can be seen from relation (15).

3. Some Instructive Examples

In this section we will provide, on one hand, some evidence to the effect that our
condition of timelike asymptotic abelianess is a reasonable assumption in
quantum field theories based on physical space-time. On the other hand we will
exhibit a theory in three space-time dimensions which only barely violates
our condition, but which admits states with an involved asymptotic vacuum
structure.

Both questions will be discussed in the theory of a free, scalar and neutral
quantum field in s + 1 space-time dimensions. We begin by recalling the
formulation of this theory in terms of Weyl-operators. The basic building block is
the Hilbert space of single particle (momentum space) wave functions /, g. These
functions are equipped with the scalar product

</,g>=ί|̂ 7(p)g(P), (22)

where p0

 = (P2 + w2)1/2 and m^O is the mass of the underlying particle.3 On this
space there acts a continuous unitary representation of the space-time translations

3 We assume that s > 1 if m = 0
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given by
(23)

where a p — a0p0 — ap. Of particular interest is the real subspace <g of "locally
generated wave functions"

se = ̂ (Rs) + Φo f̂lR8) - (24)
Here J^(RS) is the space of Fourier transforms of all real test functions which have
compact support in configuration space Rs. The space 5f is invariant under the
action of the translations V.

The Weyl-algebra 2B over & is the (abstract) algebra generated by unitary
operators W(f\ /eJ^ which satisfy the Weyl-relations

(25)

As is well known (cf. [5, Chap. 5.2]) one can equip 2B with a C*-norm, and we
will subsequently make use of this fact. The action of the space-time translations on
2B is given by the automorphisms

W(f)(a): = W(V(a)f), αeR'+ 1. (26)

From the definition of ££ and the Weyl-relations it follows that the elements of 2B
are local in the sense of relation (3).

We will consider various representations of 2B in which the space-time
translations are unitarily implemented and satisfy the relativistic spectrum
condition. The familiar Fock-representation, for example, is induced by the
vacuum state ω0 fixed by

(27)

In order to check whether this model complies with our condition of time-
like asymptotic abelianess we have to estimate the norm of the commutator of
Weyl-operators. Making use of the Weyl-relations we get

(28)

On the other hand we have

(29)V / J(2p 0) 2

Thus, combining (28) and (29), we obtain the bound

ί <?xII [Wm W(g)(x0, x)] I I 2 ̂  4(2πΠτ^ |/(p)|2|g(p)|2. (30)

The right-hand side is finite for any f , g E < & and any mass m ̂  0 if s ̂  3. Since the
elements of 2B are finite sums of Weyl-operators we arrive at

Lemma 3.1. Let s^3. Then there holds for any

This result shows that in free field theories in physical space-time one may put
r = 2 in condition (2), i.e. there holds a strengthened form of our condition of
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timelike asymptotic abelianess. One may therefore expect that this condition is
also reasonable in the presence of interaction. We recall in this context that
condition (2) is weaker than the requirement of //-asymptotic abelianess in time.
To illustrate this fact, consider the theory of a massless particle in 5 = 3 dimensions.
There the commutators ||[W*, FΓ(x0,x)]|| decrease like IxoΓ1 *n Hghtlike direc-
tions |x| = |x0|, hence the integral over x0 diverges logarithmically. Yet since the set
of points x, where one has such a slow decay of the commutator, is of measure zero
condition (2) still holds in this case.

Condition (2) does not hold, however, if s < 3. We consider in the remainder of
this section the theory of a massless particle in s = 2 dimensions. There one finds
that for /ge J£? and large |x0|

l (31)

and

(32)

Thus it follows from relation (28) that for any WeϊB and any r>2,

supf d2x\\W*9 W(x0,x)]||r< oo . (33)

Hence condition (2) is only mildly violated in this case. Nevertheless this fact
allows for a complicated asymptotic vacuum structure of the underlying states, as
we shall demonstrate now.

We consider special coherent states φ on the Weyl-algebra 3B of the form

(34)

Here /( ) is a real linear functional on J5f which we choose according to

Im J ___(/(β)-/(p)), (35)
|p|^ι/2 2|p| |p|(-ln|p|)

where 1/2 < K < 1 is kept fixed in the following. This expression is well defined since

With the methods expounded in [2] (cf. also [9]) one can show that φ induces
an irreducible representation of 2B in which the translations (26) are unitarily
implemented and satisfy the spectrum condition. (For the latter result it is crucial
that /c>l/2, cf. Proposition 3 in [9].) We call such states elementary states for
short. Note that φ is not a vector state in the Fock-representation.

Let us turn now to the analysis of the behaviour of the state φ under large
translations. To this end we introduce the (continuous) function

1, (36)'|p|2(-ln|pl)κ

This function diverges if |α|-» oo since κ<l. On the other hand we have

lim (/(F(α)/)-A(α)/(0)) = 0 (37)
|α|-xx>

by the Riemann-Lebesgue lemma. Taking into account that the scalar product
</,/> is invariant under the action of the translations V(ά) it follows that the
expectation value φ(W(f)(a)) does not converge in the limit |0|->oo if /(0)φO. In
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fact, since /(O) can be any real number, there does not exist any subsequence of
translations an tending to infinity such that this expectation value converges for all
/eJ2-f. Introducing the notation (d)φ, αeR2 + 1 for the translated states φ, i.e.
(a)φ(W):=φ(W( — a)) for WeϊB, we arrive at

Fact 1. There exist elementary states φ such that the family (d)φ, aeJfί2 + 1 does not
contain any weak-*-convergent subsequence if \a\ tends to infinity.

Because of the weak-*-compactness of the unit ball of the dual space of 2B the
family of states (a}φ, αeR2 + 1 has weak limit points, however.4 It is instructive to
explore the properties of these limit points.

To do this we have to determine the limit points of the family of functions
^6TR, |α|->oo, given by

ηa(u) = eίλ(a)u, ueR. (38)

The topology which is of relevance here is the weak (Tychonoff) topology on the
Cartesian product TR. All limit points of this family satisfy the functional equation

η(u)η(u') = η(u + u'). (39)

Its continuous solutions of modulus one are η(u) = elλu, weR for fixed
That these functions are indeed limit points of the family ηa can be seen as follows:
given u x , . . . , un E R and ε > 0 there exists some (arbitrarily large) number q e N and
integers pί9...9pnεZ such that \quk — pk\<z for fc=l,...,n [10, Theorem 201].
Moreover, since λ(a) runs continuously through all positive numbers if \a\ tends to
infinity there exists some a' e R2 + 1 such that λ(a') = 2πq + λ. In fact one can find
such a vector a' on any given ray in R2 + 1. Thus

(40)

for fe = l,...,n, proving that eiλu

9 weR is a weak limit point of the family of
functions ηa.

The functions ηa9 however, also have limit points which are nowhere
continuous. To verify this assertion we pick a sequence of vectors αneR2 + 1 such
that λ(an) = 2π2n. Let η be a weak limit point of the corresponding sequence ηan

(such limit points exist according to Tychonoff s theorem). Since for any /?, qeTL
and sufficiently large n there holds ηan(p/2q) = 1 it follows that η(p/2q) = 1 . On the
other hand the sequence ηan(ίβ) alternates between £2πί/3 and e4πί/3, and
consequently η(l/3)ή= 1. This shows that the function η is discontinuous at u = 1/3
and therefore (by the functional equation) discontinuous everywhere.

With this information and the help of relations (34) and (37) one can show that
the family of states (a)φ, where αeR2 + 1 approaches infinity along any given ray,
has on one hand as limit points all states ωλ, λ E R given by

ωλ(W(f)) = eiλf™-<f f>/2. (41)

These are the familiar vacuum states in massless free field theory whose
existence may be traced to the presence of the gauge transformations W(f)
-+elλf(0}W(f). On the other hand there appear also limit states of the form

(42)

This fact was misinterpreted in [2, Note added in proof] and [8, Theorem 1]
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where η is a discontinuous solution of Eq. (39). These states may still be regarded as
vacuum states since they are invariant under space-time translations and are
ground states in their respective GNS-representations. But for elements fe & with
/(0)φO the functions uelR.^ω(W(uf)) are discontinuous, hence the states ω are
not regular. It follows that the states ω and φ are not locally normal with respect to
each other. More precisely, the restrictions of φ and ω to any local algebra 2B(O),
OCR5 (which is generated by Weyl-operators W(f) with fe$(Q) + ip$(O))
induce disjoint representations of 2B(O). We thus place on record
Fact 2. There exist elementary states φ such that the sequence (a)φ, where a
approaches infinity along any given ray, has weak-*-limit points which are locally
singular relative to φ.

The preceding results show that it is impossible to describe the asymptotic
properties of φ in terms of limit vacuum states.5 In view of this fact the example of
the state φ might appear artificial. Yet we will see that φ can be approximated by
states of uniformly bounded energy in the Fock-representation. It is therefore
conceivable that states such as φ can appear as asymptotic configurations in
certain interacting theories.

For the proof that φ can be approximated in the way indicated we introduce the
sequence of regularized functional

Here sn is a step function defined by sM(p) = — 1 for ί/n ^ |p| ̂  1/2, sn(p) = 1 for 1/v
^ |p|χ 1/n, and sπ(p) = 0 elsewhere. For given n the number v > 0 is adjusted in such
a way that the expression (43) vanishes if /(p) is replaced by a constant.
With these preparations we achieve two things. First, it follows from the support
properties of sn that \ln(f)\2 ^ cπ</, /> for certain constants cn which do not depend
on / Hence the coherent states φn on 2B given by

φn(W(f)) = eίl»(» - <'• f>/2 , feX (44)

are vector states in the Fock-representation [2]. Second, the value of (43) does not
change if one replaces /(p) by /(p)—/(0). Applying the dominated convergence
theorem one finds that /„(/) converges to /(/) for all /e J*?, and consequently

limφn(W) = φ(W) for WeW. (45)

It remains to control the energy of the approximating states φn. As is well
known (cp. [2]) the expectation value of the energy in a coherent state is equal to
the energy of its mean field. Hence we obtain for the mean energy En in state φn

(46)

and this expression stays bounded in the limit of large n since K > 1/2. Thus we have
established

5 Yet it is noteworthy that the vacua ωλ(α), αeR2 + 1 approximate the states (α)φ, αeR2 + 1 for
large \a\ in the weak-*-topology. It is an interesting problem whether such approximating families
of vacua exist also in general
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Fact 3. There exist elementary states φ with asymptotic properties described above
which are the weak-*-limit of a sequence of vector states in the Fock-
representation with uniformly bounded mean energy.

This result shows that an energetically mild perturbation of a state may
completely distort its spacelike asymptotic structure. As will be discussed in the
subsequent section, this cannot happen in theories satisfying our condition of
timelike asymptotic abelianess.

4. Concluding Remarks

The simple model discussed in the preceding section exhibits certain features
which make difficult a general analysis of the spacelike asymptotic structure of
physical states. In the presence of massless particles and long range forces this
asymptotic structure can be quite involved and the heuristic picture that physical
states are excitations of some vacuum state may fail. This phenomenon originates
from the fact that a small amount of energy can give rise to large effects (fields etc.).

There are no indications that this interesting theoretical possibility is realized in
physics. We have discussed in our paper an assumption which could explain for
this fact: the dynamical law is such that correlations between timelike separated
observables decay sufficiently rapidly. Under these circumstances it follows that all
physical states approach some fixed vacuum state at large spacelike distances.

Let us indicate another interesting consequence of this assumption: all states in
the energy-connected component of a given representation of 2I6 have the same
asymptotic limit vacuum state ω0. To prove this one proceeds as in Sect. 2 and
considers the radial mean

^*dρ((Φ9A(ρe)Φ)-ω0(A))9 (47)
K o

where A e D is kept fixed and Φ e ^ίf(E)l is arbitrary. It follows from Lemma 2.1
that this expression converges to 0, uniformly for Φ e J f (E)ι> if R tends to infinity
(cf. footnote 2). Now let φ be any weak-*-limit point of the set of vector states
generated by Φe^f(E)i. Since the integral in (47) can be approximated by finite
Riemann sums, uniformly for Φ e J^(E)^ one can interchange the integration with
the weak-*-limit. Hence, by the preceding remark, one gets

lim ~$dρφ(A(ρe)) = ω0(A). (48)

By a similar reasoning as in the proof of relation (14) one finds on the other
hand that φ(A(a)) converges if |a|->oo, and combining this information with
Eq. (48) one arrives at the desired relation

lim φ(A(*)) = ω0(A). (49)
|a|-»oo

6 The energy-connected component of a representation is the set of states which can be
approximated in the weak-*-topology by vector states with uniformly bounded energy relative to
the given representation, cf. [11, Sect. 4] and [12]. The energy-connected component of a vacuum
representation, for example, contains all charged states which can be generated from the vacuum
with a finite amount of energy
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It is an immediate consequence of this result that each energy connected
component contains only one vacuum state. Hence if there exist several vacuum
states in a theory complying with our assumptions they are separated by an infinite
amount of energy. For a more detailed discussion of this issue cf. [11, Sect. 4] and
[12].
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