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Abstract. Umegaki's relative entropy S(ω,φ) = TrDω(\ogDω — \ogDφ) (of states ω
and φ with density operators Dω and Dφ, respectively) is shown to be an asymptotic
exponent considered from the quantum hypothesis testing viewpoint. It is also
proved that some other versions of the relative entropy give rise to the same
asymptotics as Umegaki's one. As a byproduct, the inequality ΎT A log AB

is obtained for positive definite matrices A and B.

1. Introduction and Motivation

The relative entropy is an information quantity attached to two states of a system.
In commutative (or classical) probability theory the states correspond to measures
on a measurable space. When v = (vl9 v2,..., vn) and μ = (μuμ2, •• 5μ«) are proba-
bility distributions, for the sake of simplicity, on an n-point space, the relative
entropy (called also information divergence) introduced by Kullback and Leibler
[17] is defined by

S(v,/ι)=Σv,log^-. (1.1)

In noncommutative (or quantum) probability theory the relative entropy of
normal positive functionals was first studied by Umegaki [33] in the case of
semifinite von Neumann algebras as the noncommutative extension of infor-
mation divergence. Later on Araki [1, 2] extended it to the case of general von
Neumann algebras by means of the notion of a relative modular operator. On the
other hand Uhlmann [32] introduced the relative entropy of positive functionals
of arbitrary *-algebras by a quadratic interpolation method. The importance of
relative entropy has been justified by the fact that one encounters this quantity in
dealing with a number of different problems.

In quantum theory the states of a system correspond to positive operators of
trace one. (These operators are called densities.) In particular, in the setting of



100 F. Hiai and D. Petz

matrix algebras Umegaki's relative entropy of a state ω with respect to another
state φ is defined by

S(ω,φ) = ΎτDω(logDω-\ogDφ), (1.2)

where Tr denotes the usual trace on matrices and Dω the density of ω with respect
to Tr. [Note that S(ω, φ) sometimes is written as S(φ, ω).] This definition does not
seem to be canonical. Compared with (1.1) one could suppose that other
expressions like

Sco(ω,φ) = sup<Xcφ f)log —\:pl9...,pn are projections,£pt = 1 >, (1.3)
U <P\Pύ ί )

Scp(ω, φ) = sup

or
(1.5)

are as good as (1.2). The quantities Sco and Scp appeared in [8] and they may be
related to observations which are projection-valued or positive operator-valued
measures. The definitions (1.4) and (1.3) are of the form sup{S(ωoα, φoα):α},
where α runs over all positive (and multiplicative, respectively) unital maps of finite
dimensional commutative C*-algebras into the given matrix algebra. Given
βi,. . . ,α n ^0, Σfli=l, the inequality Yjω{a^\ogω(a^lφ(a^S(ω,φ) follows by

i i

applying the monotonicity of relative entropy [16, 32] to a positive unital map
α((£i))=Σ£iαp (<^)G^° See also [8,9] for this inequality. Thus the inequality

i

Scp(ω, φ) S S{ω, φ) holds, while <Sco(ω, φ) ̂  <Scp(ω, φ) is trivial. But the equality here
is very restrictive. In fact, it is known [24] that if ω and φ are faithful normal states
of a von Neumann algebra Ji, then ω must commute with φ whenever
S(ω\jV, φ\J^) = S(ω, φ)< + oo holds for some commutative von Neumann subal-
gebra Jί of Jl. The quantity SBS was introduced in [5] (in a more general setting)
and it appeared in [12] in operator form. In this paper it will be shown that the
entropy quantities Sco, Scp, and S give rise to the same asymptotic mean in the
infinite tensor product system.

We want to deal with the question of the proper definition of information
divergence of two states in noncommutative probability theory. This question can
be approached from two essentially different points of view. One can search for
plausible postulates which should be satisfied by a good notion of relative entropy
and one can try to show that S(ω, φ) is the only functional which meets all the
desiderata. In this point it was proved in [27] that up to a constant factor only
Umegaki's relative entropy satisfies a reasonable set of postulates. Our approach
in the present paper is more pragmatic. We consider the asymptotics of certain
probabilities and observe that Umegaki's relative entropy naturally shows up.

In Sect. 2 of this paper we state the main results in the framework of finite
dimensional C*-algebras. Let stf be a finite dimensional C*-algebra (i.e. a finite
direct sum of matrix algebras) with a fixed state φ. As the reference state we take the

0 0 OO

product state φO0= (x) φ on the infinite C*-tensor product sί^ = (x) stf. Let ψ be
— on — oo

a stationary (i.e. invariant for the right shift) state of sd^. Then one has the
1

mean relative entropy SM(ψ,φO0)= lim -S(ψn,φn), where ψn =
» 0 0 n

and
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Ψn = Ψco (x) ̂  The mean relative entropy plays an important role in classical as
1

well as quantum statistical mechanics and behaves as a rate function in limit
theorems of large deviation type (cf. [11, 25, 28, 29]). Our first theorem says that

lim - Sco(ψn, φn) = SM(ψ, φ j for every stationary state ψ of s/^. In particular we
H-+0O ft

have lim - Sco(ωn, φn) = S{ω9 φ) for every state ω of s$. This has an interesting
M-+OO ft

corollary that SBS(ω, φ) ̂  S(ω, φ) for all states ω and φ of J/ .
Moreover for ft^l and 0 < ε < l let us introduce the following quantities:

βε(ψn, Ψn) = inf \ log φn(q) : q is a projection in (g) J / with ψn(<?) ^ 1 - ε f (1.6)g

Spt(ψmψn)

= sup 1 ψn(q) log ^ψ- + (1 - φjtq)) log ψ "^ . : 4 is a projection in (g) j /

(1.7)
The quantity βε(φn, (pn) has a natural meaning from the viewpoint of quantum
hypothesis testing (cf. [4, 7,13]). More precisely, let us suppose two hypotheses Ho

and H1 so that the system sd^ has states ψ and φ^ under Ho and ifl5 respectively.
n

A projection f̂ in (x) J / means a "quantum question" of size n, whose outcomes are
1

the eigenvalues 1 or 0. We decide that Ho (respectively H^ is true if the outcome of
q is 1 (respectively 0). Then φn(q) (respectively ψn(ί — q)) gives the "probability" of
the error of accepting Ho (respectively Hx) when H1 (respectively Ho) actually is
true. In this way we can consider the quantity exp {βε(ψn, φnj} as the bound of the
first error probability over all decision rules of size n such that the second error
probability does not exceed ε.

Now assume that ψ is completely ergodic in the sense that it is ergodic for any
power of the right shift. (This is the case when ψ is weakly mixing.) Then our second

theorem says that lim sup - βε(ψn,φn)^ -SM(ψ,φ J and lim inf - βe(ψn, φn)
n—• oo ft n~• oo ft

^ — SM(ψ, φ^). Thus we can relate the mean relative entropy to a certain
-I O

kind of asymptotic error bound in the quantum hypothesis testing. It could be
mentioned that a desire for the visualization of noncommutative relative entropy
as the logarithm of certain probabilities was formulated in [8] in connection with

an interpretation of quantum theory. We finally establish that lim - Spr(ψn, φn)
, . n->oo ft

The proofs of these theorems are given in Sect. 3. The first theorem can be
proved by a direct combinatorial computation. The proof of the second theorem is
based on the Shannon-McMillan-Breiman theorem and the mean ergodic
theorem together with the first theorem.

In Sect. 4 we note that our theorems hold in AF C*-algebras or hyperfinite von
Neumann algebras as well. Furthermore we show that if ψ is a tracial ergodic state

of Ĵ OO, then lim -βε(ψn,φn)= —SM(ψ,<pj holds for every 0<ε< 1.
n-*oo ft
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2. Main Results in Finite Dimensional C*-Algebras

In this section we state our main theorems in the setting of finite dimensional C*-
algebras. Their proofs will be presented in Sect. 3. Although the theorems hold true
in the framework of AF C*-algebras or hyperfinite von Neumann algebras as will
be noted in Sect. 4, these extensions are very easy and our essential ideas consist in
the finite dimensional case; so we restrict our detailed discussions to this case.

First let us fix the notations. Let si be a finite dimensional C*-algebra. Then si
L

is identified with 0 MAC) which is the direct sum of dt x dt matrix algebras
z = i

L

MAC), 1 ̂ / ^ L , canonically represented on the Hubert space φ Cdι. We denote
1=1

n

by sin the n-fold C*-tensor product (X)J/ for n ^ l , and by si^ the two-sided
i

00

infinite C*-tensor product (x) si. Then {sin} is considered as an increasing
— 00

sequence of (finite dimensional) C*-subalgebras of sί^ by the natural inclusions.
Let γ denote the right shift automorphism of sim. A state ψ of si^ is said to be
stationary if ψ is y-in variant (i.e. ψ ° y = yή. For a state φ of si we denote by φ^ the

n \
= ® Ψ We fix a state φinfinite product state (x) φ of si^, and let φn = φ

— oo

of si in the following discussions.
Let ψ be a stationary state of si^ and ψn = ψ\sin, n^ί. The relative entropies

S(φM, φM) are defined as (1.2). Then in view of the superadditivity of relative entropy
[23] and the stationarity of ψ we get

so that lim - S(ψn,φn) exists; in fact (cf. [10, p. 274])
n~* oo ft

lim - S{ψn, φn) = sup - S{ψn, φn). (2.1)
n-+ao ft n ^ l ft

We denote this limit by SM(ψ, φ^), which is called the mean relative entropy oίψ
with respect to φ^. Note that if ω is a state of si then S^ω^, φ j = S(ω, φ) because
S(ωn, φM) = nS(ω, φ), n ̂  1. In Sect. 1 besides Umegaki's relative entropy we referred
to some other entropy quantities (1.3)—(1.5) and (1.7). The quantities Sco(φn, φπ) as
in (1.3) are equivalently defined by

SC0(φπ,φM) = sup{S(φrt|J
>, φn\0S): & is a commutative C*-subalgebra of J/M} .

The next theorem shows that the asymptotic limit of Sco(φπ, φn) exists and
coincides with the mean relative entropy.

Theorem 2.1. For every stationary state ψ of si^

lim - Sco(ψn, φn) = SM(ψ, φj. (2.2)

A stationary state ψ of si is said to be ergodic if it is extremal in the set of
stationary states. For ergodicity in general C*-dynamical systems, see [10, 30] for
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instance. We say that ψ is weakly mixing if for every a.bestf^,

\im -°Σ Myl(a)b)-xp(aMb)\=0.
K-+00 K i = 0

Obviously this is the case when ψ is strongly mixing (or strongly clustering), that is,
lim ψ(yn(a)b) = ψ(a)ψ(b) for every α, bestf^. As in classical ergodic theory it is

n-+ oo

known [10] that if ψ is weakly mixing then it is ergodic. Note that the product state
ω^ defined by a state ω of si is strongly mixing. In the following we say that ψ is
completely ergodic if it is ergodic for all y", n ̂  1. We know that a weakly mixing
state ψ is completely ergodic because it is weakly mixing for all yn.

Let βε{ψm φn) be defined by (1.6) for n ̂  1 and 0 < ε < 1. The next theorem shows
that we have for large n

~ βε(ψn> Ψn) I ~ exp { - SM(φ, φj}

when ε is sufficiently small and ψ is completely ergodic. Thus exp{ — SM(ψ, φ^)}
can be considered as the asymptotic error bound in the quantum hypothesis test
for {\p,(p^}.

Theorem 2.2. If ψ is a completely ergodic state of s/^ then for every 0 < ε < 1,

lim sup - j8e(v>π, φn) ^ - Su(xp, φj, (2.3)
n-> oo "

lim inf - βε(ψn, φn)^-^— SM(ψ, φj. (2.4)

It may be possible that lim - βε(ψn,φn)= —SM(ψ,<pj for every 0 < ε < 1 and
n-»oo n

every ergodic state ψ. In particular when ψ is a tracial ergodic state, this will be
shown in Sect. 4.

The quantities Spr(ψn,φn) in (1.7) are also defined by

Spr(ψn9φn) = sup{S(ψn\^,φn\^):^ is a two dimensional subalgebra of J / J .

Note that

Spr(ψn, φn) ̂  SjΨn, φn) S Scp(Ψn, φn) ̂  S(ψn, φn) (2.5)

by the monotonicity of relative entropy as mentioned in Sect. 1.
As for completely ergodic states we can make Theorem 2.1 extremely sharp as

follows. Indeed the method in proving (2.4) will work for Theorem 2.3 as well.

Theorem 2.3. If ψ is a completely ergodic state of si^ then

lim - Spr(\pn, φn) = SM(φ, φj.

n-* oo n

As a special case we have for every state ω of s/9

1 1 1
lim - Spτ(ωm φn) = lim -- Sco(ωn, φn) = lim - Scp(ωn, φn) = S(ω, φ). (2.6)

n—* oo n n—• oo n n-+co n
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This means that Umegaki's relative entropy comes out when we first adopt any of
the quantities Spr, Sc o or S c p and then take asymptotics.

The following examples show that the ergodicity assumption of ψ is essential in
Theorems 2.2 and 2.3. We are indebted to the referee for the first example.

Examples 2.4. (1) Let 0 < ε < l / 2 and ψ be a stationary state of st^ with
Then SM(2εφ 0 0+(l— 2ε)ip,φoo)>0 because otherwise by (2.1) we get 2εφo0

+ (1 — 2ε)ψ = φ00 so that ψ = φOQ. On the other hand, since 2εφn(q) + {l — 2ε)ψn(q)
^ 1 — ε implies φn(q)^ί/2 for a projection q in s4w we have

Hence

\im -

(2) Let j / = C φ C and ω 1 , ω 2 , φ be given with the densities (1,0), (0,1), (α, 1 — α),
respectively, where 0 < α < 1/2. Let ψ = \(ω ^ -j- ω^). By the affinity of SM( ,<p j (see
[28]) we get

But we easily see that Spr(ψn, φn) is the maximum of

and

1 1 1

Hence

lim - Spΐ(ψn, φn) = max \ - log (1 - α), - ^ log α } < SM(ψ, φj.
n-+ao n

In the rest of this section, using Theorem 2.1 let us establish the relation
between the relative entropy S(ω, φ) and the entropy quantity SBS(ω, φ) in (1.5). The
expression (1.5) implicitly means that SBS(ω, φ)= + oo if the support projection of
ω is not dominated by that of φ. The main properties of SBS follow from [12]
devoted to an operator-valued relative entropy. We here state the additivity and
the monotonicity of SBS.

Proposition 2.5. (1) S β s ( ω i ® ω 2 > (? )i® (P2) = ^Bs( ω i ' ( ^i) + ^Bs(ω2?(P2) wften ωt and
φt are states of (finite dimensional) C*-algebras stfb ι '=l,2.
(2) SBS(ω\@,φ\@)<^SBS(ω,φ) for any C*-subalgebra ® of stf.

Indeed (1) is obvious from the definition. Although (2) follows from the
operator-valued version of [12], we briefly recall the proof for the convenience of
the reader. We may assume that φ is faithful. Since X(logJΓ*X) = (
holds for a matrix X, it follows that

SBs(ω,φ)= -Ίx{Dφη{D-φ
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where η(t)= — t logί, ί^O. By the operator-concavity oΐη we get

where α(Z) = £(/)<?,)~1/2£:(D^2XD^/2)£(D<p)~1/2 with the conditional expectation
E from si onto J* with respect to Tr. Hence

ll2DωD~ Ί2)D]J2)^E{Dφγi2η{E{Dφy "2E(D ω)E(DφΓ

Taking the trace of both sides proves (2).
Now Theorem 2.1 together with Proposition 2.5 has an interesting conse-

quence as follows.

Corollary 2.6. SBS(ω, φ) ^ S(ω, φ) for all states ω and φ of si.

Proof. Since 5BS = S for commuting states, we have SBS(ω, φ) ^ Sco(ω, ψ) by (2) of the
above proposition. In particular, for every n ^ l ,

so that by the above (1),

SBS(ω,φ)^-Sco(ωn,φn).

Letting n->oo we infer the corollary due to Theorem 2.1. •

It is quite remarkable that the corollary is equivalent to the trace inequality

(2.7)

for nonnegative matrices A and B. In fact, (2.7) is immediate from the corollary
when B is invertible. Take the limit from B + εl, ε>0, for general nonnegative B.
When A and B are positive invertible, one can define log AB by analytical
functional calculus or by power series and get the equality

log,41/2£,41/2 = Tr,41og,4£

because Tr A(A1/2BA1/2)n = ΊτA(AB)n for n^l.

3. Proofs of Theorems

In this section we present the proofs of Theorems 2.1-2.3. Let us keep the notations
fixed in the previous section. Let Tr denote the canonical trace of si such that
Tr (e) = 1 for all one dimensional projections e in si. Let Dφ be the density of φ with

respect to Tr, and K be the sum of the sizes of simple summands of si I i.e.

L \ K

K= Σ dt .Taking the spectral decomposition of D , one can write D = £ λkek,
1=1 / fe=l

where ek are one dimensional projections. Let n be an arbitrary fixed positive
K

integer. For each X-tuple (nl5 n2,..., nκ) of nonnegative integers with £ nk = n, we
denote by JBl Mκ the set of all (iu i2,..., Q such that # {/: /,- = &} = nkϊor l^k^K,
and define the projection pni nκ in sin by

Pni,...,nκ= Σ eh®ei2®...®ein.
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n

Then £ pnu nκ = 1 and the density D φ n of φn with respect to Ύrn = (x) Tr is

given by

Dφn=®Dφ= Σ ( f t ̂ kW...,«*• (3.1)

Let En denote the conditional expectation from sin onto

Θ P»1....,»χ«fi/πP»1,...i»JC

 w i t h respect to Trn, which is given by
n i , . . . , n κ

En(x)= Σ P., nκxpni,...,nκ, xes/H. (3.2)
f i i , . . . , n κ

The (von Neumann) entropy S(ω) of a state ω of stn is defined by
S(ω) = — TrM(Dω logDJ, where Dω is the density of ω with respect to Trπ.

Lemma 3.1. // ω is a state of stfn and J* is the commutative subalgebra of s$n

generated by { p B l f . . . i n j ^ β l p l l l , . . . i ϊ I J l l l i . . . f l l J c u { p l l l f . . . f l l J C } l l l i . . . i ϊ l J K , then

S(ω, φn) = S{ω\a9 φH\O) + S(ω o En) - S(ω).

Proof Let s(ω) and s(φn) denote the support projections of ω and φn, respectively.
Since Dψne0S by (3.1), we have s{φn) = s(φn\k)€&. If s{ω)^s{φn) is not satisfied,
then the desired equality holds because S(ω, φn) = S(ω\&9, φn\&) = + oo. So suppose
s{ω)^s{φn). In this case we may assume that φn is faithful; otherwise consider the
restrictions of ω and φn to s(φn)jtfns(φn) and &s(φn). Since ^ is included in the
centralizer of φn, the conditional expectation Em from $in onto ^ with respect to φn

exists due to [31]. Hence we get by [14, 22, 23]

S(ω, φ j = S(ω\ @, φn\O) + S(ω, ω o £ Λ ) . (3.3)

Since En(Dω)e& and @cEn(jtfn) by (3.2), we get for every α e <

(ω o £ Λ ) {a) = Trπ(Dω£^(α)) = Trπ(£π(DJE^(α))

= φJtD^EJtDJEJίa)) = φn(E^D^En(Dω)a))

= φn(D^En(Dω)a) = Trπ(£π(DJα),

so that En(Dω) is the density oiω°Em as well asα)o£π with respect to Trn. Therefore
α)oE^ = o)o£n and

, ω o £w) = Trπί)ω(logi)ω-log£π(Dω)) = S(ω o £ J - S ( ω ) . (3.4)

The desired equality follows from (3.3) and (3.4). •

Lemma 3.2. For every state ω of srfn,

S(ωoEn)-S(ω)^Klog(n+l).

Proof In view of the joint convexity of the relative entropy [2,16] it suffices by (3.4)
to show the case when ω is a pure state. In this case Dω is a one dimensional
projection and S(ω) = 0. Since each pnit...,nκDωpnummttnκ is of rank one or zero, it
follows that the rank of En(Dω) is at most
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Therefore

S(ω o En) S \og(n + If = K log(n + 1 ) ,

as desired. •

Proof of Theorem 2.1. For every n we have

SJψn, φn) ύ S(ψn, φn) ̂  Sco(ψn, φn) + K log (n +1)

by (2.5) and by Lemmas 3.1 and 3.2 applied to ψn. This proves (2.2). •

In the sequel of this section we assume that ψ is a completely ergodic state of

Proof of (2.3) of Theorem 2.2. For any r> — SM(ψ, φ^) let us choose h < Su(ψ, φ^)
and δ>0 with —h + δ<r. By Theorem 2.1 there exists a commutative
C*-subalgebra 38 of $tx for some Z^l such that

(3.5)

We can consider 0$k as a C*-subalgebra oϊstfkh k ̂  1, and ^ ^ as a C*-subalgebra of
oo

j / ^ . Let σ = v/ |^00, the right shift on ^^ Define μ = φt\Λ9 v = t/;|J>

00, μ 0 0 = (x) μ,
- o o

μk = μo0\&k and vfc = v|^fc. These states may be identified with the probability
measures on the corresponding underlying spaces. Since ψ is completely ergodic,
we can readily see that v is ergodic for σ. In the following we work in the
(commutative) von Neumann algebra %x{β^i' where π v is the GNS representation
of J ^ associated with v. We denote the normal extensions of v and σ to πj^β^j' by
the same v and σ.

First suppose v1 <ζ μ (i.e. s ^ ) ^ s(μ)) is not satisfied. Then there is a projection p
in 0& such that μ(p) = 0 and v1(p)>0. Since the ergodicity of v implies that

/*-l \ /feo-l . \

π v V σί-(p) -> 1 strongly as /c-> oo, there exists fc0 such that v W σf(p) ^ 1 — ε.
\i = 0 / \ i = 0 /

feo-l

Set q = V σf(p) and n0 = fc0Z. Then q is a projection in stfno such that ψ(g) ̂  1 — ε
ί = 0

and

Therefore βε(ψn,φn)= — oo for all n^w 0, proving (2.3).
k

Next suppose vx <ζ μ. Then we see that vk ^ μfe for every k because s(vk) ^ (x) s(vx)

^ 0 s(μ) = 5(μk). Let m denote the trace of $ such that m(e) = 1 for all atoms e in 36
1

(i.e. m is the counting measure on the underlying space of 0$). Let us consider the
selfadjoint operators Hk, fc^l, in %v(β^i' given by
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By the Shannon-McMillan-Breiman theorem (cf. [3, 21]) the first term of (3.6)
converges v-almost uniformly as fc-> oo to the Kolmogorov-Sinai entropy hv(σ) of σ
relative to v. On the other hand, by the mean ergodic theorem the second term of
(3.6) converges strongly as /c-> oo to v^logdμ/dm). Thus we see that Hk converges in
v-measure to

7 i 1 (Λ
 dvk Λ dμk

h0 = hm τ vk log — - - log —=-
fe-^oo k \ dmk dmk

_ 1

k-*oo K

Now for each k let pk be the projection in $k with pk S s(vk) such that πv(pk) is the
spectral projection of Hk corresponding to the interval (h0 — δ,ho + δ). Then there
exists fc0 such that v(pk) ̂  1 - ε for all k ̂  kϋ. Since πv(pk) is the spectral projection of
exp(/c#fc) corresponding to (e*^0"^, ek(ho+δ)), we get

so that since pk S

Therefore

<e-h{h0~δ)<e-k{ih-δ) ^

because h0 ̂  S(vu μ) ̂  /Λ by (3.7), (2.1) and (3.5). For each n ̂  kol let n = kl +;, where
fe^/c0, 0 ^ j < / , and put qn = pk. Then we have qne&?n and ψ(^ n )^ l — ε, so that

1 1 1 fe
- βJίVn* Ψn) ̂  ~ lOg φn(<ln) ̂  Jj^j lθg f̂c(ft) ^ " ^ J Λ + δ

by (3.9). This proves (2.3) thanks to - h + δ < r. Π

Proof of (2.4) of Theorem 2.2. First suppose SM(φ, ( ^ H O . Then ψ = φo0 by (2.1)
and hence βε(ψn, φ π )^log(l — ε), n ^ l , so that (2.4) is immediate. Now suppose
SM(ψ, φoo)>0. For each n set βn — βJ^Pn, φn) and choose a projection qn in j2/n such
that ψn{qn)^\~s and φn{qn)<eβn+1. Letting 0<fι<S M (φ,φ o o ), by (2.3) we have
βn<—nh for sufficiently large n. Hence eβn+1-+0 as n->oo. Define &n = Cqn

+ C(ί—qn) which is a two dimensional subalgebra of s$n. Then by monotonicity

(3.10)

^ φn\@n) = F(ψn(qn% φn(qn)),

where
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Since for 0<ί<s;£l,

8F(s,t) _ t-s

δt ί(l-ί)

we have for every n large enough

«(«») log ¥>„(<?„) + (1 - ΨM) log (1 - ψ«(

Therefore

(1 - ε) lira inf - ft, ̂  - SM(ψ, φ J ,

as desired. Π

Proof of Theorem 23. It suffices by monotonicity to show that

lim inf - Spr(ψn, φn) ̂  SM(ψ, φj. (3.11)
n-*oo VI

We may suppose SM(φ, φ j > 0. Let 0 < ε < 1 and 0 < ft < SM(tp, φ^). By (2.3) we have
βε(Wn>Ψn)<~nh for sufficiently large n. Hence for each such n we can choose a
projection qn in stn such that ψn(qn)^l— ε and φn(qn)<e~nh. Let $n = Cqn

+ C(l — f̂π) and F be the function in (3.10). Then we have as in the proof of (2.4),

Spr(φπ, φn) ̂  S(ψn\@n, φnm ^ F(ψn(qn), φj

for every n large enough. Therefore

lim inf - Spr(ψn, φn) ̂  (1 - ε)h.
n->oo VI

We obtain (3.11) letting ε->0 and h->SM(ψ, φj. Π

Indeed it is enough in Theorems 2.2 and 2.3 to assume that ψ is a stationary
state of J/QO which is ergodic for yn for infinitely many n.

4. Extensions

In this section we observe that our theorems in Sect. 2 remain true in AF C*-
algebras or hyperfinite von Neumann algebras. When si is a general C*-algebra
(always assumed to be unital), given two states ω and φ of si one can define the
relative entropy S(ω, φ) of ω with respect to φ as Uhlmann's relative entropy [32].
But this is also defined through Araki's one [1,2] for normal states of von
Neumann algebras as follows: If π is a representation of si such that ω and φ have
the respective normal extensions ώ and φ to π(si)" with ώ © π = ω and φ°π = φ,
then we have £(&>, φ) = S(ώ, φ) (see [15, 26]).
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Let si be a C*-algebra with a fixed state φ. As in Sect. 2 we take the C*-tensor
oo n

products si^ = (x) si, «s/π = (x) ̂ , rc^ 1, the right shift automorphism of j ^ and
" 0 0 1

the product state φω of J ^ . Moreover for a stationary state φ of sim the mean
relative entropy SM(ψ, φ^) is defined as (2.1). To extend the theorems to the case
of an AF C* -algebra, we first give the following lemma.

Lemma 4.1. Let {si(j)} be an increasing net of C*-subalgebras of si such that
si=[j si(j). Let ψbea stationary state of si^. // φ(j) = φ\siij) and ψ(j) =

j

then SM{ψ{j), φ(/)oo) increases to

Proof For each n, since sin = [j si(j)n, we have
j

sup S{ψH\s/{j)m φnW(j)n) = S{ψn, φn)
j

by the martingale convergence of relative entropy [2,16] applied under some
representation of ja/n. Hence

SM(Ψ> φJ = sup - S(ψn, φn)n^i n

= sup sup - S(ψn\s/(j)n, φnW(j)n)j n^i n

= swpSM{ψ(j%φ(j)J.
j

The increasingness is immediate from the monotonicity of relative entropy. •

Now assume that\s/ is an AF C*-algebra. Then there is an increasing net { J/(/)}

of finite dimensional subalgebras of si such that si = [j si(j). Let ψ be a stationary
j

state of si^ and define Sco(ψn,φn), n^ί, as (1.3). For each; and n we have by
Lemmas 3.1 and 3.2 applied to ψn\ji{i)n9

S(ψn\si(j)n9 φn\si(j)n) S SJΨn, φn) + Kj log(n +1),

where Kj is the sum of the sizes of simple summands of si(j). Hence for every j ,

SM(ψ(Jl Ψ(J)J S lim inf - Sco(ψn, φn),
n-> oo "

so that Lemma 4.1 shows the equality (2.2). Furthermore by the above argument
we can choose, given h<SM(ψ, φ^), a finite dimensional commutative subalgebra
$ oίsiι for some Z^ 1 such that (3.5) holds. Hence the proof of (2.3) of Theorem 2.2
works well. Thus we infer that Theorems 2.1-2.3 remain true for every stationary
or completely ergodic state ψ of siω when si is an AF C*-algebra.

Our theorems can be formulated in the framework of von Neumann algebras
too. Let Jί be a von Neumann algebra with a fixed normal state φ. Let Jin be the

n

n-fold von Neumann tensor product (x) Jί for n ̂  1, and Jί^ the C*-completion of
1

oo / n \

[j I ®Jί I. Then {JPn} is an increasing sequence of von Neumann algebras

if h i b f
\ )

included in M^. We have the right shift and the product state φ^ oiJi^ as before.
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If {Jί(j)} is an increasing net of von Neumann subalgebras of Jί such that
Jί — ί[j Jί(j)\" and if ψ is a stationary state oϊJί^ such that ψn = ψ\J?n is normal

\j )

for every n, then the same conclusion as Lemma 4.1 holds. Now assume that M is
hyperfinite (i.e. approximately finite dimensional). Of course this is the case when
Jί = B(J f), the algebra of all bounded operators on a Hubert space Jf. Then the
same results as Theorems 2.1-2.3 hold for every stationary or completely ergodic
state ψ of Jί^ such that xpn is normal for every n. In particular we have (2.6) for
every normal state ω of Jί.

Assume again that si is finite dimensional with a state φ. We finally consider
the special setting where ψ is a tracial ergodic state of si ^ In this case we denote
by ψ and γ the respective normal extensions of ψ and γ to πψ(si ^y. Then ψ
becomes a faithful normal tracial state of n^si^Y with ψ°γ = ψ. Let Tr be the
canonical trace of si mentioned at the beginning of Sect. 3 and 31 (si) be the
center of si. Although it is a challenging open problem to establish the
noncommutative Shannon-McMillan-Breiman theorem for general ergodic
states of si^ the special case of the following lemma was given in [20]. In fact,

00

this follows from the classical case for ψ (x) 2£(sί) because dψJdTrn belongs to
n — oo

I, the center of sin.

Lemma 4.2. Let si and ψ be as above. Then πψ(logdψJdTrn) converges

ψ-almost uniformly and in L1(ψynorm to a constant h. (h is the dynamical entropy
[6] of γ relative to ψ.)

On the other hand the noncommutative mean ergodic theorem was given in
[18]. Based on these convergence results we have the next proposition which is a
stronger form of Theorem 2.2 and extends the classical results in [4, 7]. A similar
result is given in [19] when φ is the trace Tr and ψ is a product state.

Proposition 4.3. Let ψ be a tracial ergodic state of stf^. Then for every 0 < ε < l ,

lim - βe(ψn, φn) = - SJtp, φj.
n-* 00 n

Proof We shall show that

lim inf - βε(ψn, φn)^ - S M ( ψ , φ j . (4.1)
«->oo n

Our method in the following will allow the proof of (2.3) of Theorem 2.2 to be
adapted to give

lim sup - βe{ψn9 φn)^ - SM(ψ, φj.
«-*oo n

When s(φx) ̂  s(φ) is not satisfied, we can see arguing as in the proof of (2.3) that
βε(ψn, φn) = — oo for every n large enough. This proves the proposition because

uφ)= +CQ.
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Now suppose s(φ1)^s(φ). Then we have s(ψn)^ ( x ^ t / ^ ) ^ (x) s(φ) = s(φπ) for
1 1

every n. Define the selfadjoint operators Hn, n ^ l , in πψ(stf^)" by

Lemma 4.2 and the noncommutative mean ergodic theorem imply that Hn

converges in t/3-measure as rc->oo to

= lim i

Let 0 < δ < 1 — ε. For each n let pn be the projection in srfn with pn rg s(φM) such that
πψ(Pn) ί

s ^ e spectral projection of iίM corresponding to (h0 — δ,ho-\- δ). Then there
exists n0 such that ψ(pn)^.l— δ for all n^n0. Since dψn/dTvn, dφn/dTvn and pM

commute with one another, we get as (3.8),

Ό >e-n(h0+5)n (dxpn\ίdφn\
p»=e p»{dκJ{cmJ (4'2)

For each n choose a projection qn in J3/Π such that ψ(qn)^l — ε and

^ ( ί J < exp {βε(ψn, φn) + 1 } . (4.3)

Let q'n = qnΛ pn. Then for n §; π 0 we get thanks to the traciality of ψ,

ψ(l-q>n)SΨ(l-qn) + ψ(l-pn)^ε + δ. (4.4)

Furthermore by (4.2)

( ^ (ώ. (4.5)

By (4.3H4.5) we have for n^n0

so that since 1 — ε—<5>0,
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Therefore

lim inf - βε(ψn, φn)^—h0 — δ.
n~• oo W

This implies (4.1). •
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