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Abstract. Superconformal structures on a given 2| 2-dim supermanifold give rise to
the notion of super Riemann surfaces (SRS's). We investigate super Beltrami
coefficients which parametrize (almost) superconformal structures on the super-
manifold. The integrability condition of the structure reduces to a simple relation
among the coefficients. Taking this into account, we can write the super Beltrami
equations in a transparent form. Then an analysis of these equations enables us to
prove the possibility of the special gauge choice of the Wess-Zumino type for the
super Beltrami differentials. This gauge choice simplifies the description of the
deformations of SRS's considerably and its existence will afford a better
understanding of the structure of the super Teichmuller space.

0. Introduction

Two-dimensional field theories perceive the space-time which they inhabit to be a
super Riemann surface (SRS) if their couplings to supergravity are superconfor-
mally invariant. The theory of SRS's plays an important role in the studies of the
two-dimensional supergravity, superstring in the Neveu-Schwarz formalism and
superconformal field theories. For example, holomorphy properties of the
superstring measure on the moduli space of SRS's (super moduli space) are the
fundamental importance of the theory [1].

There are mainly two ways in defining SRS's, that is, patch definition [2]
(including algebraic definition [3]) and frame definition [4,5], and for each of them
there exist corresponding approaches to the moduli problem [3-6]. In this paper,
we develop the study of the super Beltrami equations, clarifying the basic
properties of the super Beltrami differentials and investigate the Teichmuller
deformations of SRS's of genus p> 1.

This approach is based on the frame definition of SRS's in which the notion of
SRS is derived from 2-d supergravity geometry. In this respect, it is fit for the direct
applications to physics [7-9]. The geometrical structure on 2|2-supermanifolds
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suitable for 2-d supergravity is established by Howe [10]. He set up torsion
constraints properly, assuming the reduction of the structure group from
GL(2|2,R) to 1/(1) (local Lorentz group), and defined the super Weyl transfor-
mations of the frame fields. The geometrical meanings of these constraints were
clarified by Giddings and Nelson [5]. They showed that the constraints of [10] are
basically the integrability conditions of the reduction of the structure group to a
certain subgroup G. (The difference as gauge groups between 1/(1) x [super Weyl]
and G has only secondary meaning.) A distribution (a subbundle of the tangent
bundle) that provides a reduction concerned can be defined through Pfaff
equations. The three coefficients of the Pfaffian form (omitting the scale factor)
form a set of super Beltrami coefficients (μ, ρ, v). Here ρ and v are Grassmann odd
superconformal tensors of weight (— 1, ̂ ) and (—j, 0) respectively, while μ is a even
superfϊeld and not a pure superconformal tensor.

The super-extension of the Teichmϋller theory was first studied by Crane and
Rabin [11]. They represent an SRS on the universal covering space, taking a
quotient by the action of a discrete subgroup of the super Mόbius transformations.
They derived the super Beltrami equations, discussed their solution and studied
the extension of the Bers' embedding theorem to exhibit the complex structure of
the super Teichmϋller space. However, their treatment of the super Beltrami
coefficients included insufficient points. To describe the deformations of SRS's,
they took a split SRS as the deformation origin and made a pregauge-fixing for the
super Beltrami coefficients of the form σ = ρ + θμ = 0, conjecturing that it was
always possible. Thus the structure of the space of the coefficients and how they
contribute to the deformations have not been clarified in the full context. Though
much work has been made on the super Teichmϋller theory [12-16], there still
remain things even in the elementary ground of the theory.

In the present paper, we give the complete treatment of the super Beltrami
equations that has not been presented so far and solve the problem of the gauge
choice of [11,12]. The progress starts with the following remark. The integrability
condition for the super Beltrami coefficients is simply that μ is expressed as a
certain function of ρ, v and their derivatives.1 (Regarding this point, the approach
through the Pfaffian form seems much simpler than the vector field approach
studied in [15], in which the integrability condition leads to complicated equations
among the coefficients of the vector fields.) So, among three coefficients, two odd
ones ρ and v are considered as the basic fields [13], which we call super Beltrami
differentials. The even superfield μ can be viewed as the super-extension of the
ordinary Beltrami differential. An interesting point is that the super Beltrami
coefficients appear in the essential parts of the super Beltrami equations only
through the (modified) even coefficient μ in which the basic odd differentials are
nested. This observation enables us to prove the conjecture for the gauge choice of
[11] in a stronger form. It states that, taking a split SRS as the deformation origin,
whole deformations of SRS's are sufficiently covered by considering the super
Beltrami differentials of special form such that v = 0 and (1 — ffdθ)ρ = 0. This gauge
condition, which is imposed uniformly on the universal covering space, is a kind of
gauge choice usually employed in the physics literature as Wess-Zumino gauge. Its
validity has been shown for the infinitesimal deformations [12,13], (although

1 When struggling to complete the paper, I found that the constraints among the super Beltrami
coefficients, which express the integrability condition, had been already solved by a somewhat
different manner in [8], though the result itself I obtained a year ago. In [8], the authors are mainly
intent on the physical application to some superconformal models. The super Beltrami equations
are not investigated there
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negative arguments were made for arbitrary deformations in [12]). This gauge
choice simplifies the description of the deformations of SRS considerably and its
existence will improve our understandings of the structure of the super
Teichmuller space.

The article is organized as follows. In Sect. 1, we describe superconformal
structures in terms of "metric" from which the Pfaffian forms are derived. In Sect. 2,
we derive the integrability condition and discuss the basic properties of the super
Beltrami differentials. In Sect. 3, the super Beltrami equations are investigated in
detail in terms of the components of the superfields. We prove the possibility of the
special gauge choice of the Wess-Zumino type in Sect. 4. We see that one of the
super Beltrami differentials v of weight (— ,̂ 0) plays a role of the background spin
field which changes the spin structures of the deformed SRS's. In Appendix A, we
summarize the infinitesimal deformations, attending to the problem of the gauge
choice when a general (non-)split SRS is taken as the deformation origin. Under a
plausible assumption about the boundary behavior of the super Beltrami
differentials, it can be shown that the v = 0 gauge is always possible. In Appendix B,
residual symmetry under the Wess-Zumino gauge is discussed. Appendix C is
devoted to a brief description of the supercomplex structure of the super
Teichmuller space through the infinitesimal approach. The Wess-Zumino gauge
supplies a class of natural complex coordinate systems for the super Teichmuller
space.

Throughout this paper, we do not enter into details of the specific construc-
tions of supermanifolds.2 We always denote the body map by π.

1. Superconformal Structure

An almost superconformal structure of a real 2|2-dimensional supermanifold M is
a reduction of the structure group [5]:

When the almost superconformal structure is integrable, it is called super-
conformal structure. Here we describe this structure in terms of "metric" on M.

Definition 1.1. A metric g on M is a degenerate symmetric two-form with the
following properties.

(i) π(g) defines an ordinary metric on π(M).
(ii) At every point x of M, any Grassmann odd vector field v in a neighborhood

of x with vanishing norm at x [i.e. gx(vx, vx) = 0] satisfies {v, v} φ 0, and such v spans
at x 0|2-dimensional subspace Θx of TXM.

By (i) and (ii) g defines a distribution S o n M together with an orthogonal
structure, and has a local expression

g = \Ez\\ (1.1)

Then Re£z and lmEz give the Pfaffian forms defining the distribution S>. It is
possible to choose the local basis of Θ denoted by Ex and E2 such that

£ 2} ) {EUE2}) = U

g{{E,)2-{E2)\ {EuE2}) = 0.

For various approaches to define supermanifolds, see [17] and also [18]
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Then Eγ and E2 are determined up to 0(2) rotation. With these Ex and E2, we can
define a complete frame basis by {E1,E2,(E1)

2 — (E2)
2, {EΪ9E2}}. Consider the

complexification of the tangent TCM and set E+ = E1 + iE2* then

If El9 E2 are related to Eί9 E2 [which satisfy (1.2)] through a 0(2) rotation in some
neighborhood:

then it follows that

Therefore (E+)2,E+ and (E+)2,E+ differ by an element of G with A = eUp in (1.1).
Similarly to the ordinary case, we call the metrics g and g' on M conformally

equivalent if and only if g and g' are proportional at every point of M. Let #"(M)
denote the set of all almost superconformal structures on M. From the description
made above, it is clear that there is one to one correspondence between the
conformal classes of metrics on M and SF{M). According to the notations in [11],
we write \EZ\ as

\EZ\ = eΦ\dz + μdz + vdθ + σdθ\

where

ez = dz + θdθ, e~z = ez'

tf = v + 0, ρ = σ-θμ.

Super Beltrami coefficients μ, v, and ρ are complex valued superfϊelds, the former
with Grassmann even parity, while the latter two with Grassmann odd parities.

Integrable almost superconformal structure, say superconformal structure
means that there exist local coordinate systems (w, φ) in which Ez is proportional to
du + φdφ. As we will see in the next section, the integrability condition is reduced to
a certain constraint among the super Beltrami coefficients μ, v, and ρ, from which μ
(and hence σ) can be expressed in terms of ρ and v. For a given superconformal
structure, the natural coordinate systems (w, φ) are found by solving the super
Beltrami equations [ I I ] 4 :

w: (z, θ) ^ (u, φ) = (Wfc(z, 0), wf(z, θ)),

a.w. + w/.w^

(1.4c)

3 We have a direct sum decomposition of @c: ^ c = ̂  + Θ ^ -, where Sf+{β _) is spanned by such
£ + ( £ _ = £ ; ) ' s
4 In the following we will write superdiffeomorphisms as w = (wb,wf), where wb,wf imply the
bosonic part and the fermionic part of the map w, respectively
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where

The supermanifold M with such coordinate systems becomes a super Riemann
surface (SRS), i.e. 111-dimensional supercomplex manifold patched together with
superconformal transformations [2]. Conversely every SRS has a metric locally
proportional to \dz + θdθ\2 [14], and hence possesses a natural superconformal
structure. In this way a real 2|2-dimensional supermanifold with a given
superconformal structure is viewed as an SRS. With this fact, we can.proceed in the
analogous steps to the ordinary Teichmϋller theory.5

We fix some standard SRS Σ such that its body is a marked Riemann surface of
genus p (provided with a certain spin structure.) If Σ' is another SRS of genus p, we
can find a superdiffeomorphism w: Σ-+Σ' (since Σ and Σf are equivalent as smooth
supermanifold [21]). We choose a metric g' on Σ' belonging to its natural
superconformal structure and pull back the metric g' by the map w to g = w*g' on
Σ. Then the metric g carries a superconformal structure on Σ, defining the SRS
equivalent to Σ'. Let Ji(Σ) denote the set of all superconformal structures on Σ. We
see that every SRS of genus p is equivalent to a some superconformal structure on
Σ. However, since there are many possible such superdiffeomorphisms from Σ to
Σ\ an identical SRS is represented by many superconformal structures on Σ. This
leads us to define an equivalence relation in Jt{Σ). Let sDiϊϊ+(Σ) be the group of
sense preserving6 superdiffeomorphisms of Σ and sDifϊo(Σ) be the subgroup of
sDiff+(Γ) which consist of the elements homotopic to the identity map. Then
sDiff +(Σ) acts on Jί(Σ) via the pullback. Two superconformal structures Ψ = (ρ, v)
and Ψ' = (ρ'? v') are Teichmϋller equivalent Ψ~Ψ'iί and only if there exists a map
wesDiffo(£) such that ψ = w*Ψf. The super Teichmϋller space SΎP(Σ) of SRS's of
genus p is the quotient space Jί(Σ)/sΌiΐίo(Σ).

2. Super Beltrami Differentials and the Integrability Condition

In Sect. 1, we viewed the super Teichmuller space SΎp in terms of the super-
conformal structures on a given SRS Σ. To obtain a concrete description for STp,
we adopt the uniformization theorem for SRS's as usual [11]. In the following, we
restrict our studies to SRS's of genus p ̂  2. Let SH be the super upper half-plane,

SH = {(z,6>)|Imπ(z)>0}.

Every compact SRS of genus p ̂  2 is realized as a quotient SH/Γ, where
(i) Γ is a subgroup of Aut(SH) (the group of all superconformal automorphisms

of SH) isomorphic to the standard surface group Γp, which is a group generated by
elements aί9 ...9a2g with a relation

(ii) π(Γ) is an ordinary Fuchsian group which represents the underlining
Riemann surface π(Σ).

5 For introductions to Teichmϋller theory and the theory of quasiconformal mappings, see, for
example [19,20]
6 By the word "sense preserving," we mean that both the super Jacobian and the Jacobian of the
body map are positive
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Let 5 be the isomorphism from Γp into Aut(SH) such that 9{ΓP) = Γ. Evidently,
two such groups Γx and Γ2 represent an equivalent SRS if and only if they are
related by the conjugation Γί = AΓ2A~1, ^4eAut(SH). As pointed out in [11],
Aut(SH) is a much larger group than the group of all linear transformations of
SH.7 However, in [14], Hodgkin showed that for a given Γ, there exists a
superconformal map F [which is unique up to the conjugation by elements in
SPL(2, R)] such that FΓF"ι is contained in SPL(2, R). By this fact, we can replace
Aut(SH) with SPL(2,R) in the condition (i) for the "super Fuchsian group"
presented above. Thus it is sufficient to consider isomorphisms $ from Γp into
SPL(2, R) with the equivalence relation under oberall SPL(2, R) conjugations. To
fix the freedoms of the SPL(2,R) conjugations, we normalize S such that the fixed
points of θ(α1) = (θί7(α1), QfiaJ) are (0,0), (oo,0) and the even coordinate of the
attractive fixed point of ${a2) is specified to be 1, i.e. Sb(a2)(1,0) = 1. After imposing
this condition, it remains one freedom of the conjugation by the fermionic
inversion /: (z, 0)->(z, — θ) [11]. Γ and IΓI are different only in the signs of the odd
parameters. This overall sign ambiguity of the odd parameters of Γ results in the
super-orbifold structure of the SΎp [11], which we will see in the later sections.

On a given SRS Γ = SH/Γ, let us put an almost superconformal structure

as in (1.3). This structure lifts to an almost superconformal structure on SH. Then
the lifted super Beltrami coefficients transform with respect to the cover
transformation AeΓ as follows:8

(2.1b)

where A(z, θ) = {Ab{z, θ), AJz, θ)).
In (2.1), we notice that DvAf partly appears instead of DAf in the transition

functions of ρ and μ. However it is no matter. Because of

we can reform them to have the normal transition functions by multiplying Dvv if
necessary. From (2.1), ρ and v are superconformal tensors of weight ( — 1,̂ ), (—•|, 0)
respectively, while μ is of weight ( — 1,1) but not a pure superconformal tensor.

7 SPL(2, R) is the subgroup of SPL(2, C) consisting of the elements which fix the "super real line"
SΊR={(z,0)|z = z,0 = #}. The boundary of SH, which we denote by dSH, is not an honest super
manifold and differs from SIR. Note thatSPL(2,C)is isomorphic to Aut(S(t) that is the group of all
automorphisms of the supersphere S(C
8 Here and after we use the same notation for the lifted super Beltrami coefficients
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Proposition 2.1. The super Beltrami equations (1.4) is rewritten as

Dwb = wfDwf-
{^fρ, (2.2a)

Dvwb = wfDvwf, (2.2b)

μ= -Dρ+UDJ){G{ρ,V)}2 + dzρρ, (2.3)

where _

G(,,v) = D v [ ^ ] + 0 . (2.4)

Proof. From (1.4c) and using the fact Dj = (Dvv)3z, we get <32wb -f wfdzwf=—v { .

(Note that Dvtf must be invertible.) Thus (2.2a) is obtained from (1.4a) and (1.4b)
immediately. Differentiating (2.2a) with D, we have

Since {D, Dv} = (Dv)dz9 the compatibility of (2.2) leads the following equation which
involves wf only:

Dwf = — ρdz wf+\ G(ρ, v)Dvwf.

By putting this equation into the left-hand side of the above expression of μ, we
obtain the formula (2.3). Conversely, if (μ, ρ, v) satisfies (2.3), (1.4a) is obtained from
(2.2). Then (2.2a) and ρ = σ — θμ imply (1.4b). Finally we note that (2.3) is consistent
with the transformation properties given by (2.1). Q.E.D.

The proposition states that the solutions of the super Beltrami equations (1.4)
are controlled only through ρ and v. In the following, by "super Beltrami
equations" we mean (2.2). As we have already seen, the compatibility of (2.2) gives
the equation for wf. Moreover it leads to a chain of the equations.

Corollary 2.2. The solution w = (wb, wf) of the super Beltrami equations satisfies a
pair of equations

and also

where η(μ, v) can

Dwf =

Dwb =

dzwf

be written as

• — ρdzwf+\G(ρ, v)Dvwf,

• -ρdzwb+\G(ρ,v)Dvwb,

= μdzwf+^η(μ, v)DvWj-,

= μdzwb+$η(μ9v)Dvwb9

(2.5a)

(2.5b)

(2.6a)

(2.6b)

& (2.7,

Proof Putting (2.5a) into (2.2a) and usingJ2.2b), we have Eq. (2.5b). Equations (2.6)
are obtained by differentiating (2.5) by D. Then, employing the formula (2.3), the
direct computation shows that the expression for η is given by (2.7). Q.E.D.
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Remark 2.3. The superconformal transforms of the solution of (2.2) are also the
solutions of the same Eq. (2.2).

As pointed out in [11], the existence of the solution of Eqs. (2.2) is ensured. We
complete their discussion in the next section.

To guarantee the solution to be a sense preserving superdiffeomorphism (which
we call quasisuperconformal map),9 we must impose certain bounds on (ρ, v) as in
the ordinary case. Taking account of the properties of the superdeterminant and
the super Beltrami equations (1.4), (2.2), (2.5), and (2.6), we can express the Jacobian
of the transformation w:(z,θ)->(wb,wf) in terms of super Beltrami differentials,

= sdet

J = sdet

d

d

B

dzwb + WrdzWf c

dzwb -h WfdzWf c

zWb

\wb

lwb

DWb

Dwb

Szwb

Zzwb

Sβwb

+ wfϋ

-w}D

— wfD

dzwf

5zw/

dewf

dθwf

dzwf

dzwf

dθwf

dθwf

zWf dzwf dzWf

wf dzwf (2.8)

1 μ 0 \n

μ i \r\ o

-v - ρ 1 ^G

— Q —v TG 1

Since π(J) should be positive, we obtain

As it is easily seen from (2.6) that π(l — |μ|2) > 0 is the condition for the body map of
w to be sense preserving, we have the following boundedness conditions:

(i)

(ϋ)

(iii)

Dvv must be invertible,

|π(G(ρ,v))|<2.

(2.9a)

(2.9b)

(2.9c)

Note that |π(μ)|, |π(G)| are independent of the choice of the local coordinates. The
super Beltrami differentials (ρ, v) should be bounded through the formulas μ and G
in a somewhat complicated way. The condition (2.9a) needs more explorations.
The following observation is indicated in [15], and we will show it explicitly in
Sect. 4. When we consider the condition (2.9) on a SRS Σ9 (2.9a) means that π(Dvv)
= 1 + π(dθv) is a map from π(Σ) to (C—{0}. The homotopy classes of such a maps
are classified by the elements of Z2p which count the twists around the handles of

9 We have no intention to be completely rigorous. Throughout this paper we assume that all
functions (ρ, v) are smooth and as a consequence the map w becomes smooth
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π(Σ). A solution of Eqs. (2.2) defines a superdiffeomorphism from Σ to some SRS Σ'
and send the marking of Σ to that of Σ'. Then the spin structure of Σ' with respect to
this marking changes according to the homotopy class of π(Dvv) modulo (2Έ)2p.
Thus as long as the deformations of SRS's with the same spin structure, we should
replace the condition of (2.9a) with more restricted one:

(i); 1 +π(dθv) is nullhomotopic as a map from π(Σ) to C—{0}. (2.9a')

For a given (μ, ρ, v) e #XSH/Γ), (2.3) is the integrability condition, and hence the
superconformal structure is completely specified by (ρ, v), which allows us to write
as (ρ, v) G Jί(Sϊl/Γ). Let us denote by SB(Γ) the linear space of the super Beltrami
differentials on SH which satisfy (2.1a,b), and by SB(Γ)fe the space of those
bounded by the conditions (2.9b, c) and (2.9a'). Then we identify J((SH/Γ) with
SB(Γ)&.

Next we investigate the composition law for the super Beltrami differentials
which plays important role in (super) Teichmuller theory. Let Σ1 and Σ2 be SRS's
and w: Σι -+Σ2 be a quasisuperconformal map. As was mentioned before, through
the pullback of the natural superconformal structure of Σ2, w induces a
superconformal structure on Σx that is given by the formulas (1.4). We denote it by
Ψw = (ρw, vw). The expression of Ψw does not depend on the choice of the local
coordinates of Σ2.

Proposition 2.4. Let h:Σ0-*Σί9 g:Σ0-+Σ2, and w = goh'1 :Σ1-+Σ2 be quasisuper-
conformal maps among SRS's Σθ9Σt, and Σ2, and write the induced super Beltrami
differentials as Ψh9 Ψg, and Ψw. Then

(βg — μtι> Qg ~ Qh> Vg ~ Vh)H = (A*W» QW> V W) ° ^

(1 - μgμh)H (vh - ρgμh)H (ρh - vgμh)H

x (Sz-μgdz)h^ (D + ρgdz)Tf Dv7Γf

βz-μgdz)hf (D + ρgdz)hf Dvhf

(2.10)

where μ's are defined by the formula (2.3) and H = dzhb + hfdzhf= *h { .
^vh

Vh

Proof It can be derived from the chain rules for differentiations.10 Q.E.D.

Note that there are no appearances of the complex conjugations of ρg, vg, μg in
(2.10) and that μ depends holomorphically on ρ and v in (2.3), which become the
crucial point for the complex structure of the super Teichmuller space. From
Proposition 2.4, we also remark that the superdiffeomorphism group sDiff+(SH)
has a representation on J(SH), on setting

ψw*ψh=ψg. (2.11)

1 0 For any superfunction F(z,z,θ,@),

D[_F o K] = (Dhf) {{DF) o h} + {Dhb - hfDhf) {(dzF) o h}

+ (DFf) {(DF) o h] + (DEb - ΓfDFf) {φzF) o h},

dz[F o h] = (dzhf) {(DF) o h] + (dzhb + hfdzhf) {(dzF) o h}

+(djrf) {(DF) o h}+(d2Hb+JΓfdzFf) {&F) o h}.
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3. Super Beltrami Equations

In this section, we investigate the super Beltrami equations (2.2) in detail, discuss
their solutions and describe the deformations of the super Fuchsian groups by
making use of them. To begin with, we consider Eqs. (2.2) on the superplane S C
Let Ψ E Jί(S<E\ assuming that ρ and v are smooth superfunctions on SC. For any
superfunction F(z9 z, 0, 9), it is convenient to separate it into the 0-free part and the
^-containing part, which we write as Fp and FQ, respectively:

Note that DF = FQ + θdzF
p. We expand the super Beltrami differentials in terms of

0,0:

vQ = v 2 - 0 v 3 , (3.1)

μp = μ0 + θμi.

We also expand the functions wb and wf:

b2)

Wf = WPj + ffwf = Wf. ! + ΘWf. o + θ(\Vf. 2 — θwf. 3 ) .

Equations (2.2) give the following equations for wp = (wp, wp):

δ zw / . 1), (3.3a)

/ f> l + 2 ̂ (w/. o

with

2 ̂ (w/ o + V\dzwf. i), (3.3b)

and

Aw/u). (3.3c)

(3.3d)

Note that wp depends on the super Beltrami differentials only through the
combinations of μ(ρ, v)p and vp. From (2.5), wQ = (w$, wf) is solved in terms of wp,
ρp, and v. Let us write Eqs. (2.5) as

Then,

wQ = [χ(ρ, v: w)]p = [χ(ρp, v: w p )] p . (3.4)

According to [11], we expand Eqs. (3.3) with respect to the Grassmann generators
and look them over at each grade. Let us write the expansion of the solution
(wvo^.Jas

+... (3.5)
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The body part of Eq. (3.3a) is an ordinary Beltrami equation for w(0). At each grade
n (^1), Eqs. (3.3) gives an inhomogeneous Beltrami equation for w(n), which
involves terms depending on the solution w(m) of lower levels (m<ή). Therefore we
can solve Eqs. (3.3) recursively. In [11], the boundary conditions

w(o)(0) = 0, w(0)(oo)=oo, w ( 0 ) ( l )=l,
(3.0)

w(π)(0) = 0, w(π)(oo)<oo, for n ^ l ,

were considered. Under (3.6), each (inhomogeneous) Beltrami equation has a
unique solution [22]. However, it should be noticed that the conditions of the soul
part of wb. 0, (i.e. w(2n), n ̂  1) at infinity are not essential and conventional ones. The
solution w obtained from (3.3) ~ (3.5) and normalized by (3.6) gives a superdif-
feomorphism of S(C such that can be extended to that of S(C, satisfying the
following condition11:

w(0,0) = (0,0), w(oo,0) = (oo,0), π(w,(l,0)) = l . (3.7)

We see that the condition (3.7) itself is still preserved under the dilatation

with constant k of π(k) = 1, and hence less restrictive than (3.6). We also notice that
(3.7) is preserved under the composition of maps, that is, if wι (i = 1,2) satisfies (3.7),
so does w2 o iv1. The condition (3.7) is canonical but does not fix the solution
completely. Here instead of (3.6), we adopt another condition:

w(0,0) = (0,0), w(oo,0) = (oo,0), w,(l,O) = l . (3.8)

This can be achieved from (3.7) by making use of D[k]. Once the boundary
condition was set up, we have precisely two solutions each corresponding to the
choice of sign of the square root appearing in (3.3c). We write one of them as
wψ = (wj, Wf), then the other is I <>wψ = {wζ, — wj). We call them the standard
solutions.

Let SH* be the superlower half-plane: {(z,0)|Imπ(z)<O}. If Ψ = {ρ9 v)eΛT(SH),
the structure Ψ can be extended to Ψ defined on the whole plane S(C by the
reflection:

Φ=(A <»= ί ( β ( ^ v M ) ) for (z,fl)6SH,
KQ> ] \(ρ(z,θ),v(z,θ)) for (z,0)6SH*. (όy)

The reflection symmetry and the uniqueness (up to the composition with /) of the
solution imply that w* satisfies12

w%,θ) = w*(z,0). (3.10)

Then the map w* defines a quasisuperconformal map of SH onto itself which can
be extended to 5SHu(oo,0) satisfying the boundary condition (3.8). In the
following, we write simply wψ for wψ. After these studies of the quasisupercon-
formal maps, we can describe the deformations of SRS's as the deformations of the
super Fuchsian groups.

1 1 Here (oo, 0) is considered as a point of <SC. Note that (oo, 0) and (oo, α) with odd constant α are
the same point in S(C, remembering that the proper coordinate transformation around the infinity

1 2 If / o w^(z, θ) = y^{z, θ\ it leads to a contradiction when we deform (ρ, v) continuously to (0,0).
For wψ turns to the identity map or the map /
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If Ψ=(ρ, v) e SB (Γ)b, it is a consequence of (2.1) that wψ and w^ ° 4, A e Γ satisfy
the same super Beltrami equation (2.2). From (2.1) and (2.2), one can show directly
that wψ oA is a superconformal transform of wψ:

wψoA = AψoW

ψ (3.11)

with 4 y e Aut(SH). Moreover it could be shown that Aψ is an element of SPL(2, R)
as follows. The map wψ gives a superdiffeomorphism of S<£. Thus
Aψ=wψoAowψ~1 is an element of SPL(2,C).The reflection symmetry (3.10)
implies that Aψ fixes SIR:

Ar(z,θ) = Aψ(z,ff),

from which we conclude Aψe SPL(2, R). However, there exist subtle problems. For
the reasoning made above to be correct, (3.7) must be well defined at SR.
Discontinuities of Ψ lying across 3SH, which may occur by (3.9) in general, descend
to the solution wψ (except its first components (wb.θ9wf.x% which will be
continuous due to the good properties of the ordinary (inhomogeneous) Beltrami
equation [22]). For a non-split Γ, the discontinuities affect Aψ directly. We discuss
these points in Appendix A. If one takes a split Γ as the initial point, however, there
arise no problems since then Aψ is determined only through the first components
of wψ

9 as we will see in the next section.
An isomorphism 9Ψ from Γp into SPL(2,R) is obtained by

Sψ(a) = wψoS(a)oW

ψ~\ aeΓp, (3.12)

where <9 is the normalized isomorphism which maps Γp on Γ. Evidently Γψ = 9ψ(Γp)
is a super Fuchsian group which represents the deformed SRS Σψ = SH/ΓΨ. Here
some comments on the normalization of 9Ψ should be made. Since wψ satisfies
(3.7), 9Ψ is almost normalized, but not completely, i.e. S^ia^ has fixed point at (0,0),
(oo, 0), and π{S%{a2) (1,0)) = 1 is satisfied but not $ζ(a2) (1,0) = 1 in general. There is
no canonical normalization for the quasisuperconformal maps to keep w o f o w " 1

completely normalized. Our choice for wψ is the condition (3.8). To make Sψ

completely normalized, we must shift wψ to D[k}owψ in (3.12), choosing the
dilatation constant k (π(fc) = l) properly for each Ψ.

The following statement is a super-analogue concerning the Teichmuller
equivalence relation and can be proved in the almost same way.

Proposition 3.1. Let Ψ, Ψ'eSB(Γ)b. Then Ψ~Ψ' if and only if 9Ψ = »Ψ\ modulo
conjugations by Dm with π(k)= ± 1 .

Note that D{_n = L Due to the existence of the two solutions under (3.8), 9Ψ is
primarily defined up to the conjugation by /. The resulting ambiguity peculiar to
the super Fuchsian group has been already mentioned. What about if we represent
the initial SRS by SH/JΓJ? The answer is the following.

Proposition3.2.Let Ψ = (ρ,v)eSB(Γ)b. Then —Ψ<>l = (-ρol9 -vol)isanelement
of SB(IΓI)b and μ( — ρ°/ ? — vo J) = μ(ρ,v)o J. The standard solution is given by
w~ψol = lowψol.

Proof For any superfunction, we have D_ v o / (Fo/)= — (DVF)°/, where the minus
sign of — v o / is necessary. In particular,

Taking account of these formulas, we obtain the desired result. Q.E.D.
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Obviously, Ψ and —ψol describe the same deformation and give the
correspondence between the SB(Γ)^ and SB(IΓI)b. We call a super Fuchsian group
Γ split if IF I = Γ, that is, all the odd parameters of the generators of Γ vanish. Then
SH/Γ becomes a split SRS. If we take a split SRS as the initial point, we obtain an
interesting result as a corollary.

Corollary 3.3. Let Γ be a split Super Fuchsian group. If ΨeSB(Γ)b, then
-ψoIeSB(Γ)hand -ψol~ψ.

The transformation ψ-+ — ψol (then μ->μo J) changes the signs of the odd
components of the super Beltrami differentials. The symmetry under this
transformation enters into the super Teichmϋller space SB(Γ%/~ and brings the
super-orbifold structure.

4. Special Gauge Choice

In this section, we study the special choice of gauge for the super Beltrami
differentials conjectured in [11,12] and prove that this gauge choice is always
possible. It simplifies the various expressions in the previous sections. To start
with, we want to investigate the formula (3.11). Using the previous notations, we
separate the solution wψ into two parts:

and occasionally treat them like vector functions. Remember that wQ has the
expression given by (3.4). The superscript Ψ of wψ is often omitted for simplicity.
An element A of the super Fuchsian group is expanded in terms of θ as

A(z,θ)=(Ab.0(z) + ΘAb.,(z), Af. 1(z) + ΘAf.0(z)).

Proposition 4.1. Let Ψ = (ρ,v)eSB(Γ)b. Aψ is determined only by the θ-free part of

Aψ ow = w°A, (4.1)

that is

Aψowp = wpoA + AjΓί{(Dw)oA}. (4.2)

Moreover, if Γ is a split super Fuchsian group, i.e. Af. ι = Ab. ί = 0 for every AeΓ,
then Aψ is determined except the choice of sign of Aj. 0 only by the first components
of wψ, i.e. (MVojW^i).

Proof First, we show that the identity obtained from the θ coefficients of (4.1) is
simply a consequence of (4.2). Thus (4.1) has no additional information more than
(4.2). The ^-containing part of the left-hand side of (4.1) is

wp

f{(AψJ o wζ}} + W%A* o w£),

where A0(z) = (Ab.0(z), Af.^z)) and Aί(z) = (Ab.1(z), Af.0(z)).
Using (2.2a), wy2 is expressed by wf as

thus the expression becomes

Bχ(ρ, v: W / ) {(DA*) o v/} - dj? ̂ ^ { ( a ^ o wp}. (4.3)
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The ^-containing part of the right-hand side of (4.1) has the following form:

θχ(ρ, v:woA) = θχ(ρ, v:wpoA)- ΘAf. l Z(ρ, v: wQ o A). (4.4)

Here we use the identity [w ° A~]Q = [χ(ρ, v:w<> A)Y, which comes from the fact that
wo A satisfies the same super Beltrami equation. By differentiating (4.2), we have

ΘDV(AΨ o wp) = ΘDv(wp o A) - 3 J ^ D v ( w Q o A),

ffdz(Aψ o w

p) = θdz(wp o A) + ΘAj7xdz(wQ o A).

We should also notice the following identities:

(DAΨ) o vv = - 1 — DV(AΨ o w),

= dz(Aψ o w) - 3 , W / { ( Λ θ o w} .

(Under the multiplication by ff, we can replace w with wp.) Substituting these
expressions into (4.3) and taking account of the explicit form of χ(ρ, v: ), we
obtain the equality between (4.3) and (4.4). Next, suppose that Γ is split. Then the
θ-free part of (4.2) becomes as follows:

fi(ΛLi°Wb'θ) = Wb'θoAb-o> ( 4 5 a )

Aψ

f.! o wb.0 + wf. i(i/.o° wft.0) = Wy. ! θ 4 0 . (4.5b)

Remember that Af. ί = Aj. xAj. 0 and ^4 .̂ 0

2 = (Aζ. 0)' + ̂ 4j. ^Aj. J. Once the choice
of the sign of Aj.o is fixed, (4.5) determines Aψ order by order with respect to the
Grassmann generators. Starting to find the body part of Aj.o, we can obtain the
successive higher order terms of Aψ inductively. Q.E.D.

The spin structure associated with SH/Γ is specified by the signs (positive or
negative) of π(Af. 0) at the fixed point ofA$ 0, where A{i) = S(αt ) are the generators of
Γ. 1 3 If we replace the condition (2.9a') with more weakly one (2.9a), we have the
following proposition.

Proposition 4.2. The spin structures of Σψ are classified by the homotopy class of
π(l +v 0 ) modulo {2Έ)2p (as a map from π{Σ) to C-{0}; .

Proof The sign of Aj.o at the fixed points is determined through the ^-containing
part of (4.2). Neglecting the nilpotent terms, we have

π(wf. 0(Aj. o ° wb. o)) = π(Af. 0(wf. 0°AΌ)) ( 4 6)

From (3.3c), it becomes

{(ί + Vo)m°Abo\ ({ )n[Af.o

1 3 For an element A of Γ, Ab0(z) is written as

-, ad-bc = l, \π(a + b)\>2.

Denote its fixed points by u±. Then

0 for π(a + b)>2

0 for πd
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Note that π((l + v0)oAb.0) = π(l+v0) from (2.1). Thus the factor appeared in the
right-hand side equals to 1 or —1 and counts the twist mod 2 around the cycle
represented by the element A(e Γ). Since wb. 0 is homotopic to the identity map on
H, the sign of Aj. 0 at the fixed point (which is homotopy invariant) differs from that
of Af. o by that factor. Q.E.D.

Now we can get the desired result about the gauge choice, restricting ourselves
to the case that the initial SRS is split.

Theorem 4.3. Let Γ be a split super Fuchsίan group. Then for any deformation of
SH/Γ, the special gauge choice such that (l—θdθ)ρ = O and v = 0 is possible.
Especially, for any Ψ = (ρ,v)eSB(Γ)b, there exists a super Beltrami differential
( — θμ,0)eSB(Γ)b such that w(~^'0) has the first components equal to those of wψ

and hence Ψ~( — θμ,0). Such μ is given by

(4.7)
=μ(Q> V)\Θ=Θ=O , βι = ΨJ)1/2η{μ{ρ9 v), v)θ=d=0.

Proof It is not necessarily a trivial thing that (— θμ, 0) e SB(Γ)&. By examining (2.1)
for a split Γ, we see that μ becomes indeed a (—1,1) superconformal tensor.
Equations (3.3) shows that the first components of wψ depends upon only μ. Since
μ( —#μ,0) = μ, from Proposition 4.1 and 4.2, we conclude that (—0μ,O) define the
same 9Ψ. We also notice that the choice of the sign of μί is irrelevant because of
Corollary 3.3. Q.E.D.

We refer to this special gauge as Wess-Zumino gauge according to the usage.
As a intermediate stage of this special gauge choice, we see that for any

Ψ~(-θμ(ρ,v)y)

because of the identity μ( — θμ(ρ, v), vp) = μ(ρ, v)p. This is the σ = 0 gauge conjectured
in [11]. In regard_to the θ-free part, ( —9μ(ρ,v),vp) and Ψ give the same solution
(wψ)p, though (-0μ(ρ,v),vp) gives

θwQ = θχ( - θμ, vp: (wψ)p) = 0.

What can we tell about the case that the initial Γ is non-split? Studies of the
infinitesimal deformations [12,13] imply that the v = 0 gauge is always possible.
However, some plausible assumptions are needed there as to the boundary
behaviors of the super Beltrami differentials. We will state these points in
Appendix A. As to the σ(ρ, v) (= ρ + θμ(ρ, v)) = 0 gauge, Γm not aware whether the
corresponding gauge condition for general Γ's can be written in a simple form.14

Appendix A. Infinitesimal Deformations and the v = 0 Gauge

The infinitesimal deformations of SRS have been studied by several authors
[12,13], however, the subject seems not completed. In this appendix, we give a
description, suitably extending the arguments for non-super theory [20,24], and
attend to the possibility of the v = 0 gauge for the deformations of a general (non-
split) SRS.

1 4 As such a candidate, one may consider the condition μ(ρ, v) + Dρ = 0. μ + Dρ is a ( — 1,1)
superconformal tensor, and hence this condition is covariant
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Consider a function F(Ψ) defined on SB(Γ)b. The differentiation of F(Ψ) in a
direction ΦeSB(Γ) is defined through the expansion with respect to an in-
finitesimal parameter ε:

F(Ψ + εΦ) = F(Ψ) + εF(*F) [Φ] + 0(ε2).

The derivative at Ψ = 0, i.e. F(0)[Φ] is denoted simply by F[Φ]. Note that εΦ
should be Grassmann odd, however, Φ (and hence ε) may take both odd and even
parities. It is convenient to introduce a function FΨ defined on SBίΓ^by the
identity FΨ(A) = F(Λ * Ψ). Then F(Ψ) [Φ] can be converted to the derivative of FΨ

at Λ = 0:

where Lψ(Φ) is defined through

Ψ+εΦ = {εLΨ(Φ) + 0(ε2)} * Ψ.

Inverting the formula (2.10), we can obtain the expression of Lψ(Φ) from

(μlLΨ(Φ)l LfiΦ)) c wψ = (μ(Ψ) [Φ], Φ) (F(y))~x, (A.2)

where μ is defined through (2.3), and

~(i-μβ)H (v-ρμ)H (ρ-vβt

F(Ψ)= {Έz-μdz)W} (D + ρdz)WJ DvWf

(E, — μd,)Wf (D + ρdΛwf Dvwf

with Ψ = (ρ, v) and wψ = (wb, wf). Apparently, the operator LΨ is linear with respect
to Φ in the complex sense. From these remarks, derivatives at arbitrary points can
be reduced to the derivatives at origin by shifting the initial origin and replacing Φ
to Lψ(Φ). So, in the following, we limit our consideration to the initial derivatives

Now, consider the derivative at origin of the quasisuperconformal map

^[Φ] = (wfc[Φ], Wy[Φ]) with εΦ = (ερ, εv)

being an infinitesimal element of SB(Γ). We define a superfunction

W[_φ-] = wblΦ]-wflΦ]θ, (A3)

which simplifies the description. Because of (2.2b), wlΦ'] is expressed in terms of W:

(A.4)

satisfies the linearized super Beltrami equation which is given by

DW\Φ'\ = (-l) | φ |ρ\ (A.5)

The boundary condition for W[Φ~\ can be found by noting

^,0)=w, . o (z , ,

D W(z, 0) = wb. !(z) + wf. !(z) = 2wf.! - v,
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and from (3.7) [13],

w».0(0) = w6.o(l)=0,

w/.1(0)=0, (A.7)

for z-»oo.

Before trying to find the expression of the solution, we consider the corresponding
(infinitesimal) deformation of the super Fuchsian group:

], AeΓ.

From the definition of Aψ, we obtain15

w[Φ] o A = i [ Φ ] + WlΦ]dzA + wf[Φ]DA. (A.8)

From (A. 3 ~ 5) and the transformation properties of Φ under Γ, we see that

Di[Φ] = 0, (A.9)

( - l) |φ|/λ4b[Φ] + AflΦ]DAf + AfDAflΦ] = 0,

which show that the superconformality of A is preserved under the deformation.
Instead of A[Φ\ it is convenient to introduce a function VA[Φ~\ just like

Then DVA[_Φ']=0 and A[Φ] is expressed by ^ [ Φ ] because of (A.10):

(A.12)

We can rewrite (A.8) as follows:

VAίΦ] = ̂ [ Φ ] °A-(DAf)
2W[Φ]

4/,i> ( A 1 3 )

where Wp denotes the 0-free part of W.
Equation (4.5) and the formulas (A. 12,13) imply that if A[Φ~\ depends on v, it

does only through the boundary condition. Moreover (A.6) and (A.I3) show that
we encounter with the difficulties mentioned in Sect. 3, that is, the discontinuities of
Φ lying across δSH affect A[Φ~\ directly. As a result, the deformation of Γ as a
subgroup of SPL(2,R) becomes dubious. For a split Γ, this is not the case. Being
required the smoothness on SH (and hence on SH*), Φ should be extended to δSH,
then the odd components of Φ have to vanish on R because of the transformation
laws (2.1). For example, in this case, vx transforms as

Vi oA.o=(i4'h.n)1/2Vi, for AeΓ.

1 5 Here we use the notation in which w = (wb, wf) and A = (Ab, Af) and their derivatives are dealt
like vector functions
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This shows Vj vanishes at the fixed points u± of Ab.o, because Ab.0(u±)Φί
[provided that Ab.o is a hyperbolic element of SL(2,R)]. Since these fixed points
are dense on R, vx must vanish on R. The same holds true for the other odd
components of Φ. For the case of non-split Γ, it appears that vanishing on R of the
first odd components (£i,Vi) implies

(£o + <?2,vo + v2) = 0 o n R

because the condition of vanishing on <SR is co variant. It is not obvious whether
the same reasoning mentioned above leads the result Φ = 0 on SR.1 6 Anyway we
may have to make the following assumption [13].

Assumption A.I. The space of super Beltrami differentials SB(Γ)b consists of the
elements such that are smooth and become zero on SIB..

It is probable that to cover the whole deformations of SRS, it is sufficient to
consider such a class of super Beltrami differentials. Admitting this assumption,
W[Φ~\ does not depend on v, in addition, FFP[Φ] has only dependence on dθρ and
so does VA[_Φ~\ from (A. 12) since VA[Φ} is determined by its values on SR. It
becomes an immediate result that the v = 0 gauge is always possible. Let Ψ = (ρ, v)
be an element of SB(Γ)5. From (A.5) and (A.I3), (0,λ)eSB(Γψ) gives a stationary
direction at Γψ, i.e. (Aψ) [(0, Xf] = 0 for all Aψ e Γψ. Let Φ = (ρ, v) e SB(Γ) such that
(0,λ)=Lψ(Φ). Then from (A.2), we have

(A.14)

and hence

In addition, it follows that

Since one can take the differential v arbitrary by varying λ, an infinitesimal
variation of

Ψ:Ψ

such that Φ takes the form

is an infinitesimal gauge transformation. There is no obstruction to integrate to get
v = 0, if the condition (2.9ar) is satisfied.

1 6 Examining the transformation law (2.1b) on SIR (instead of dSH for simplicity), we are led to
consider the following identities on R:

Λ ^ ^ ( )

f 0/ Af 0
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On the assumption mentioned above, the boundary conditions for W[Φ~] are

= £>M0,0) = 0,
(A.18)

for z->αo.

W(z,0)

z2

DW(z,0)
z

The solution of Eq. (4.5) with these conditions is found to be

z, θ) = — J d2udξdξ{ρ(u, ξ) {ξR(u, z) - ΘP(u, z)}
π SH

- ρ(u, ξ) {ξR(ΰ, z) - ΘP(ΰ, z)}} + QΘ , (A.19)

where

(A.20)
1 1

P(H,Z)= .

u—z u
The function W[Φ~] is a linear functional of the super Beltrami differentials Φ in

the real sense. We can obtain a complex antilinear functional by

(2,0) =

\
π SH

which becomes super-analytic: DΛΓ[Φ]=0. Let us introduce a functional

and consider the mapping J:Φι-*χ[Φ]. By examining the transformation with
respect to Γ, it is easily seen that χ[Φ] is a superholomorphic (f, 0) superconformal
tensor. Let us denote by SQ(Γ) the linear space of the superholomorphic (f,0)
superconformal tensors and by N(Γ) the linear space consisting of all stationary
directions at origin SH/Γ. The following proposition gives characterizations of
N(Γ).

Proposition A.2. The following conditions are all equivalent.
(a) Ki[Φ] = 0 (i.e. i [ Φ ] = 0j for all AeΓ,
(b)
(c)
(d)

On the previous assumption, the proof is a straightforward extension of the
correspondent in the non-super theory [20] (see also [16]). Proposition A.2(d)
shows N(Γ) = ker J. Thus the mapping J induces an antilinear isomorphism from
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SB(Γ)/N(Γ) into SQ(Γ). It can be also checked that for an element S(z, θ) in SQ(Γ),
a mapping J*

defines an antilinear mapping from SQ(Γ) to SB(Γ). We note a super-analogue of a
Bergman type reproducing formula:

4 » ... i SM
S(z,θ)=-

z—z—y

πsJH ^ {U-z-ξθf

= XlJ*S](z,ff), (A.23)

which shows JJ* is the identity map. Therefore J is also surjective. We conclude
that SB(Γ)/N(Γ), which is identified with the tangent space at origin of the super
Teichmuller space ST(Γ), is isomorphic to SQ(Γ). Here we set SB(Γ) and SQ(Γ) to
be those satisfying

VΦ = (ρ, v) e SB (Γ), dθρ is bounded on SH

and

vSeSQ(Γ), β β [(z-z-θ9) 2 SM)] is bounded on SH.

Note that if dθρ is bounded on SH, χ[Φ] satisfies that

χ[Φ] (z, fl) = O(|Imz|"x) + 0O(|Imz|" 2 ) ,

which is equivalent to the statement that dθ[(z — z — θθ)2χ[Φ~](z,θ)~] is bounded.

Appendix B. Residual Symmetry

In this appendix, we take up the subjects which concern special properties of the
W-Z gauge. In the following, we assume Γ to be a split super Fuchsian group. Let
SBWZ(Γ) denote the linear space consisting of ( — 1,1) superconformal tensors μ
such that dθμ = 0. The super Beltrami differentials in the W-Z gauge form the
bounded space of SBWZ(Γ) through the condition (2.9b), which we denote by
SBW Z(Γ)6.

The super Teichmuller space STp(SH/Γ) is the quotient space of SB(Γ)& by
sDiffo(SH/Γ). We want to investigate the residual symmetry after the reduction
from SB(Γ)b to SB w z (Γ) b is performed. Before looking at this, let us characterize
the elements of sDiffo(SH/Γ). As in the ordinary Teichmuller theory, sDiffo(SH/Γ)
is isomorphic to the group consisting of those w and J o w such that w commutes
with all elements of Γ. Γ being split, then from Proposition 4.1 and 4.2, a
quasisuperconformal mapping w<p = (wb,w/), ΨeSB(Γ)b commutes with every
element of Γ if and only if the following condition is satisfied:

Abf0owb.0 = wb.0oAb.0, (B.la)

ζoAb.0 = Af.0ζ, (B.lb)
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where ζ = wf.1o wb~ Q.17 In this case of split Γ, (B.I a) is consistent with the boundary
condition (3.8).

Now, let us consider for a given Ψ = ( — 0μ,O)eSBwz(Γ)& an element ft in
sDiffo(SH/Γ) such that h*Ψ also lives in SBWZ(Γ)&.18 By making application of the
formula (2.10), we see that 1 9

0 = (h*v)Ψ++ - Dhb + hfDhf = DΪ%{μ ° ft),
_ _

0 = (ft*σ)y <-• - dθhb + hfdehf = dθhb(μ o ft),

and then

(h*μ)Ψ{dzhb + hfdzhf + dJΓb(μ ° *)} = d"Λ + ft^ft, + 3Λ(μ o ft). (B.3)
Through the Eqs. (B.2), the map ft has necessarily the μ-dependence. The structure
of the symmetry that remains under the W-Z gauge may be best analyzed by
considering ft close to the identity map. In references [7,8], the symmetry algebra
that acts on SBWZ(Γ)6 has been investigated in the form of BRS transformations,
introducing the reparametrization ghosts (which are made to turn from vector
fields). For the sake of completeness and for clarifying the original geometrical
setting, we describe it below. We set

ft(z, θ) = (z + ε φ , 0), θ + εζ(z, θ))

with ε being infinitesimal, and define a vector field on SH/Γ by

where V(z9θ) = v(z9θ) + θζ(z9θ).
Provided ftesDiffo(SH/Γ), V and ζ-^DV are (-1,0) and (~4,0) super-

conformal tensors, respectively (see Appendix A). The infinitesimal forms of (B.2)
and (B.3) are given by

0 = δv = 2ζ-(DV+ μDv), (B.4a)

0 = δσ=-dθ(V+μv), (B.4b)

δμ = \dz - μdz + {dxμf] (V+ μϋ) + ζDμ. (B.5)

Here and below we omit the infinitesimal parameter ε. Equations (B.4) consist of
six equations for the component fields of V and ζ which leave their first
components V\θ=-Θ=o = vo, ζ\θ=-θ=o = ζi free and make the other six components
expressed in terms of v0 and ζv Explicitly, (B.4) and (B.5) are summarized into [7],

δμx = ldz-d + ±(dft (Iζ^^)

1 7 Wfr.o is the inverse map of wb.o and not (w 1 ) 6 . 0
1 8 In practice, the formulas (B.2) and (B.3) are valid for any quasisuperconformal map h in the
sense that h* preserves the W-Z gauge condition
1 9 Here we write the v-component of h*Ψ, for example, as (h*v)Ψ
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The gauge freedoms concerning v0 and ζί correspond to the ordinary diffeomor-
phism and local supersymmetry. Let i^{1) and τΓ(2) be the vector fields which
satisfy (B.4), and set /Γ ( 1 ) =

 /Γ,

and

Then

ί(12) =

If we ignore the μ-dependences of ^ ( ί ) by mistake, it might be viewed that the
infinitesimal variations of the super Beltrami differentials form a Lie algebra of the
ordinary super vector fields:

which is checked by the computation (ignoring the μ-dependence of i^(i)).
Correctly, the μ-dependence of i^{i) changes the result from above to

[δuδ2~\Ψ= -J£V12<F, (B.7)

where

, d „ , _ x d _
r 12 w (lz) ' \°~wr//ψ Λ ' v^THf o

To see ^ 2 satisfy (B.4), it suffices to show that

which are apparent by regarding (B.4) as identity equations with respect to μ.
Therefore the algebra is closed on SBw z(Γ) b . The structure relation can be read
from

+ ^ ( o , C i o , g i ) ,
i — μ o μ o

4(12)10 = 0 = 0 = C(12)lθ = θ = 0 (β-8)

= υodzξo + 'ΰtfKξo + 2 Ci(32w0

z l — μ o μ o

This shows the μ-dependence of the Lie algebra, which is faijiiliar in supergravity
as noted in [7,8].
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Appendix C. Supercomplex Structure of the Super Teichmuller Space

The super Teichmuller space STp has a supercomplex structure entwined naturally
with the superconformal structures on SRS's. In this appendix, we describe briefly
the infϊntesimal approach to this problem [20]. This gives a rigorous treatment of
the same subject that was studied in [23]. Another approach through the
generalization of the Bers' embedding exist [11,15]. In [15], the global existence of
the Bers' embedding for SΎp was shown.

Locally, STp is described as deformations from the split family of SRS's. The
local coordinate systems around split SRS's are patched together to form an atlas
of SΊP. The super Beltrami differentials in the W-Z gauge supply a class of natural
coordinate systems which are the super-analogue of the Bers' coordinates [24], in
a neighborhood of the initial point SH/Γ.20 First, we rewrite Proposition 2.4 to see
the transformation from SBWZ(ΓO)6 to S B ^ ^ ) ^ supposing that SRS's Σo

(= SH/Γ0) and Σ1( = SH/J"i) are split ones. The transformation law becomes much
simpler in this case. We set the quasisuperconformal maps h: ΣO-*ΣU g: Σ0->Σ2,
and w = goh~~1 :Σ1-+Σ2 as before and write their associated super Beltrami
differentials as Ψh Ψg, and Ψw, respectively. The splitness of 2^ is reflected on the
map h in a obvious way as is shown by the following proposition.

Proposition C.I. // μi(Ψh) — 0, then Σx becomes necessarily split. Conversely, if Σx is
a split SRS, then we can always set μ1(Ψh) = 0.

Proof. If μ1(Ψh) = 0, (3.3b) gives the ordinary Beltrami equation for hf.v The
boundary condition (3.8) means that μ1(Ψh) = 0 is equivalent to A/.1=0. Then,
from (4.5b), Λj\ =Λf\ = 0 follows. Conversely, if Σ1 is split, we have from (4.5),

^ίho ° Vo = Vo %.o> (Cla)

ζoΛ^0 = Λ%ζ with ζ = hf.ίoh»}0. (C.lb)

Since Aξ^ is determined only through hb.o, we are free to set ( = 0 (that is to set
μ1 = 0), being hb.o unchanged. Q.E.D.

What we are thinking about is to find the corresponding Ψw in SBwz(Γχ)b for a
given Ψg = ( — 9μ^,0)eSBwz(Γ0)b. Due to Proposition 4.1 and C.I, we can set h to
have the special form

Remember that k(z) is irrelevant to the choice of Σu and hence is allowed to be an
arbitrary non-vanishing scalar function. Then, from (2.10), Ψw takes the form
( — Uμ, v), the expression of which is given by

tί°h=ΊΠ== Λ . . ^ ( C 2 a )

(C.2b)

where μh=-£-±±.

2 0 It is not essential for the supercomplex structure of STP to take the W-Z gauge, but it simplifies
the description
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Note that (C.2a) is the same form as is known for the ordinary Beltrami
differentials aside from μ and μg being superfϊelds here. By choosing the function
k(z) to vanish v in (C.2b), we get Ψw in S B ^ Γ ^ .

The super-analogue of the Bers' coordinates are introduced as follows. As was
shown in Appendix A, SB(Γ)/N(Γ) is isomorphic to SQ(Γ) of which the dimensions
are well known as

dimcSQtΓ) = (3p - 312p - 2).

We choose a relative even basis {μ§}9 i = 1... 3p — 3 and odd basis {θμ^},
α = 1...2p-2 of SBWZ(Γ) modulo N(Γ). Let τ = (ί,0 = (ίi,...?ί3p-3?Ci?...,C2p-2)
be a complex vector of the (3p — 312p — 2)-dim linear superspace. We set

μ(τ) = Ύ*lWtt + θ2Σ2Λ, (C.3)
i=l a=ί

and consider the mapping τ->9(~^(τ)'0). The following statements (a), (b) can be
proved in just the same way with the ordinary non-super case.
(a) The complex vector τ serves the local coordinates of SΎp in a neighborhood of
the initial point SH/Γ.

The construction can be repeated for arbitrary initial point SH/Γa with Γ^ being
split. The transition functions among overlapping coordinates are specified
through the formula (C.2) and the coordinate functions {τα(μ)} each defined near
μ = 0inSBwz(Γα) ft.
(b) These coordinate transformations are super-analytic in τ(α)'s and hence define a
supercomplex structure on STP.

A novel point in the super case is that because of Corollary 3.3, there still
remains TL2 symmetry, which tells (ί, ζ) and (ί, — ζ) are the same point in ST r In this
sense, STp is a super orbifold. This fact was noted first in the approach of Bers'
embedding [11].

Recently the Weil-Petersson Kahler form on STp was investigated, using the
local coordinate systems which were the super-extension of those introduced by
Fricke and Klein, and it was shown that the fundamental 2-form is closed [16]. It
will be possible to analyze the Kahler structure of STp by extending the Ahlfors'
work [24] in which was first studied the subject of non-super case.
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