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Abstract. We establish a version of the spectral duality theorem relating the point
spectrum of a family of ^representations of a certain covariance algebra to the
continuous spectrum of an associated family of ^representations. Using that
version, we prove that almost all the images of any element of a certain space of
fixed points of some *-automorphism of an irrational rotation algebra via
standard ^representations of the algebra in /2(Z) do not have pure point spectrum
over any non-empty open subset of the common spectrum of those images. As
another application of the spectral duality theorem, we prove that if almost all the
Bloch operators associated with a real almost periodic function on R have pure
point spectrum over a Borel subset of R, then almost all the Schrόdinger operators
with potentials belonging to the compact hull of the translates of this function
have, over the same set, purely continuous spectrum.

Introduction

Let Γ = (Ω, G, 0, P) be a quadruple consisting of a metrizable compact space Ω; a
separable locally compact Abelian group G; a continuous G-action θ on Ω, that is,
a mapping θ: Ω x G->Ω such that 0(ω, 0) = ω and 0(ω, g + h) = 0(0(ω, h\ g) for ω e Ω
and g, h e G; and a Borel probability measure P on Ω that is ^-invariant for each
g e G, where θg is the homeomorphism of Ω given by

0,(ω) = 0(ω,g) (ωeΩ).

Hereafter any such Γ will be called a dynamical system. If Γ = (Ω, G, 0(α), mΩ) is such
that Ω is a metrizable compact Abelian group, G is a separable locally compact
non-compact Abelian group, 0(α) has the form

0(α)(ω, g) = ω + α(g) (ω e Ω, g e G),

where α is a continuous one-to-one homomorphism from G onto a dense subgroup
of Ω, and mΩ is the probabilistic Haar measure on Ω, then Γ will be called a special
dynamical system.
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With Γ = (Ω, G, 0, P) a dynamical system, for 1 ̂  p < + oo, let LP(Ω) (respectively
LP(G)) be the pth Lebesgue space based on IP (respectively WG with mG the Haar
measure on G) with norm || ||p.

Given a topological space X, let C(X) be the (C-algebra of all complex
continuous functions on X, let CR(JQ be the R-algebra of all real functions in C(X\
and let jf(X) be the (C-algebra of all complex continuous functions on X with
compact support.

For each ge G, let Sg be the *-automorphism of C(Ω) given by

8gF = Foθg (FeC(Ω)).

We denote by $the mapping g^>θg, which is a strongly continuous representation
of G into the group of *-automorphisms of C(Ω).

For each x e 3f(Ω x G) and each g e G, let x^ be the element of C(Ω) given by

(xg)(ω) = x(ω,g) (ωeΩ).

Let || || oo denote the supremum norm.
Equipped with a multiplication, involution, and norm defined by

(x o y) (ω, g) - J x(ω, h)y(θh(ω\ g - h)dmG(h),
G

(x,j;eJf(ΩxG), ωeΩ, geG),

Jf (ί2 x G) is a normed *-algebra. We denote by L*(Γ) the completion of jf (Ω x G)
in || || x. L*(Γ) is a separable Banach *-algebra, but in general is not a C*-algebra.
Setting

||x|| = sup ||ρ(x)|| (xel/CD),
e

where ρ ranges over all the Hubert space representations of L^Γ), defines a C*-
seminorm on L^Γ). In fact, || || is a norm (cf. [6, Theorems 7.7.4 and 7.7.7]) and
||x||^ l l x l l ! holds for all xeL\Γ) (cf. [29, Theorem 25.10]). The completion of
L^Γ) in || || is a separable C*-algebra called the covariance algebra of Γ or the
crossed product of C(Ω) and G, and is denoted C*(Γ) or C(Ω) x ~ΘG.

Given x e Jf(Ω x G) and ω e Ω, let κω(x) be the operator in L2(G) defined by

(Ka>(x)ψ)(g)= ί x(ΘJ(ω),h)φ(g + h)dmG(h) (φ e L2(G), g 6 G) .
G

It is easily verified that for each ωeΩ the mapping κ;ω (x-^κω(x)) is a
*-representation of JΓ(Ω x G) in L2(G). The unique continuous extension of κω to a
^representation of C*(Γ) in L2(G) will also be denoted by κ:ω.

Let G be the dual group of G.
Given x e Jf(Ω x G) and y e G, let λγ(x) be the operator in L2(Ω) defined by

(λy(x)F) (ω) = J x(ω, g) (g, y)F(θg(ω))dmG(g) (F E L2(Ω\ ωεΩ).
G

It is easily verified that for each y e G the mapping λy (x ^λy(x)) is a ^-representation
of JΓ(ί2 x G) in L2(Ω). The unique continuous extension o f λ y to a *-representation
of C*(Γ) in L2(ί2) will also be denoted by /lr
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Given a *-algebra A, let Asa be the self-adjoint part of A and A+ be the positive
part of A.

Given a C*-algebra A, let &S(A) be the C*-algebra whose self-adjoint part is the
strong sequential closure of Asa on the universal Hubert space for A (cf. [6,
Subsect. 4.5.14]). As is well known, for each ^representation ρ of A in a Hubert
space H, there is a unique sequentially normal ^representation ρ" of &S(A) in H
that extends ρ (cf. [6, Theorem 3.7.7]). When &S(A) contains a unit, which is the
case, for example, when A is separable, then f(x) e &S(A) for every x in J%4)sa and
every bounded Borel function / on R (cf. [6, Theorem 4.5.7]). Moreover, still
under the assumption that &S(A) contains a unit, ρ"(/(x))=/(ρ"(x)) for every x in
J^)sa, every bounded Borel function / on R, and every ^representation ρ of A.
In fact, given xe J%4)sa and a ^representation ρ of A, the set of those bounded
Borel functions / on R for which ρ"(/(x))=/(ρ"(x)) contains all bounded
continuous functions on R and is strongly sequentially closed. Therefore it
coincides with the set of all Borel functions on R.

For each x E J^S(C*(Γ)), the function y->(λy(x)l, 1) is Borel measurable. Indeed,
the set of those x in Λ*(C*(Γ)) for which the function γ-+(λγ(x)l,l) is Borel
measurable is weakly sequentially closed and, since γ -»(Λy(x) 1 , 1 ) is continuous for
each xeC*(Γ), it contains C*(Γ). Thus, this set coincides with 8t*(C*(Γ)).

Given xe^s(C*(Γ))+, let

τ(x)=IW(x)l,l)dmύγ). (1)
G

It is easily seen that τ is a σ-trace on J*5(C*(Γ)) which in general is not faithful (see
[6, Sects. 5.1.1 and 5.2.1] for relevant definitions and [19, Lemma 3.3] for the
proof).

As usual, we denote by \E the characteristic function of the set E.
Let x e ̂ s(C*(Γ))sa be such that τ(l(α>b)(x)) < + oo for α, b eRu{ - oo, + 00} with

α<b. Then the spectral density function N(^ over (α,b) is defined by

N?(μ) = τ(l(α,μ](x)) (μe(α,b)).

N(^ is non-decreasing, and so the set 2(N(^) of points of discontinuity of N(£* is at
most countable.

Let H be a Hubert space, Γ be a self-adjoint (bounded or unbounded) operator
in H, and £ be a Borel subset of R. We recall that T is said to have pure point
spectrum over E if

ι*CO= Σ 1M00,
μeE

where the sum is to be interpreted in the sense of strong convergence; T is said to
have pure point spectrum with finite multiplicity over E if the above identity is
valid and, for each μeE, the range space of the projection l{μ}(T) is finite-
dimensional and T is said to have purely continuous spectrum over £ if 1 {μ}( T) = 0
for each μeE. Denote by TE the operator 1E(T)T. Using the identity

(0}(A) 1R\£(T) (A a Borel subset of R) ,

where <5{0} denotes the Dirac measure concentrated at 0, one easily verifies that T
has pure point spectrum over E if and only if TE has pure point spectrum (over R).

Bellissard and Testard [5] have presented the following spectral duality
theorem.
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Theorem A. Let Γ = (Ω,G,θ(a\mΩ) be a special dynamical system, let a, be JR. be
such that a<b, and let E be a Borel subset of (a, b). If XE J*s(C*(Γ))sa is such that
τ(l(a,b)(x))< + °° ana ίf> for niQ-almost all γ e G, λγ(x) has pure point spectrum with
finite multiplicity over E, then, for W-almost all ω E Ω, κ'^(x) has purely continuous
spectrum over E.

Kaminker and Xia [19] established another version of the spectral duality
theorem, a slightly generalized variant of which, tailored to the setting of the
present paper, goes as follows.

Theorem B. Let Γ = (Ω, G, 0, P) be a dynamical system, let a,beΊ&be such that a<b,
and let Ebea Borel subset of (a, b)\@(N(?). If XE J>s(C*(Γ))sa is such that τ(l ( f l f f t )(x))
< -f oo and if, for m^-almost all y e G, λγ(x) has pure point spectrum over E, then, for
^-almost all ωeΩ, κ'^(x) has purely continuous spectrum over E.

The main purpose of the present paper is to establish a version of the spectral
duality theorem that simultaneously generalizes Theorems A and B. Using that
version, we prove that almost all the images of any element of a certain space of
fixed points of some *-automorphism of an irrational rotation algebra via
standard ^representations of the algebra in /2(Z) do not have pure point spectrum
over any non-empty open subset of the common spectrum of those images. As
another application of the spectral duality theorem, we prove that if almost all the
Bloch operators associated with a real almost periodic function on R have pure
point spectrum over a Borel subset of R, then almost all the Schrόdinger operators
with potentials belonging to the compact hull of the translates of this function
have, over the same set, purely continuous spectrum.

1. The Main Result

We begin with a simple preliminary.

Proposition 1. Let Ebe a Borel subset of R, and let H be a Hilbert space. If T is a
self-adjoint operator in H such that, for each ζeH,

lim ^= } \(\E(T)eitTξ,ξ)\2dt = 0, (2)
Γ-+00 21 -Γ

then T has purely continuous spectrum over E.

Proof. The proof proceeds along the same lines as that of a well known theorem of
Wiener (cf. [24, Theorem 5.6.9]).

Given ξ E H, let ηξ be the spectral measure of T associated with ξ, that is,

) = ( l A ( T ) ξ , ξ ) (A a Borel subset of R).

Applying the operational calculus for normal operators (cf. [28, Theorem 1 1.12.3])
in conjunction with Fubini's theorem and adopting the convention that sin 0/0 = 1,
we find that, for each Γ>0,

-!- f \(lE(T)eitTξ,ξ)\2

21 -T
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If we let

then, by (3) and Lebesgue's dominated convergence theorem,

.. 1 τ.
(4)

On the other hand, by Fubini's theorem,

= Σ
E μeE

Hence, in view of (2) and (4),

Σ WM)l2=o,
μeE

implying that ηξ({μ}) = 0 for each μ e E. By the arbitrariness of ξ, 1 {μ}(T) = 0 for each
μeE.

The proof is complete.
The main result of this section is the following.

Theorem 2. Let Γ = (ί2, G, 0, P) be a dynamical system, and let Ebea Borel subset of
R. // x is an element of &s(C*(Γ))sa such that τ(l {μ}(x)) = 0 for each μeE and if, for
mfr-almost all γeό, λγ(x) has pure point spectrum over E, then, for JP-almost all ωeΩ,
κ'ά(x) has purely continuous spectrum over E.

Proof. Given φ e L1(G), let φ be the Fourier transform of φ, that is,

Φ(y)=$φ(g)(g,-y)dmG(g) (yeό).
G

Adopting a standard convention, we assume that the Haar measure on G is
normalized so that

φ(χ)= ί
G

whenever φeL\G)nC(G) and
Let A(G) be the space of the Fourier transforms of functions in L1(ό).
For each xe tf(Ω x G), each φe4(G)n^(G), and each geG, we have

$Ω\(κω(x)φ)(g)\2dV(ω)

G x G

x(θg(ω), h)x(θβ(ω), h')φ(g + h)φ(g + h')dV®mG x G(ω, h, h')

Γif x(ω,fc)^7θ<flP(cϋ)Ίφ(g + h)φ(g~+h;)dmGxβ(h,h')

x Φ(y)W)dmG x G x G x G(/ι, Λr, 7, /)

(y,/). (5)A
G X G

Note that the use of Fubini's theorem is legitimate since φ is in !/((/) nC((j) and
hence the function (7, γ')^>φ(γ)φ(γf) is in L\0 x <5)nC(<3 x 6). Let K be a compact
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subset of G containing the support of φ. Then, for each ω e Ω,

\(κω(x)φ9φ)\2£mG(K) ||φ|β J \(κω(x)φ)(g)\2dmG(g).

This together with (5) yields

J \(κω(x)φ,φ)\2dP(ω)^mG(K) \\φ\\ (λy(x)lλy,(x)\}(g,y-yf)

x φ(y]φ(f)dmG x G x ό

The latter inequality implies in turn that, for each

J \(κ^(x)φ,φ)\2dP(ω)^mG(K)
Ω

, y, y') . (6)

|χόμ;'(x)U';,(x)i)(g,y-y')

x G x G(&? y> y'} (7)
In fact, by the previous argument, for each x e J*S(C*(Γ)) the functions
ω-*(κ'ω(x}φ,φ) and (y,y')->(/l"(x)l, λ'y{x}\) are Borel measurable. Moreover, by
Lebesgue's dominated convergence theorem, the set of those x in J*S(C*(Γ)) for
which (7) holds is strongly sequentially closed, and, by (6), contains C*(Γ). It
therefore coincides with J>S(C*(Γ)).

Let E be Borel subset of R and x e J>s(C*(Γ))sa be such that τ(l {μ}(x)) - 0 for each
μ E E and, for m^-almost all y e G, λy(x) has pure point spectrum over E. We claim
that, for mG x ^-almost all (y, y') e G x G,

r->oo
(8)

Let A be the set of those γ e G for which Λ/y'(x) has pure point spectrum over E.
For each γeA, let pfy f l ) fe/v be a complete system of eigenvectors of the restriction
of λγ(x) to the range space &(lE(λγ(x))) of the projection lE(λγ(x)) with a
corresponding system (μy^ie/ of eigenvalues, where the index set /y has the
cardinality equal to the orthogonal dimension of ^(\E(λ'y(x))). Given yez l and
ε>0, let IγίS be a finite subset of /Ί such that

Notice that (\E(λ'y(x))\,Xy^ = (\,Xy^ whatever yεA and
y, y'ezl, any ε>0, and any £eR, we have

. Thus, for any

ΐ e / y , ε

(9)
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Given μεE and ye A, let

Plainly, for each μeE and each 76 A,

(^(iw(x))U)HI^^ Σ
ieJμ,

Hence, by (1) and the assumption, for each μeE the set

is of full measure in ό. Given jeΔ and ε>0, let

Clearly, Zl y > ε is also of full measure in ό.
Fix yezl and y'εAy)B arbitrarily. Note that, if μyΛ = μf)j for some ( i 9 j ) e I V t e

x/V',ε, then, since y' eΓμy ., we have that (1, Jfy%J ) = 0. Therefore, if we let

then, for each ίeR,

Σ pit(μγ,i-μΎ>,j)ίΛ Y W1 V \ / γ Y \
£ ' 'J (l,Λyfi)(l,Λy>j)(Λyti,Λy,j)

This together with (6) implies that, for each - y e A and each y'e Jy>ε,

lim sup
Γ->oo

Let

2.= Π ΔyΛln
weN

Clearly, 2ίy is of full measure in ό. Moreover, (8) holds for all y e A and all y' e 2ίχ. Let
AT be the Borel set of those (y, /) e G x 0 for which (8) holds. For each y e G, let

Since AyCN^ for every ye A, it follows from Fubini's theorem that N has full
measure in G x 6. The claim is thus established.

The function (y, y')-*φ(y)φ(y') is in Ll(ό x (j)nC(G x G) and K is compact, so,
by (8) and Lebesgue's dominated convergence theorem,

T—> oo ^ •*• — T |_K x G x G

x φ(y) φ(f)dmG x G x G(g, y,

This jointly with (7) implies that

1 τ

Γ->oo 2T -T Ω
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Since, for each T>0,

it follows from Lebesgue's dominated convergence theorem that

j l i m = \(κ
Ω \_T-+ao 21 -T

Thus, for P-almost all ω e Ω,

lim ̂  f IK(
T^oo 2.L -T

The space A(G)ntf(G) is dense in L2(G) and the latter space is separable. Therefore
there exists a IP-null subset N of Ω such that, for all φ e L2(Ω) and all ω e Ω\JV,

lim ̂  f |(1£(CW)^K^VΦ)I2Λ = 0.
T^oo ^Λ -Γ

In view of Proposition 1, for each ω e Ω\iV, κ ̂ (x) has purely continuous spectrum
over E.

The proof is complete.

2. Some Consequences

It is clear that Theorem 2 implies Theorem B. The proof of the fact that Theorem 2
implies Theorem A is based on the following.

Proposition 3. Let Γ = (Ω, G, θ(α), mβ) be a special dynamical system, and let E be a
Borel subset of IR. // x e J*s(C*(Γ))sa is such that, for m^-almost all γ e G, λ'fa) has
pure point spectrum with finite multiplicity over E, then τ(\{μ}(x)) = Q for each μeE.

Proof. Let ά be the homomorphism from Ω to G given by

Since α is one-to-one, dc(Ω) is dense in (?. Since G is non-compact and σ-compact, G
is non-discrete and metrizable (cf. [23, Theorems 12 and 29]). Thus there exists a
sequence (ζk)fce]N of pairwise different elements of Ω such that lim ά(ζk) = Q.

fc-»oo

For a measure space (X, 9JI, μ) and /e L°°(Jί, μ), we denote by Mf the operator
in L2(X, μ) given by

fφ (φeL2(X,μ)).

For a non-negative operator S in a Hubert space, we denote by Tr(S) the trace
of S.

For a set E, Φ E denotes the cardinality of E.
Given a subset E of an Abelian group A and an element a of ^4, we let

, eeE}.

A direct computation shows that, for each ζeU9 each yeG, and each

. (10)
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Hence, if Λ; e ̂ s(C*(Γ))sa is such that λγ(x) has pure point spectrum with finite
multiplicity over E for every 7 in a set A of full measure in (3, then, for each μeE,
each γeA, and each neN,

Σ WWi(»(*))U)= Σ μ;'(iί/(}(χ))C,,

In particular, for each μeE and each γeA,

lim- Σ μ;'+&(ω(iM(χ))U)=o. (ii)
n->oo W k=l

Let K be a compact subset of ό. Since lim όt(ζk) = 0, it follows that, for each μ e E,
fc->oo

J μ;'(l,(x))l, l)dmό(7)= lim - Σ J
X /ι-»oo n k=ί X-ά(

= lim J- Σ
n->oo K n fc= 1

On the other hand, by (11) and Lebesgue's dominated convergence theorem, for
each μ e E, we have

lim J- Σ (λ';+,(ω(ίμ(x))ί,ί)dmό(y) = 0.
n-+<x> K n k=i

Hence, for each μ 6 E, (λγ(lμ(x)) 1, 1) = 0 for m^-almost all y 6 X and, in view of the
arbitrariness of K, (Ay(lM(x))l,l) = 0 for m^-almost all yeό.

The proof is complete.
As a consequence of Theorem 2 and Proposition 3, we have the following

generalization of Theorem A.

Theorem 4. Let Γ = (Ώ, G, 0(α), mβ) be α special dynamical system, and let E be a
Borel subset of R. // x e J*s(C*(Γ))sa is such that, for m^-almost all yeό, λ'fa) has
pure point spectrum with finite multiplicity over E9 then, for JP-almost all ωeΩ, κ'ή(x)
has purely continuous spectrum over E.

3. Some Covariant Representations

Let Γ = (Ω, G, 0, IP) be a dynamical system. A covariant representation of Γ is a triple
(§, π, U) in which § is a Hubert space, π is a ^representation of C(Ω) in §, and U is
a strongly continuous unitary representation of G in § such that, for each F e C(Ω)
and each g e G,

π(θgF)=U(g)π(F)U(-g). (12)

With any covariant representation (§, π, 17) of Γ there is associated a non-
degenerate ^representation ρπ> ̂  of C*(Γ) in § uniquely determined by

β«, i/W = ί π(x.) t/(g)dmG(g) (x e Jf (Ω x G)) ,
G

the integral being taken in the strong-operator topology. It turns out that every
non-degenerate ^representation of C*(Γ) arises as the ^representation associated
with a certain covariant representation of Γ (cf. [6, Proposition 7.6.4]). We
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illustrate this fact by giving any of the ^representations κω (ω e Ω) and λy (y e Γ) the
form of a ^representation associated with a covariant representation of Γ.

Given a function / on a group G and an element a of G, let Taf be the translate
of / by α, that is,

Taf(b)=f(a + b) (beG).

For each ω E Ω, let πω be the ^representation of C(Ω) in L2(G) defined by

(πω(F)φ)(g)^F(^(ω))φ(g) (F e C(Ω\ φ e L2(G), g 6 G) .

Let T be the strongly continuous unitary representation of G in L2(G) given by

T(g)φ=Tgφ (φeL2(G),geG).

Then, for each ω e Ω, (L2(G), πω, T) is a covariant representation of Γ and

Kω = Qnω,τ
For each 7 e G, let l/y be the strongly continuous unitary representation of G in

L2(Ω) defined by

Uy(g)H = (g, γ)SβH (H E L2(Ω\ g e G) .

Let 9 be the * -representation of C(Ω) in L2(Ω) given by

= MFH (F E C(Ω\ H E L2(Ω}) .

Then, for each y E G, (L2(Ω\ ,̂ Uy) is a covariant representation of Γ and λy — Q&^ t/ .
For the remainder of the present section, let Γ = (Ω, G, θ(a\ mΩ) be a special

dynamical system. Let bG be the Bohr compactification of G, β be the canonical
monomorphism from G into £>G, and η be the homomorphism from bG onto Ώ
such that oc = ηoβ (cf. [25, Definition 14.7.3]).

Let Jη:L
2(Ω)-+L2(bG) be the operator given by

JηF = Foη (FEL2(Ω)).

Since mβ(^4) = m[,G(f/~1(J4)) for any Borel subset A of £2, it follows that Jη is an
isometry.

Let p be the ^representation of C(Ω) in L2(bG) given by

p(F)ff - MFo,H (F E C(β), H E L2(bG)) .

Let ̂  be a strongly continuous unitary representation of G in L2(bG) defined by

®(g)F = TΛ(g)JηF (F E L2(bG\ g e G) .

Then (L2(bG\ p, ̂ ) is a covariant representation of Γ. As we shall see shortly, the
associated ^representation ρp ̂  contains information simultaneously about all
the ^representations λy (y e Γ). ^̂

For each y E G, let χy be the element of bG such that

Of course, the set [χy: y e G} coincides with 'bG, and as such forms an orthonormal
basis of L2(bG). Since α(G) is dense in Ω, & is injective. For each ξEOt(Ω\ let
Q = ά~1(ξ); then, clearly, ζξ°η = χξ. For each yeG, let ξ>y be the closed linear
subspace of L2(bG) spanned by {χy + ξ:ξEOί(Ω)}. Note that if γ — γΈ&(ύ), then
Sy = Sy', and if y - / e G\ά(Ω), then §y and §y / are mutually orthogonal. Let 9* be a
selector of the quotient group G/ά(β), that is, a subset of G whose intersection with
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any coset of ά(Ω) is a singleton. Plainly

Given x e tf(Ω x R), y e (j, and ξ e Ω, we have

Qί>,w(x)Xy+ξ = MXγJηλy(x)ζξ .

Hence, for each y e G, §y is an invariant subspace for ρ ̂  ̂  and the restriction of
fo<% to §y is unitarily equivalent to λr Accordingly, up to a unitary equivalence,

β*« = Θ V (13)

Note that this representation does not depend on the choice of the selector £f as, in
view of (7), λy and λy. are unitarily equivalent whenever y— γ'εύ.

4. A Remark

Let Γ be a special dynamical system of the form (Ω,R, 0(α), wβ), and (§, π, (7) be a
co variant representation of Γ. Denote by T the set of all complex numbers with
unit modulus. Let Y: Ω x R->T be a continuous cocycle on ί2, that is, a continuous
function satisfying the cocycle relation

7(ω, s + t)= Y(ω, s) Y(ω + α(s), ί) (ω e β, 5, ί 6 R) . (1 4)

Given ίeR, let Yt be the element of C(Ω) defined by

yf(ω)=y(ω,ί) (ωeΩ).

For each ίeR, set

In view of (12), (14), the unitarity and the norm continuity of the function Rat
-> Yt E C(Ω\ the mapping Gπ Ut Y (t-*Gπ Ut Y(t)) is a strongly continuous unitary one-
parameter group in §. By Stone's theorem (cf. [28, Corollary 9.9.2]), the
infinitesimal generator of Gπj Vj Y has the form iA^ Ut y, where Aπt Ut Y is self-adjoint.
Clearly, A^UtY is self-adjoint, positive, and, as an easy application of the
operational calculus for normal operators reveals, for each μ<0, the resolvent
R(μ,A^UtY) of A*tUtY at μ satisfies

ρπ,u(mμ,Y), (15)

where mμtY is the element of L* (Γ)SΛ given by

mίlY(ω,s)=

With each Q € CR(Ω) there is associated the continuous cocycle Y(Q) on Ω given
by

ί) = exp ί i j β(ω + α(s))ώ 1 (ω e Ω, ί e R) .
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If we denote by Dυ the infinitesimal generator of the unitary one-parameter group
E7, then, as one directly verifies,

A fundamental fact is that there exist functions Q in CR(£2) such that, for each
yetft, AptU y (Q) has purely continuous spectrum. More precisely, there exist
functions (/in CR(Ω) such that, for each yeR, A9tlJy%Ύw has purely Lebesgue
spectrum; and there exist functions Q in CR(ί2) such mat, for each yel&, A&>C7 Q
has purely singularly continuous spectrum. The truth of the fact is seen as follows.
Let (<9,9K,μ) be a probability space carrying a sequence (Xn)ne^ of Ω-valued
independent random variables, each uniformly distributed on Ω. Let / be a unitary
continuous function on T with at least two non-zero Fourier coefficients. Then, by
a result of [11], there exists a sequence (CΠ)weN in ̂  with ($(£„))„«= N tending to 0 as
fast as we please such that, for each (θ, ω, ί) e Θ x £2 x R, the product

«= i
/((ω + Xn(θ\ ϋ)/((ω + *Λ(Θ) + α(f),

converges (with uniform convergence in θ and ω, and with local uniform
convergence in i) and, for any fixed θe (9, defines a continuous cocycle Yθtf on Ώ
such that, for μ-almost all θeθ, all the operators AβP^Uy^Ύθ f (yeR) have purely
Lebesgue spectrum (respectively purely singularly continuous spectrum). Let g be

2π

a real non-constant continuous function on T such that (2π)~1 J g(eιu)du is an
o

integer, and, for each s e [0, 2π), set

Then / is a unitary continuous function on T with at least two non-zero Fourier
coefficients. Now, as indicated above, one can choose a sequence (C«)«eN in ^ so

that, if, for each n e N, ocn is such that

ete"' = (α(t),ϋ (ίeR),

00

then J] |αj < + oo and, if, for each θ e 6>, the function βθ in C(ί2) is given by
n = l

),ϋ) (ωeί2),

then l^ f /= ^(Qθ) and, for μ-almost all θeθ, all the operators A^tU ίY(Q(>) (yeR)
have purely Lebesgue spectrum (respectively purely singularly continuous
spectrum).

Note that, for each QeC^Ω) and each ωeΏ, Aπ^τ^Ύ(Q} coincides with the
operator i~1(d/dx) + qω(x), defined on the Sobolev space /^(R), where
qω = (TωQ)°(x. For each xeR, set

It is readily verified that



Spectral Duality Theorem 539

so that AπmtT9γiQ) and i~^(d/dx) are unitarily equivalent. Accordingly, Aπ^TtY(Q)
has purely Lebesgue spectrum.

Let QeCκ(Ω) be such that, for each yetfl, 4?,ι/v,r<Q> has purely continuous
spectrum. Fix arbitrarily μ<0. Then, for each ωeΩ, A^TtY(Q) has purely
Lebesgue spectrum and hence, by (15), so does κω(mμ^Ύ(Q)). Moreover, for each
ye]&, Ap9UytQ has purely continuous spectrum, and so, by (15), λy(mμιY(Q)) has
purely continuous spectrum. We thus see there exist elements of C*(Γ)sa whose
images by the κω (ω e Ω) have purely continuous spectrum without the images by
the λy (yelfc) having pure point spectrum.

5. Some Applications

5.1. Consider T as a compact group with multiplication as group operation, and
let Γ = (T, Z, θ(a\ mτ) be a special dynamical system in which the homomorphism
α:Z->T is given by

with ξeR\Q. Let u and v be the elements of jf(TxZ) defined by

w(ω,n)=l{1}(tt) and v(ω,ri) = ωl(0}(ri) (ωeTΓ, neΊL).

Considered as elements of C*(Γ), u and v are unitaries satisfying the twisted
commutation relation

A direct computation shows that C*(Γ) coincides with the C*-algebra generated
by u and v. It is well known that there exists exactly one, up to *-isomorphism, C*-
algebra generated by two unitaries satisfying the above twisted commutation
relation (cf. [7; 26, p. 117]). That C*-algebra is called the irrational rotation algebra
and is usually denoted by stfξ. Accordingly, C*(Γ) is a realisation of <$tfξ.

Given an operator T in a Banach space or an element T of a Banach algebra,
denote by σ(T) the spectrum of T.

Since C*(Γ) is simple (cf. [26, Theorem 4.3.3]), all the * -representations of C*(Γ)
are faithful. Hence, in particular, σ(κω(x)) = σ(x) for each x e C*(Γ) and each ω eT.

Given a *-algebra A, let Aut(^l) be the group of all *-automorphisms of A. For a
subset E of A and α e Aut(^), let £° be the set of all fixed points of α in E. For each
α e \ut(A) and each xeA, let α°(x) = x and, by induction, let α"(x) = α(α"~ 1(x)) for
each neN. If αe Aut(^4) is such that α" = id^ for some rceN, then setting

n k=o

defines a projection πα from A onto A".
Let K be the *-subalgebra of C*(Γ) generated by u and v. Clearly, if

αe Aut(C*(Γ)) is such that a" = idc*(r) for some neN, then πα maps Ksa onto K^a.
For any 5 e SL(2, Z) and any m,neZ, denote by (ms, ns) the image of (m, n) under

the standard action of 5 on TL x Z. As shown by Brenken [7], the exists a
representation s->αs of SL(2,Z) in Aut(C*(Γ)) such that

eπίξ(WsWs ~ ""W" (s e SL(2, Z), m, n e Z) .
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Let

O -1

o

In the sequel, the automorphism αso will play a special role and will be denoted
briefly as b. It is easy to see that b is uniquely determined by the identities

b(u) = v* and b(v) = u.

Obviously, as SQ = e, where e is the neutral element of SL(2, Z), we have b4 = idc*(Γ).
One of the elements of K\Ά is

The corresponding operators κω(/z)(ωeT) arise as hamiltonians in the Harper
model of a two-dimensional crystal with square symmetry in a magnetic field. If
ω = e2πiθ with $e[0, 1), then, as one easily verifies,

The spectral properties of the κω(h) (ωeT) and of related operators have long been
investigated by physicists and mathematicians (cf. [1, 13-17, 27] and the
bibliographies therein). A still unproved conjecture asserts that, for each ωeT,
κω(h) has purely singular continuous spectrum and that σ(h\ which, as indicated
above, coincides with σ(κω(h)) for each ωeT, is of zero Lebesgue measure. Using
an argument due to Aubry and Andre ([!]; cf. also [2, 4]), we shall establish a
result (Theorem 6) concerning the entire space Kb

sa, which, when applied to h,
partially substantiates the conjecture.

Theorem 5. For every x e Kla and every Borel subset E of 1R, either (κω(x))E = 0 for
mτ-almost all ωeT, or, for m^-almost all ωeT, κω(x) has no pure point spectrum
over E.

Proof. Let 2F be the Fourier transformation from L2(T) onto 12(Z) given by

(&F) (n) = J F(ω)ώndmj(ω) (F e L2(T)) .
T

As is well known, 3? sets up a unitary equivalence between L2(T) and 12(Z).
Identifying ^ with T in a standard way, one directly verifies that for each ωeT,
each φ e /2(Z), and each n e Z,

(κω(u)φ) (n) = (

(κω(v) φ) (n) = (&λω(u) ̂ -lφ}(n} = ωe2πiξnφ(n) . (16)

Consequently, for each yeC*(Γ) and each ωeT,

Now, if xeΛ^a and ωeT, then

κω(x) = ̂ lω(x)^-1. (17)

Hence, for each ωeT and each bounded continuous function / on R,
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and further, by the sequential normality of K^ and /C, for each bounded Borel
function / on R,

In particular, for each ωeT and each Borel subset E of R,

Cfe) = ̂ ^fe)^"1. (18)

It is also easy to see that, for each ωeT,

%«>(ω, „>(*) = T(n) κω(x) T(-n),

whence, by a similar argument, for each ωeT and each Borel subset E of R,

where, of course, XE denotes the element lE(x)x of ^s(C*(Γ))sa. Since the function
co^κω(x) is strongly continuous, it follows, by a standard argument, that for every
bounded Borel function / on R the function ω-+κ"ω(f(x)) is weakly Borel
measurable. In particular, for each Borel subset E of R, the function ω-+κ'ά(xE) is
weakly Borel measurable. Now, since the dynamical system Γ is ergodic, it follows
from a theorem of Kunz-Soullaird ([22] cf. also [20]) that, for each Borel subset E
of R, the set of those ω eT for which κ'ή(xE) has pure point spectrum is either ?%-
null or of full measure in T.

Suppose that, for some Borel subset E of R, the set of those ωeT for which
κω(x) has no pure point spectrum over E is not of full measure in T. Since, for each
ωeT, κω(x) has pure point spectrum over E if and only if (κω(x))E = κf^(xE) has pure
point spectrum, it follows from the preceding paragraph that, for 7%-almost all
ωeT, κ'ή(xE) has pure point spectrum. Now, by (18), λ'ά(xE) has also pure point
spectrum for mr-almost all ωeT, and hence λω(x) has pure point spectrum over E
for Wr-almost all ωeT. In view of (16), for each ωeT, κω(x) is a difference operator
of finite order, and so every eigenvalue of κω(x) has finite multiplicity. Accordingly,
by (17), for each ωeT, every eigenvalue of λω(x) has finite multiplicity. Applying
now Theorem 4, we find that, for Wr-almost all ωeT, κω(x) has purely continuous
spectrum over E. Finally, the fact that, for ^-almost all ωeT, κω(x) has
simultaneously pure point and purely continuous spectrum over E implies that
*C(XE) = O f°r ^r-almost all ωeT.

The proof is complete.

Theorem 6. For every x e Kla and m^-almost all ωeT, κω(x) does not have pure point
spectrum over any non-empty open subset of σ(x).

Proof. Let x e Kl&. Since the topology of σ(x) has a countable basis, it suffices to
prove that, for each non-empty open subset of σ(x) and for Wr-almost all ωeT,
κω(x) has no pure point spectrum over that subset.

Let U be a non-empty open subset of σ(x) and /:R->[0, 1] be a non-zero
continuous function with support in U. Then 0<f(x)x2^x2

J. Hence, by the
faithfulness of the κω (ωeT), for each ωeT, 0<κω(f(x)x2)^(κ'ά(xu))2 and so

. Now the theorem follows upon applying Theorem 5.

5.2. Let Γ = (Ω, R, 0(α), w^) be a special dynamical system, (§, π, U) be a co variant
representation of Γ, and Dv be the infinitesimal generator of U. Then — Dy is self-
adjoint, positive, and, for each μ<0,

R(μ, -D2) = -- 1= J e-^WU(s)ds. (19)
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Given βeCR(ί2), let Hπ v Q be the self-adjoint operator defined by

with domain coinciding with that of D^. Clearly, Hπ v Q is self-adjoint and
bounded below by — \\Q\\ ^

For each μ<0 and each FeC(Ω), let xμ F be the element of LX(Γ) given by

xμ F(ω, s)= -- 1= e~v^ Ta(s]F (ω e fl, 5 eR) .
2j/-μ

Clearly, \\xμ.F\\ι = \\F\\ J\μ\ Moreover, in view of (12) and (19),

R(μ,-D*)π(F) = ριCtϋ(xμίP). (20)

Since, for μ<- \\Q \\ ̂

oo

I I v I I - u l l v I I V I I Y11^,1 I I 1 + l l * μ , ι l l ι 2, II^Q
•<"" \μ\

it follows that the series

, , ,
«= 1

converges in Ll(Γ). Let rμ F be its sum. Since, for μ< - \\Q\\ ̂

Σ (R(μ, - Dl)π
n = l

it follows from (20) that

R(μ>Hπtϋίώ = Q«ttfrμt<d. (21)

A moment's reflection shows that rμ Q is self-adjoint.
The argument used in the proof of (21) goes back to Bellissard and Testard [5]

(see also [3, Theorem 3.1]).
Note that, for each ωeΩ, Hπω τ Q is the Schrόdinger operator { — d2/dx2}

+ qω(x) with the almost periodic potential gω = (Tωg)°α, defined on the Sobolev
space //2(R). Each H#> Uy Q (yeR) is a so-called Bloch operator. The operator
H p tytQ was first introduced and studied by Burnat ([8]; cf. also [9, 10, 18, 21]) and
we shall accordingly call Hp^Q the Burnat operator.

The main result of this subsection is the following.

Theorem 7. Let Γ = (Ω, R, θ(a\ mΩ) be a special dynamical system, let Q be an element
of CR(Ώ), and let E be a Borel subset of R. //, for m^-almost all y eR, the Bloch
operator H^ Uγ,Q has pure point spectrum over E, then, for mΩ-almost all ω e Ω, the
Schrδdinger operator Hπω τ Q has purely continuous spectrum over E.

Proof. Fix arbitrarily μ< - l l β l l o o Let

In view of (21), for m^-almost all 7 eR, Λ"(rμ Q) has pure point spectrum over F. By
the result of [12], every eigenvalue of the Burnat operator H ^ ̂  Q is at most
double. Hence, in view of (20), every eigenvalue of Qf'<%(rμiQ) is at most double.
Now, by (13), every eigenvalue of λγ(rμ>^) is at most double whatever yeR. By
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virtue of Theorem 4, for mβ-almost all ωeΩ, κ'ά(rμfQ) has purely continuous
spectrum over F, and hence, for wβ-almost all ω e Ω, Hπω Γ Q has purely continous
spectrum over E.

The proof is complete.
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