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Abstract. We establish a version of the spectral duality theorem relating the point
spectrum of a family of *-representations of a certain covariance algebra to the
continuous spectrum of an associated family of *-representations. Using that
version, we prove that almost all the images of any element of a certain space of
fixed points of some *-automorphism of an irrational rotation algebra via
standard *-representations of the algebra in [*(Z) do not have pure point spectrum
over any non-empty open subset of the common spectrum of those images. As
another application of the spectral duality theorem, we prove that if almost all the
Bloch operators associated with a real almost periodic function on R have pure
point spectrum over a Borel subset of IR, then almost all the Schrédinger operators
with potentials belonging to the compact hull of the translates of this function
have, over the same set, purely continuous spectrum.

Introduction

Let I'=(Q, G, 0,P) be a quadruple consisting of a metrizable compact space 2; a
separable locally compact Abelian group G; a continuous G-action 6 on Q, that is,
amapping 0: Q2 x G—Q such that 8(w, 0)=w and 6(w, g+ h)=0(0(w, h), g) for 0 e 2
and g, he G; and a Borel probability measure IP on Q that is 6 -invariant for each
g€ G, where 0, is the homeomorphism of Q given by

O (0)=0(w,g) (we).

Hereafter any such I' will be called a dynamical system. If I' = (2, G, 8, m) is such
that Q is a metrizable compact Abelian group, G is a separable locally compact
non-compact Abelian group, 6 has the form

0w, g)=w+a(g) (weR gel),

where a is a continuous one-to-one homomorphism from G onto a dense subgroup
of Q, and my, is the probabilistic Haar measure on Q, then I" will be called a special
dynamical system.
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With I'=(Q, G, 0, P) a dynamical system, for 1 <p < + oo, let L?(£2) (respectively
L?(G)) be the p™ Lebesgue space based on IP (respectively mg with mg the Haar
measure on G) with norm | - | ,.

Given a topological space X, let C(X) be the C-algebra of all complex
continuous functions on X, let Cx(X) be the R-algebra of all real functions in C(X),
and let #'(X) be the C-algebra of all complex continuous functions on X with

compact support.
For each geG, let gg be the *-automorphism of C(£2) given by

0,F=F-0, (FeCQ).

We denote by  the mapping g—»gg, which is a strongly continuous representation
of G into the group of *-automorphisms of C(Q).
For each xe #'(2 x G) and each geG, let x, be the element of C(£2) given by

(x) (@) =x(w,g) (we).

Let || - |, denote the supremum norm.
Equipped with a multiplication, involution, and norm defined by

(xey) (@, g)= | x(@, h)y(O(w). g = h)dmg(h),

X*(w> g)zx(eg(w)’ _g)s
lx]y= g %4l . dm(g)
(x,ye A (2xG),we, gel),

(2 x G) is a normed *-algebra. We denote by L!(I') the completion of (2 x G)
in| - ||;. L(I') is a separable Banach *-algebra, but in general is not a C*-algebra.
Setting

llxll = sup leGo)ll  (xe LY(I),

where g ranges over all the Hilbert space representations of L!(I'), defines a C*-

seminorm on LY(I"). In fact, | - || is a norm (cf. [6, Theorems 7.7.4 and 7.7.7]) and
x| < lix||; holds for all xe LY(I') (cf. [29, Theorem 25.10]). The completion of
LN in | - || is a separable C*-algebra called the covariance algebra of I or the

crossed product of C(Q2) and G, and is denoted C*(I') or C(R2) x 3G.
Given xe 4 (2 x G) and weQ, let x,(x) be the operator in L*(G) defined by

(kalx)9) ()= | x(6,(), he(g+hdmgh)  (peL*G),geC).

It is easily verified that for each we the mapping x, (x—kK,(x)) is a
*_representation of (2 x G) in L*(G). The unique continuous extension of k,, to a
*_representation of C*(I') in L*(G) will also be denoted by x,,.

Let G be the dual group of G.

Given xe #'(Q x G) and y€G, let 1,(x) be the operator in L*(€) defined by

(4 (%) F) (w)= (J; X(@,8) (g, 7) F(O () dms(g)  (FeL¥Q), weQ).
Itis easily verified that for each y € G the mapping 4, (x —2,(x))is a *-representation

of #°(2 x G) in L3(Q). The unique continuous extension of 4, to a *-representation
of C*(I') in L*(2) will also be denoted by 4,.
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Given a *-algebra 4, let A, be the self-adjoint part of A and 4, be the positive
part of A.

Given a C*-algebra A, let #°(A4) be the C*-algebra whose self-adjoint part is the
strong sequential closure of A, on the universal Hilbert space for 4 (cf. [6,
Subsect. 4.5.14]). As is well known, for each *-representation ¢ of 4 in a Hilbert
space H, there is a unique sequentially normal *-representation ¢” of #%(4) in H
that extends g (cf. [6, Theorem 3.7.7]). When %°(A) contains a unit, which is the
case, for example, when A is separable, then f(x) e #°(A) for every x in #°(A4),, and
every bounded Borel function f on R (cf. [6, Theorem 4.5.7]). Moreover, still
under the assumption that #%(A4) contains a unit, 9"(f(x))= f(¢"(x)) for every x in
B°(A),,, every bounded Borel function f on IR, and every *-representation ¢ of A.
In fact, given x € #%(A),, and a *-representation g of 4, the set of those bounded
Borel functions f on R for which ¢"(f(x))=f(0"(x)) contains all bounded
continuous functions on R and is strongly sequentially closed. Therefore it
coincides with the set of all Borel functions on IR.

For each x € #°(C*(I')), the function y—(47(x)1, 1) is Borel measurable. Indeed,
the set of those x in #%(C*(I')) for which the function y—(4;(x)1,1) is Borel
measurable is weakly sequentially closed and, since y—(4,(x)1, 1) is continuous for
each xe C*(I'), it contains C*(I'). Thus, this set coincides with #%C*(I')).

Given xe #(C*(I)),, let

7(x)= (5} (45(x)1, 1)dme(y). )

It is easily seen that 7 is a o-trace on 4°(C*(I')) which in general is not faithful (see
[6, Sects. 5.1.1 and 5.2.1] for relevant definitions and [19, Lemma 3.3] for the
proof).

As usual, we denote by 1, the characteristic function of the set E.

Let x € B%(C*(I')),, be such that (1, 5(x)) < + oo for a, be RU{ — 00, + 00} with
a<b. Then the spectral density function N over (a, b) is defined by

NOW=1(14,4(x) (u€(a,b)).

N@ is non-decreasing, and so the set Z(N'?) of points of discontinuity of N@ is at
most countable.

Let H be a Hilbert space, T be a self-adjoint (bounded or unbounded) operator
in H, and E be a Borel subset of R. We recall that T is said to have pure point
spectrum over E if

14(T)= Z 1{u)(T),
neE
where the sum is to be interpreted in the sense of strong convergence; T is said to
have pure point spectrum with finite multiplicity over E if the above identity is
valid and, for each pueE, the range space of the projection 1,,(T) is finite-
dimensional; and T is said to have purely continuous spectrum over Eif 1,,,(T)=0
for each ueE. Denote by Ty the operator 14(T)T. Using the identity

1(Te) =14 6(T)+60)(A)1r\(T) (A a Borel subset of R),

where d,4, denotes the Dirac measure concentrated at 0, one easily verifies that T
has pure point spectrum over E if and only if Ty has pure point spectrum (over R).

Bellissard and Testard [5] have presented the following spectral duality
theorem.



530 W. Chojnacki

Theorem A. Let I'=(Q,G,0®, my) be a special dynamical system, let a,beR be
such that a<b, and let E be a Borel subset of (a, b). If x € B(C*(I'))s, is such that
©(14,p)(X)) < + 00 and if, for mg-almost all ye G, 4y(x) has pure point spectrum with
finite multiplicity over E, then, for IP-almost all w € Q, k|, (x) has purely continuous
spectrum over E.

Kaminker and Xia [19] established another version of the spectral duality
theorem, a slightly generalized variant of which, tailored to the setting of the
present paper, goes as follows.

Theorem B. Let I'=(R, G, 0,P) be adynamical system, let a, b e R be such that a<b,
and let E be a Borel subset of (a,b)\Z(N). If x € B(C*(I)),, is such that (1, ,(x))
< + o0 and if, for mg-almost all y € G, 1)(x) has pure point spectrum over E, then, for
P-almost all w e, k,(x) has purely continuous spectrum over E.

The main purpose of the present paper is to establish a version of the spectral
duality theorem that simultaneously generalizes Theorems A and B. Using that
version, we prove that almost all the images of any element of a certain space of
fixed points of some *-automorphism of an irrational rotation algebra via
standard *-representations of the algebra in [*(Z) do not have pure point spectrum
over any non-empty open subset of the common spectrum of those images. As
another application of the spectral duality theorem, we prove that if almost all the
Bloch operators associated with a real almost periodic function on R have pure
point spectrum over a Borel subset of R, then almost all the Schrodinger operators
with potentials belonging to the compact hull of the translates of this function
have, over the same set, purely continuous spectrum.

1. The Main Result

We begin with a simple preliminary.

Proposition 1. Let E be a Borel subset of IR, and let H be a Hilbert space. If T is a
self-adjoint operator in H such that, for each (€ H,

lim — HTEE)Pdt=0 2
lim S T (ATeTE ) @
then T has purely continuous spectrum over E.

Proof. The proof proceeds along the same lines as that of a well known theorem of
Wiener (cf. [24, Theorem 5.6.9]).
Given e H, let n, be the spectral measure of T associated with ¢, that is,

n{A)=(1(T)¢, ¢ (A a Borel subset of IR).

Applying the operational calculus for normal operators (cf. [28, Theorem 11.12.3])
in conjunction with Fubini’s theorem and adopting the convention that sin0/0=1,
we find that, for each T>0,

1T
f [(A(T)e" &, )| dt__TH [ et "’dm@ng(u,u)]

sin T(u—4) ,

= eve T(u—p) ’7g®’7§(ﬂ’ ). (3)
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If we let
Dp={(s,t)e EX E:s=t},
then, by (3) and Lebesgue’s dominated convergence theorem,

lim o [ {1T)eTE, O di =189 (7). @

On the other hand, by Fubini’s theorem,
(’1§®"I§) (Zp)= gﬂg({ﬂ})dﬂ;‘(ﬂ)= ZE |11¢({,u})|2.
ne

Hence, in view of (2) and (4),

EE Ind{u}|*=0,

implying that n({u})=0for each p € E. By the arbitrariness of £, 1,,,(T) =0 for each
uek.

The proof is complete.

The main result of this section is the following.

Theorem 2. Let I'=(Q, G, 6, P) be a dynamical system, and let E be a Borel subset of
R. If x is an element of B(C*(I'))s, such that t(1,,(x))=0 for each pcE and if, for
me-almost ally e G, A3(x) has pure point spectrum over E, then, for P-almost allw € Q,
K.(x) has purely continuous spectrum over E.

Proof. Given ¢ € L}(G), let ¢ be the Fourier transform of ¢, that is,
00)= [ ¢(e)(e. —)dmelg) (7€),

Adopting a standard convention, we assume that the Haar measure on G is
normalized so that

o(x)= CI; OO (x,7)dmg(y)  (xeG)

whenever ¢ e LY(G)nC(G) and ¢ € LY(G).
Let A(G) be the space of the Fourier transforms of functions in LY(G).
For each x e 4 (2 x G), each ¢ € A(G)n A (G), and each ge G, we have

] [ax)) (8)I* dIP(w)
= b ¥O@), Wx(Og(), K) (g +F) (g + H)dP@mg x (o, b, 1)

QxGx

= [II) X(@, ) x(w, h’)le(w)] @(g+ho(g+h)dme . o(h, )

GXxG

[ [ 0 HET) h')diP(w)] g+h)E+H, —)
GXxGXxGxG |0

X Q)P )M x g x g x (b, 1, 7,7)
. { . (4,1, 2,() 1) (2,7 =) () S )dme 67, 7). )

Note that the use of Fubini’s theorem is legitimate since ¢ is in L'(G)NC(G) and
hence the function (y, ')~ ¢(y)(7) is in LY(G x G)nC(G x G). Let K be a compact
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subset of G containing the support of ¢. Then, for each we Q,
l(k.(x) @, P)I Emg(K) | 0|2, II( I(xc(x) @) ()] dme(g) .

This together with (5) yields
J a(x) 9, @)?dP(w)<me(K) [o]% - (4,(x)1, 4,(x)1) (8,7 —7)

X PP )dmg x 6 < 5(85 1Y) (6)
The latter inequality implies in turn that, for each x e #%(C*(I")),
é |(rc(x) 9, @) dP(@) S mg(K) [0 ]12, . g o (251, 23(x)1) (8, v —7)

X ()W) MG w6 x 68, 1> 7) - (7)

In fact, by the previous argument, for each xe%%(C*([I')) the functions
w—(ky(X) @, @) and (y,7)—(4;(x)1, A7(x)1) are Borel measurable. Moreover, by
Lebesgue’s dominated convergence theorem the set of those x in #5(C*(I")) for
which (7) holds is strongly sequentially closed, and, by (6), contains C*(I'). It
therefore coincides with #°%(C*(I")).

Let E be Borel subset of IR and x € #°(C*(I')), be such that 7(1,,,(x))= 0 for each
peE and, for mg-almost all ye G, Ay(x) has pure point spectrum over E. We claim
that, for mGXG-almost all (y,y)e G x G,

lim —— f (A1 p(x)e™)1, A (1 g(x) ™) 1)dt = @®)
Tow 2T
Let A be the set of those y e G for which Ay(x) has pure point spectrum over E.
Foreachye4,let (X, )., be acomplete system of eigenvectors of the restriction
of Aj(x) to the range space Z(1(4;(x))) of the projection 1(4;(x)) with a
correspondlng system (i, ;);c s, of e1genva1ues where the index set #, has the
cardinality equal to the orthogonal dimension of Z(1g(4;(x))). Given ye 4 and
£>0, let I, , be a finite subset of ¢, such that

L= 3 (5L X,0 X0

iely,.

Notice that (15(45(x))1, X, ;)=(1,X, ;) whatever ye4 and i€ ¢, Thus, for any
y, 7' €4, any £>0, and any t€R, we have

A1 p(x)e"™) 1, 251 5(x)e")1)

- z en(uy’i_uy,’j)(laXy,i)(I’Xy’,j) (Xy,i’ Xy',j)

G ))ely e X1y e

=< !(/1;'(1E(x)eitx)<IE(/1;'(X))1 - Y (1’X?,i)X'y ,)’)L/y’ (IE(X)eitx)I)’

iely ¢

+

( Y (LX) A(1x)e™) X,

iely ¢

RO AN = 5 (1.X,)X,.,)

jelyr,e

©)

Se+e

Z (1’Xy,i)Xy,i N =

iel, ¢
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Given ueE and ye 4, let
Ju,}':{iejy:/‘:”v.i}'
Plainly, for each ue E and each ye 4,
A1 eN 1L D=1 0N U5 = 1A N3 = Y 14X, ).

t€lu,y

Hence, by (1) and the assumption, for each ueE the set
Ir,={yed:(1,X,)=0 for ieJ, }
is of full measure in G. Given yeA and £>0, let

= () I,

1eI.,, P
Clearly, 4, , is also of full measure in G.
Fix ye4 and y €4, , arbitrarily. Note that, if u, ;=pu, ; for some (i,j)el, .
x I, ., then, since y eF u,» We have that (1, X, )=0. Therefore, if we let
ﬂy'),r’s={(i,j)61y’e XIY',S:!‘L}’,i*ﬂ?',}'}’
then, for each teR,
tt(lly‘ By’ j)(l Xy ;)(1 Xy 1)(Xy is )

(@ Nely,exIy e

— Z lt(ﬂyi By’ J)(1 X')’ l)(1 .Xy ])(XT i .)‘

@, )esdy,y e

This together with (6) implies that, for each ye 4 and each y'e 4, ,,
llm sup 21T j (Ay(1g(x)e™)1, Ay (1(x) ™) 1)dt| Se(2+¢).

Let
Z.y= ﬂ A.y’ 1/n-

neN

Clearly, 4, is of full measure in G. Moreover, (8) holds for allye A and all y’ € 4,,. Let
N be the Borel set of those (7,7 € G x G for which (8) holds. For each ye é let

N,={yeG:(,y)eN}.

Since 4 ,CN, for every ye 4, it follows from Fubini’s theorem that N has full
measure in G x G. The claim is thus established.

The function (y,7)—@(y) () is in LY(G x G)nC(G x G) and K is compact, so,
by (8) and Lebesgue’s dominated convergence theorem,

1T " itx ” itx o
lim 57 [ L, o B0 Z D @7 —7)

X Q)P VMg x & x &85 Vs v’)] dt=0.
This jointly with (7) implics that

1 .
fim oo [J l(re(1e(x)e™) o, <P)I2d1P(w)] dt=



534 W. Chojnacki

Since, for each T>0,

I (e(16(x)e™) @, @)*dt < [ @l3

it follows from Lebesgue’s dominated convergence theorem that
| I:hm 1 j (<2 (1 (x)€™) 0, )]Zdt] dPP(w)=0.
Q T-*oo

Thus, for IP-almost all we Q,
1
lim — J I(x%(15(x) ™) @, @) dt =0

T—>oo

The space A(G)n ¢ (G)is dense in L*(G) and the latter space is separable. Therefore
there exists a P-null subset N of Q such that, for all ¢ € L*(Q) and all we Q\N,

1 ! Ko (X
lim s )5, ) de =0

In view of Proposition 1, for each w € Q\N, x/,(x) has purely continuous spectrum
over E.
The proof is complete.

2. Some Consequences

It is clear that Theorem 2 implies Theorem B. The proof of the fact that Theorem 2
implies Theorem A is based on the following.

Proposition 3. Let I' =(Q, G, 0™, my) be a special dynamical system, and let E be a
Borel subset of R. If x € B(C*(I')), is such that, for mg-almost all ye G, A5(x) has
pure point spectrum with finite multiplicity over E, then t(1,,(x))=0 for each ueE.

Proof. Let & be the homomorphism from Q to G given by
(80)=(xg)l) (2 geG).

Since a is one-to-one, &(Q) is dense in G. Since G is non-compact and g-compact, G
is non-discrete and metrizable (cf. [23, Theorems 12 and 29]). Thus there exists a
sequence ({)yen Of pairwise different elements of Q such that hm &)=

For a measure space (X, 9, u) and fe L*(X, u), we denote by M  the operator

in L*(X, u) given by )
Mp=fp (peli(X,u).

For a non-negative operator S in a Hilbert space, we denote by Tr(S) the trace

of S.
For a set E, #E denotes the cardinality of E.
Given a subset E of an Abelian group A and an element a of 4, we let

E4+a={beA:b=e+a,ecE}.

A direct computation shows that, for each (e, each yeG, and each
yeB(C*I),
- /I;I(J/)Mg=i;+a(g)(,\’)- (10)
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Hence, if x € #5(C*(I')),, is such that A7(x) has pure point spectrum with finite
multiplicity over E for every y in a set 4 of full measure in G, then, for each ueE,

each ye 4, and each neN,
k; (4 +ago(1g(GN1, 1) = kgl (A1 gyGN o L) S Tr(Ay(1y(XN) = 4 J 5 -

In particular, for each ue E and each ye 4,

n

tim 5 (sl ()1, D=0. (1)

n—wo N k=

Let K be a compact subset of G. Since lim &(¢,)=0, it follows that, for each ueE,
k=

| @ 1,D1, Ddme(y)= lim %ki {({ )(/1;’(1,‘(36))1, 1)dmg(y)

=1 K—af

3 1 = 4

=lim [ = ¥ (A4sq(14x)1, Ddmg(y).
. n»w KN k=1

On the other hand, by (11) and Lebesgue’s dominated convergence theorem, for

each ueE, we have

n

T 1 ”
lim [ % (a1, dme() =0,
Hence, for each peE, (4(1,(x))1,1)=0 for mg-almost all y € K and, in view of the
arbitrariness of K, (4;(1,(x))1,1)=0 for mg-almost all ye G.
The proof is complete.
As a consequence of Theorem 2 and Proposition 3, we have the following
generalization of Theorem A.

Theorem 4. Let I' =(2, G, 0, my) be a special dynamical system, and let E be a
Borel subset of R. If x e B5(C*(I)),, is such that, for mg-almost all y€ G, Ay(x) has
pure point spectrum with finite multiplicity over E, then, for IP-almost all w € Q, k.,(x)
has purely continuous spectrum over E.

3. Some Covariant Representations

Let I'=(Q, G, 0,1P) be a dynamical system. A covariant representation of I' is a triple
(9, m, U) in which § is a Hilbert space, n is a *-representation of C(Q2)in $, and U is
a strongly continuous unitary representation of G in $ such that, for each F € C(Q)
and each geG,

1(@,F)=U@nF)U(~g). 12

With any covariant representation ($,n, U) of I' there is associated a non-
degenerate *-representation g, ; of C*(I') in $ uniquely determined by

Qx,u(%) = ! mx) U(g)dmg(g)  (xe (2 xG)),

the integral being taken in the strong-operator topology. It turns out that every
non-degenerate *-representation of C*(I') arises as the *-representation associated
with a certain covariant representation of I' (cf. [6, Proposition 7.6.4]). We
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illustrate this fact by giving any of the *-representations x,, (we Q) and 4, (y € ) the
form of a *-representation associated with a covariant representation of I'.

Given a function f on a group G and an element a of G, let T, f be the translate
of f by a, that is,

T.f(b)=fla+b) (be).
For each we Q, let mr,, be the *-representation of C(Q) in L%(G) defined by
(no(F)p) (g)=F(0(@)o(g) (FeC(Q), peL*G),geG).
Let T be the strongly continuous unitary representation of G in L*(G) given by
T@e=Te (peL*G),geG).

Then, for each weQ, (L*G),n,, T) is a covariant representation of I' and

K - Qnm T
For each ye G, let U, be the strongly continuous unitary representation of G in

L*() defined by
U 9H=(,H (HelXQ),geG).
Let 2 be the *-representation of C(Q) in L*(Q) given by
PF)H=MH (FeCQ),HeLXQ)).

Then, for each y € G, (L*(Q), #, U ,)is a covariant representation of I'and ,= 0, ..
For the remainder of the present section, let I'=(Q, G, 0™, m,) be a spec1a1
dynamical system. Let bG be the Bohr compactification of G, f be the canonical
monomorphism from G into bG, and # be the homomorphism from bG onto @
such that a=#0 f (cf. [25, Definition 14.7.3]).
Let J,: L*(Q)—L*(bG) be the operator given by

J,F=Fon (FeLXQ).

Since mgy(A)=m,g(n~'(A)) for any Borel subset 4 of Q, it follows that J, is an
isometry.
Let g be the *-representation of C(Q) in L*(bG) given by

P(F)H=My,,H (FeC(Q), HeL*bG)).
Let % be a strongly continuous unitary representation of G in L*(bG) defined by
UgQF=Ty,J,F (FeL*bG),geG).

Then (L*(bG), g, %) is a covariant representation of I'. As we shall see shortly, the
associated *-representation g, , contains information simultaneously about all
the *-representations A, (yel).

For each yeG, let Xy be the element of bG such that

B(ghx,)=(g7) (g€GC).

Of course, the set {y,:y€ G} coincides with bG, and as such forms an orthonormal
basis of Lz(bG) Slnce «(G) is dense in €, 4 is injective. For each Eed(Q), let
{e=4""(¢); then, clearly, {,on=y. For each 7€G, let §, be the closed linear
subspace of Lz(bG) spanned by {y,,.:{ed( (Q)}. Note that if y—y €&(Q), then
9,=9,,andify—y "e G\&(Q), then $, and H, are mutually orthogonal. Let & be a
selector of the quotient group G/a(Q) that is, a subset of G whose intersection with
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any coset of &(Q) is a singleton. Plainly
L*(bG)= @ 9,.
Y&
Given xe X (2 xR), ye G, and £€Q, we have

Qp, %(X)Xy+¢—Mxy n v(x)cé

Hence, for each ye G, 9, is an invariant subspace for ¢, 4 and the restriction of
Qpat09,is unltanly equivalent to A,. Accordingly, up to a unitary equivalence,

Qp,q,=y§-?¢ Ay (13)

Note that this representation does not depend on the choice of the selector & as, in
view of (7), A, and 4, are unitarily equivalent whenever y—y'e Q

4. A Remark

Let I' be a special dynamical system of the form (Q,IR, 8®, my,), and ($,n, U) be a
covariant representation of I'. Denote by T the set of all complex numbers with
unit modulus. Let Y: Q x R —T be a continuous cocycle on £, that is, a continuous
function satisfying the cocycle relation

Y(w,s+t)=Y(w,5)Y(w+a(s),t) (we,s teR). 14)
Given telR, let Y, be the element of C(Q2) defined by
Y(w)=Y(w,t) (we).
For each telR, set
G, v, y()=n(Y)U(0).

In view of (12), (14), the unitarity and the norm continuity of the function R>¢
— Y, e C(Q), the mapping G, v,y (t— G, y,(t) is a strongly continuous unitary one-
parameter group in . By Stone’s theorem (cf. [28, Corollary 9.9.2]), the
1nﬁn1te81mal generator of G, v,y has the form i4, y y, where 4, y y is self-adjoint.
Clearly, A2,y is self-adjomt positive, and, as an easy apphcatlon of the
operational calculus for normal operators reveals, for each <0, the resolvent
R(p, A2 y.y) of A2 .y at u satisfies

j e_l/_—u|3| Gn, U, Y(S)ds=en, U(mu, Y), (1 5)

1
R(u, A2 4 y)= —
(:u ,U,Y) ZV——MR

where m, y is the element of L'(I),, given by

e Vsl Y(w,s) (wef seR).

m, y(®,s)=—

With each Q € Cy(Q) there is associated the continuous cocycle Y9 on Q given
by

YQ(w, t)=exp <i i O(w+ cx(s))ds) (weQ teR).



538 W. Chojnacki

If we denote by Dy, the infinitesimal generator of the unitary one-parameter group
U, then, as one directly verifies,

A v ye=i"'"Dy+n(Q).

A fundamental fact is that there exist functions Q in Cg(€Q) such that, for each
7eR, 4, U, ¥(@ has purely continuous spectrum. More precisely, there exist
functions Q in Cr(€Q) such that, for each yeR, 4, v,y has purely Lebesgue
spectrum; and there exist functions Q in Cg(£2) such that, for each veR, 4, U,.0
has purely singularly continuous spectrum. The truth of the fact is seen as follows.
Let (@,M, 1) be a probability space carrying a sequence (X,),.n of Q2-valued
independent random variables, each uniformly distributed on Q. Let f be a unitary
continuous function on T with at least two non-zero Fourier coefficients. Then, by
a result of [117, there exists a sequence ({,),cn in € with (8({,)),n tending to 0 as
fast as we please such that, for each (6, w,t)e @ x Q2 x R, the product

nl:_o[l f(@+X,(0), L)) f (@ + X,(0) +2(0), £,))

converges (with uniform convergence in 6 and , and with local uniform
convergence in t) and, for any fixed 0 € @, defines a continuous cocycle Y, , on Q
such that, for u-almost all f€ O, all the operators Ay y v, , (v €IR) have purely
Lebesgue spectrum (respectively purely singularly continuots spectrum) Let g be

a real non-constant continuous function on T such that (27)~? j g(e™)du is an

integer, and, for each se[0, 2n), set
f@)=exp ( —i] g(ef“)du) .

Then f is a unitary continuous function on T with at least two non-zero Fourier
coefficients. Now, as indicated above, one can choose a sequence ({,),.n in Q so
that, if, for each ne N, «, is such that

et =(t),{,) (teR),
then il lo,| < 4+ o0 and, if, for each 6 O, the function Qg in C(Q) is given by
Q)= ¥ wgl@+X,0.0) (@e9),
then Y, ;=Y and, for y-almost all 0 @, all the operators A, . yen (7 eR)
have purely Lebesgue spectrum (respectlvely purely smgularly continuous

spectrum).
Note that, for each Q € Cg(£2) and each weQ, A, r ye coincides with the

operator i~ '(d/dx)+q,(x), defined on the Sobolev space H'(R), where
q,=(T,Q)c 0. For each xeR, set

Uy, fX) = 0XP ( —i ] qu(s) ds) .
0
It is readily verified that

M, JAr, 1.oM; !

U, Q
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so that A,  r yw and i~ '(d/dx) are unitarily equivalent. Accordingly, 4, r yw
has purely Lebesgue spectrum.

Let Q e Cr(€) be such that, for each yeR, A4, v,y has purely continuous
spectrum. Fix arbitrarily u<0. Then, for each wel, A2 1.y has purely
Lebesgue spectrum and hence, by (15), so does «,(m,, yw). Moreover, for each
7eR, A, u,.@ has purely continuous spectrum, and so, by (15), 4,(m, y«) has
purely continuous spectrum. We thus see there exist elements of C*(F )sa whose
images by the x, (w € Q) have purely continuous spectrum without the images by
the 4, (yeR) having pure point spectrum.

5. Some Applications

5.1. Consider T as a compact group with multiplication as group operation, and
let I'=(T,Z, 0®, my) be a special dynamical system in which the homomorphism
o:Z-T is given by

a(n)=e*™"  (neZ)
with £ R\@. Let u and v be the elements of #'(T x Z) defined by
u,n)=14m and v(w,n=wlgn (weT, neZ).

Considered as elements of C*(I'), u and v are unitaries satisfying the twisted
commutation relation

uov=e*"poy

A direct computation shows that C*(I') coincides with the C*-algebra generated
by u and v. It is well known that there exists exactly one, up to *-isomorphism, C*-
algebra generated by two unitaries satisfying the above twisted commutation
relation (cf. [7; 26, p. 117]). That C*-algebra is called the irrational rotation algebra
and is usually denoted by .o/.. Accordingly, C*(I') is a realisation of .«Z;.

Given an operator T in a Banach space or an element T of a Banach algebra,
denote by o(T) the spectrum of T.

Since C*(I') is simple (cf. [26, Theorem 4.3.3]), all the *-representations of C*(I')
are faithful. Hence, in particular, o(x(x)) = (x) for each xe C*(I') and each w e T.

Given a *-algebra 4, let Aut(A4) be the group of all *-automorphisms of 4. Fora
subset E of A and ae Aut(4), let E° be the set of all fixed points of a in E. For each
aeAut(A) and each x € 4, let a°(x)=x and, by induction, let a"(x)= a(a" "~ (x)) for
each ne N. If ae Aut(4) is such that a"=id, for some ne N, then setting

n)= 1Y ) (xed)
defines a projection n, from 4 onto A°.
Let K be the *-subalgebra of C*(I') generated by u and v. Clearly, if
ae Aut(C*(I') is such that o” =id ¢+ for some ne N, then n, maps K, onto Kg,.
For any se SL(2, Z) and any m, n e Z, denote by (m, n,) the image of (m, n) under
the standard action of s on Z xZ. As shown by Brenken [7], the exists a
representation s—a; of SL(2,Z) in Aut(C*(I')) such that

a(v™u") = emidtmsnsmmmpmayns (s SL(2,Z), m,neZ).
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(0 —1
so=14 0/
In the sequel, the automorphism a,, will play a special role and will be denoted

briefly as b. It is easy to see that b is uniquely determined by the identities

bw)=v* and b(v)=u.

Let

Obviously, as s§ =e, where e is the neutral element of SL(2, Z), we have b* =id e,
One of the elements of K2, is

h=2ny(u+u*)=u+u*+v+0*.

The corresponding operators k,(h)(weT) arise as hamiltonians in the Harper
model of a two-dimensional crystal with square symmetry in a magnetic field. If
w=¢e>"* with § [0, 1), then, as one easily verifies,

(kW) (M)=p(n+1)+pn—1)+2cos2n(0+En)o(n), (pel*(Z)=L*Z),neZ).

The spectral properties of the «,(h) (w € T) and of related operators have long been
investigated by physicists and mathematicians (cf. [1, 13-17, 27] and the
bibliographies therein). A still unproved conjecture asserts that, for each weT,
K,(h) has purely singular continuous spectrum and that a(h), which, as indicated
above, coincides with a(x(h)) for each w €T, is of zero Lebesgue measure. Using
an argument due to Aubry and André ([1]; cf. also [2, 4]), we shall establish a
result (Theorem 6) concerning the entire space K°,, which, when applied to h,
partially substantiates the conjecture.

Theorem 5. For every x € K, and every Borel subset E of R, either (k,(x)); =0 for

my-almost all w e T, or, for my-almost all weT, k(x) has no pure point spectrum

over E.

Proof. Let # be the Fourier transformation from L*(T) onto [*(Z) given by
(FF)(n)= jF(w)w"me(w) (FeLA()).

As is well known, & sets up a unitary equivalence between L*(T) and [*(Z).

Identifying Z with T in a standard way, one directly verifies that for each we T,
each ¢ el*(Z), and each neZ,

(ko(t)9) (M) =(F 2,(v*)F "' 9) () =p(n+1),
(ko(0) @) ()= (F Lo(t) F ™' @) (n) = we> ™" p(m). (16)
Consequently, for each ye C*(I') and each weT,
Ko(Y)=F A,(b(y) F
Now, if xe K®, and weT, then
Ka(X)=F L, (x)F 1. (17)
Hence, for each weT and each bounded continuous function f on R,

Kof(N=F 2,(f(x)F ",
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and further, by the sequential normality of x[, and A, for each bounded Borel

function f on R,
K SO =F Ao f(NF 1.
In particular, for each weT and each Borel subset E of R,
Ka(Xg)=F Ao(xg) F 1. (18)
It is also easy to see that, for each weT,
Ko o, m(X) = T(M)K,(x) T(—n),
whence, by a similar argument, for each weT and each Borel subset E of IR,
Ko, m(Xe) =T M)k (xg) T(—n),

where, of course, x; denotes the element 14(x)x of Z%(C*(I")),,. Since the function
w—k,(x)is strongly continuous, it follows, by a standard argument, that for every
bounded Borel function f on R the function w—k(f(x)) is weakly Borel
measurable. In particular, for each Borel subset E of IR, the function w—x(xp) is
weakly Borel measurable. Now, since the dynamical system I is ergodic, it follows
from a theorem of Kunz-Soullaird ([22]; cf. also [20]) that, for each Borel subset E
of R, the set of those w e T for which «|,(x;) has pure point spectrum is either my-
null or of full measure in T.

Suppose that, for some Borel subset E of R, the set of those weT for which
K,(x) has no pure point spectrum over E is not of full measure in T. Since, for each
w €T, k,(x) has pure point spectrum over E if and only if (x,(x)); = x0,(x ) has pure
point spectrum, it follows from the preceding paragraph that, for mg-almost all
we'T, x;(xg) has pure point spectrum. Now, by (18), 17(x;) has also pure point
spectrum for my-almost all w € T, and hence 4,(x) has pure point spectrum over E
for my-almost all weT. In view of (16), for each weT, k,(x) is a difference operator
of finite order, and so every eigenvalue of «,,(x) has finite multiplicity. Accordingly,
by (17), for each w e T, every eigenvalue of 1,(x) has finite multiplicity. Applying
now Theorem 4, we find that, for my-almost all w € T, x(x) has purely continuous
spectrum over E. Finally, the fact that, for mg-almost all weT, k,(x) has
simultaneously pure point and purely continuous spectrum over E implies that
Ko(xg)=0 for my-almost all weT.

The proof is complete.

Theorem 6. For every x € K®, and my-almost all w € T, k,(x) does not have pure point
spectrum over any non-empty open subset of o(x).

Proof. Let x € K%,. Since the topology of o(x) has a countable basis, it suffices to
prove that, for each non-empty open subset of o(x) and for myp-almost all weT,
K,(X) has no pure point spectrum over that subset.

Let U be a non-empty open subset of o(x) and f:IR—[0,1] be a non-zero
continuous function with support in U. Then 0< f(x)x*><x2. Hence, by the
faithfulness of the k, (weT), for each weT, 0<k,(f(x)x?) = (kl(xy))? and so
Ko(xy)+0. Now the theorem follows upon applying Theorem 5.

5.2. Let I'=(2,IR, 0, my) be a special dynamical system, ($, n, U) be a covariant
representation of I', and Dy, be the infinitesimal generator of U. Then — D is self-
adjoint, positive, and, for each u<0,

1

nj{e“/'_"'s' U(s)ds. (19)
—Hu
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Given Q e Cg(Q), let H, ; o be the self-adjoint operator defined by
H,yo=—Di+n(Q)

with domain coinciding with that of Df. Clearly, H, y o is self-adjoint and
bounded below by — [|Q] .
For each u<0 and each F e C(Q), let x,  be the element of L'(I') given by

X, flw,s)=— e VT F  (weQ, seR).

1
2/ —p

Clearly, ||x, ¢ll; =IIFll./lul. Moreover, in view of (12) and (19),

R(t, — DY) 7(F)= 0. %, 1) (20)
Sincea for u<-— ”Q“ 0
A R |1an>"_ 1
Pl sl 2 oolfi= g+ 2 ( W ) =il

it follows that the series

[eo]
Xy 1%, 10 n; (x,,0)"

converges in L'(I). Let r, ; be its sum. Since, for p< — Q| ,

R(t, Hy, )= Rit, = DY) <1 + ¥ (Rx —D%,)n(Q))">,

it follows from (20) that
R(p, H, y, Q) =Qr, U("u Q)- (21)

A moment’s reflection shows that r, , is self-adjoint.

The argument used in the proof of (21) goes back to Bellissard and Testard [5]
(see also [3, Theorem 3.1]).

Note that, for each weQ, H, 1, is the Schrodinger operator (—d*/dx?)
+¢,,(x) with the almost periodic potent1al q,=(T,0) - a, defined on the Sobolev
space H*(R). Each H,, v,0 (7 eR) is a so-called Bloch operator. The operator
H , 4 o Was first introduced and studied by Burnat ([8]; cf. also [9, 10, 18, 21]) and
we shall accordingly call H, 4 o the Burnat operator.

The main result of this subsection is the following.

Theorem 7. Let I' =(Q,R, 0'”, my) be a special dynamical system, let Q be an element
of Cgr(R), and let E be a Borel subset of R. If, for mg-almost all y€IR, the Bloch
operator Hy y o has pure point spectrum over E, then, for mg-almost all w € Q, the
Schriodinger operator H,  r o has purely continuous spectrum over E.

Proof. Fix arbitrarily u< —| Q|| . Let
F={feR:f=(u—e) ', ecE}.

In view of (21), for mg-almost all y e R, 27(r, o) has pure point spectrum over F. By
the result of [12], every eigenvalue of the Burnat operator H 4,0 is at most
double. Hence, in view of (20), every elgenvalue of " o a7, o) 1s at most double.
Now, by (13), every eigenvalue of A)(r, o) is at most double whatever yelR. By
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virtue of Theorem 4, for mg-almost all weQ, «,(r, o) has purely continuous
spectrum over F, and hence, for mg-almost all we Q, H,, 1 o has purely continous
spectrum over E.

The proof is complete.
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