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Abstract. We apply cluster expansion methods to the N = 2 Wess-Zumino models
in finite volume, in two space-time dimensions. We show that in the region of
convergence of the cluster expansion, a vanishing theorem holds for the
supercharge of the theory; that is, the dimension of the kernel of the Hamiltonian
is equal to the index of the supercharge.

1. Introduction

In [8] a class of supersymmetric quantum field models in two spacetime
dimensions were introduced and studied in finite volume. The methods of [8] were
refined and extended in [9] by cluster expansion techniques which allowed us to
obtain results in the infinite volume limit. In this paper we turn these methods back
on the finite volume problem. We will find that they allow us to prove some
substantial extensions of the results of [8].

We begin with a brief reprise of the results of [8, 9]. Each two-dimensional
JV = 2 Wess-Zumino model associates to a polynomial V(z) (called the super-
potential) a quantum field theory, consisting of a selfadjoint Hamiltonian H
densely defined on the Hubert space Jf = J f&® J f} corresponding to one massive
complex (Dirac) Fermion field of mass m and one complex Boson field with the
same mass as the Fermion, defined on a circle 7] of length /. Let Γ = ( — l)Nf denote
the Fermion parity operator. The supersymmetry of the Wess-Zumino model is
expressed in the existence of a selfadjoint Fredholm operator Q which satisfies the
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following relations:

Q2 = H, (1.1)

ρr+rρ=o, r2 = i. (1.2)

The results of [8] may be summarized in the following theorem:

Theorem 1 [8] The operator e~τIΪ is trace class for all τ>0; the index of the
operator Q is given by the formula

l . (1.3)

As an immediate corollary of this theorem and (1.1) we have the following:

Corollary 1.1. The dimension of the kernel of H satisfies

oo > dim ker H ̂  (deg V) - 1 . (1.4)

We will consider the Wess-Zumino models corresponding to polynomials V of
the form

X-2W{kx) + X-^w{Xx), (1.5)

where W, w are polynomials of degree n, W' has n — 1 distinct zeroes, and \W"\ = 1
at each such zero.

Remark. These conditions on the polynomial are basically those under which the
cluster expansion methods of [9] apply.

The purpose of this paper is to prove the following theorem:

Theorem 2. For λ and ξ sufficiently small, the dimension of the kernel of H is
precisely (deg V) — \.

Remark. This is a vanishing theorem for the following simple reason. Since Γ
commutes with Q, and therefore with H, we may decompose the Hubert space

, the eigenspaces of Γ, and write

(1.6)

then considering (1.3) in the limit τ->oo we have

ind(0 = dimker#f^ + -dimker#|V_, (1.7)

and Theorem 2 may be restated simply as

dimker#t^_=O. (1.8)

Thus Theorem 2 says that the kernel of an operator on a graded vector space lies
wholly within a subspace of fixed grading. Our result is in this way reminiscent of
the vanishing theorems appearing in algebraic geometry [5]. However, while in
finite dimension such theorems can be proved using local bounds on the
operators in question, we know of no such bounds for the quantum field
theoretic operators of the Wess-Zumino model. Instead we use a different
method, which relies on the exponential decay of the path integral represen-
tations of the heat kernel and index.

It is interesting to note that the vanishing theorem is not expected to hold for
the N = 1 Wess-Zumino models, where the index can only take the values ± 1 and
0. The AT = 2 Wess-Zumino models differ from those in that there is a natural
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complex structure on the Hubert space in question, which respects the structure of
the operators H and Q. This is reminiscent of the finite dimensional situation,
where vanishing theorems occur naturally in the holomorphic setting. It is curious
that our methods do not make direct use of the complex structure. The
consequences of this structure enter in the construction of the cluster expansion;
the technical differences with the N=ί case are discussed in [7].

Proof of Theorem 2. We have
H (1.9)

and

dimkeri/= lim Ύre~τH. (1.10)
τ-» oo

Since Q is selfadjoint, H = Q2^0; combined with e~τH being trace class, we have,
for τ sufficiently large,

τ f i), (1.11)

for some ε > 0. But by Theorem 3, we have, for τ sufficiently large,

\TrΓe~τH-Ίτe-τH\<ί/2. (1.12)

Thus

|d imkerH-ind(ρ) |<l ; (1.13)

since dimkeriί and ind(β) are integers, they must be equal.
The main technical result needed to prove this theorem, and the technical core

of this paper, is the following estimate.

Theorem 3. For λ and ξ sufficiently small, for every I there exists τt > 0 such that for
τ>τh

\τre~τH-ΎτΓe-τH\<ί/2. (1.14)

To prove this theorem we will make use of the Euclidean methods of [8, 9]. In
[8] it was shown that the trace and graded trace of the heat kernel of H could be
expressed in terms of integrals of certain functions lFai ̂ p on the space ^'(TJ x Tτ)
of distributions on the torus, with respect to the Gaussian measure dμc with
periodic covariance on the torus 7J x Tτ. The functions 3Fa and <FV differ in the
boundary conditions (antiperiodic vs. periodic in time) imposed on a Fredholm
determinant appearing in each of them.

To deal with this difference we apply the cluster expansion methods of [9],
which allow us to control the dependence of such integrals on the boundary
conditions. In [9], we introduced an integer lattice on the torus 7] x Tτ, and
interpolated between the covariance C and the covariance CD with Dirichlet
boundary conditions on each bond of this lattice. We also interpolated between
the functions #"α, $FV and a similar function $FΌ which is a product of functions, each
depending on the value of a distribution within each block of the lattice. We then
applied the fundamental theorem of calculus, in the usual form for cluster
expansions [6], to obtain the following result.

oo

Let Ξ{l,τ)= Π coth[τω(2πfc/Z)], where φ ) = (x2 + m2)1 / 2. [For fixed /,
fc=l

Ξ(/,τ)->l as τ->oo.]
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Theorem 4 [9]. For λ and ξ sufficiently small the trace (respectively graded
trace) of the heat kernel of H is given by a cluster expansion.

^ = S(/,τ) Σ ^ Σ Q^) ...Qa{Q, (1.15)
n =o n\ {rlt...,rn}

compatible

T r Γ β - H = Σ A Σ QP(Γύ-QP(Q, (1.16)
n = O Π! {Γ, rn>

compatible

where the activities ρα, ρp sαίis/y ί/ie estimate

|ρ#(Γ)|<exp(-c|Γ|), (1.17)

where ΓcTexTτ. The free energy of each cluster expansion is zero.

The basic idea of the proof of Theorem 3 is as follows. We use Theorem 4 to
write the difference between the trace and graded trace of the heat kernel as a sum
of terms, each involving a product of factors ρp(Γ) arid at least one difference factor
ρa(Γ) — ρp(Γ). We will then show that each such difference factor satisfies an
estimate of the form (1.17), with an additional small factor e'c\ where c is some
constant; the resummation of the remaining terms will introduce an error of order
exp[O(/τe~*)], due to vanishing of the infinite volume free energy. Thus

-<)], (1.18)

so that, choosing / and τ sufficiently large, we obtain Theorem 3.

2. Cluster Expansions for /V= 2 Wess-Zumino Models

In this section we recall the cluster expansion developed in [7, 9] for the N = 2
Wess-Zumino models. These results will be used in Sect. 3 to arrive at the proof of
our main estimate in Theorem 3.

Let ίf'(Tχ x Tτ) denote the space of tempered distributions on the torus Ύx x Tτ.
On ^'(Jx x 7̂ ) there is defined the Gaussian measure dμc with co variance

C(χ,y)= 2Σ2π ψ - ^ (2 l)

Similarly, let Sp(x, y), Sa(x, y) denote the Fermionic co variance with periodic
boundary conditions on 7] and periodic (for Sp) or antiperiodic (for Sa) boundary
conditions on Tτi defined on the Hubert space Jf = J f_1/2(lR2)Θ^f-i/2(IR2)

SP(*,y)= Σ yo^ie^-*; (2.2)

€ 2 π z

τ

Here we write ^ = 7oP2 + yfPi with

"0 -

i]
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We may then define the Fredholm determinant

where
UΦ)=SsyoχΛ(W"(Φ)) - m) (2.4)

and

and the functionals

£ ί (:\V'(φ)\2 --m2:\φ\2Wx, (2.5)
A
ί
A

= exp - ^(φ) • det3 [1 + K«(φJ], (2.6)

where

(2.7)

In [8] it is shown that ^(φ) is well defined [a.e. (dμc)~] as a limit of regularized
expressions, and that it is integrable with respect to dμc(φ).

To develop a cluster expansion we define the decoupled versions of all these
functions. We introduce a lattice LΈ2 of size L in 7] x Tτ, and will interpolate
between our original operators and decoupled operators which are designed so
that the fully decoupled partition functions factor into a product over all the
squares of this lattice. This procedure is lengthy but straightforward, and may be
found in Sect. 3 of [9]; here we will consider a "condensed version" where we
neglect features not essential to our current analysis.

To do this we first note that

det3 [1 + Sζ] \* = det3 [1 + D 1/2SζD ~ */*] \^, (2.8)

where ζ is a function of the scalar field (cf. (3.6) of [9]), J T = L2(R2)0L2(R2), and
D = (-A+m2)112. We write

Dί/2SζD-1I2 = %D~1/2ζD-1/2, (2.9)

where % = D1/2SDl/2, and decouple this operator by writing

K(s)=ms(D^'\ζ(D-ll2)s, (2.10)

where
Σ H(s,Δ,Δ')χΔΘχά., (2.11)

A + Δ'

and 0 S H(s, zl, ̂ d')^ 1 is a function indicating the degree of decoupling between A
and A'; see (3.28-29) of [9] or (Π.10-13) of [1]. Most importantly H(s, A, A') = 0 if
there is no path from A to A' that does not cross a bond with sb = 0, so that exp0s

will factor over regions whose boundaries are bonds with sb = 0.
In the case of periodic or antiperiodic covariance, our Fermionic kernels are

Kp(s)= ( Σ D^SD^T^Λ (D-^&D-1'2),, (2.12)

Ka(s)= ( Σ (- lΓD^SD^T^Δ (D-^Uφ-^l, (2.13)
J
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where Tu:_Jf"-^' is the (unitary) translation operator: (Tuf)(x)=f(x + u), and
u(l,τ) = uj+u2τ.

For the Boson we consider a partially decoupled measure dμs(φ) with
covariance Cs; it is convenient to use replacement operator notation [4] so that

^ ^ y ^ ^ (2.14)

and

^ (2.15)

The G-J-S cluster expansion [6] then takes the following form [9], where Z#(s)
is obtained from $^(φ)dμ(φ) by replacing K%(φ) by K#(s) (and sί% by sί%\
corrections arise in replacing yoχΛWV"(Φ)) — m)by ζ in the determinant [7]):

Proposition 2.1.

Note. Our cluster activities ρ(Γ) are essentially given by J dsΓd
ΓZ$(s); see (3.62-65)

of [9].
Next we sketch a formula for these derivatives; details are in [9].
Let π be a partition of Γ. As in [4], decompose this as

πf = π / , Aκjπf, £ u π / , B u π/, s u π /\ o

Then we have

Lemmg 2.2. We can write dΓZ$(s) according to the following decomposition:

dΓZ*(s)= Σ Σ
πe&iΓ) decompositions

(πf, A> π6, A) ' dΛ r £ ( π / j £ , πbtE)J],

(2.16)

with the notation explained below.

We have determinant minors of the form

τfc(G) = fc!Tr(Λk[l + K(s)]~1 G)det 3 [l +X(s)], (2.17)

and the shorthand replacement notation

^^ίx 'Veϋx'* 1 ( 1 1 8 )

We also have

Π (-ryj^) Π (-rίs/9)9 (2.19)

,^ ^
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and

x Π d'Λ'(l-K,(s))rΐ*K*(s), (2.21)
y*eπb,E

where r = \πffA\ + \πbi A\ and the d! A means that terms where E derivatives precede
A derivatives (according to an arbitrary ordering) are omitted. Finally, we have the
convention that πftS, πbtS, π / > 0 , and πbtΌ derivatives only act on already
differentiated terms, one term per derivative.

The terms in (2.16) are estimated by fixing all the localization squares in the sum
over characteristic functions within the decoupling. We indicate such localized
terms by writing Al9 Bh etc., and rewrite Eq. (2.16) to make this explicit:

Lemma 2.3. The derivative dΓZ$(s) may be written as the following sum over
localized terms:

dΓZ,(s)= Σ Σ idμJtφ)e-*Λ(πb)
πe(?(Γ) decomps

localizations

(2.22)

When we combine the estimates on all these localized terms we arrive at the
exponentially decaying bound (1.17).

3. Small Factors

In this section we show how to compare the cluster expansions for Zp and Zα . We
will show that the difference of the two is a sum of terms (in the form of a cluster
expansion), each of which contains a small factor. The summation of these terms is
left to the next section.

By subtracting the periodic cluster expansion (1.16) from the anti-periodic
cluster expansion [(1.15) without the prefactor] we have

= U Σ Σ QjJ'd-QjΆ-ι)(Qa(Γk)-QP(Γk))
»=o nl {Γi,...,rM} k^n

compatible

= Σ - Γ 7 Σ Qd(rί). Qd(rn)QP(rn+ί)...ρp(rn+m), (3.i)
„=! n\m\ {rlf...,rn+m>
m=0 compatible

where

Qd(Γ) = Qa(Γ)-Qp(Γ). (3.2)

We wish to prove the following result:

Proposition 3.1. For λ and ξ sufficiently small, if τ is sufficiently large the difference
Za — Zp satisfies

\Za-Zp\< 1/4.
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Fig. 1. The / x τ region and three clusters illustrating the three cases of Lemma 3.2

The first step is the following lemma:

Lemma 3.2. The factor ρa(Γ)-ρp(Γ) satisfies

where cl9c2>0.

Proof There are three cases (see Fig. 1).

Case I. Γ's length is O(τ) (this allows wrapping around the strip).
In this case, Theorem 4 guarantees that for some c>0,

Since |Γ|>τ, we have

\Qa(Π - QP(Π\ ^ exp [ - c\Γ\β - cτ/2],

as needed.

Case II. Γ does not cross the top of the strip, and its length is less than O(τ).
In this case we compare QP(Γ) and ρa(Γ) by interpolating between the two

different cluster activities:
1 d
J at—
o ot

(3.3)

where we denote by ρt(Γ) the cluster activity corresponding to Γ in the cluster
expansion with a linear combination of boundary conditions [we will identify the
specific nature of the interpolation later - cf. (3.8)]. Then

(3.4)
dt
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Recall, however, the form of the activity ρt(Γ). It must be a sum of terms of the form

x *AAfrft A9 πbf A) d/\ rEt(πft E, πbf £ ) ) ] , (3.5)

as in (2.22). In Lemma 7.2 of [9] we showed that such sums could be bounded in
terms of the cluster Γ. An essential ingredient in the proof of that lemma was the
exponential decay between the localization squares introduced in the cluster
expansion. We wish to exploit this decay, so we "leave in" some of it.

Lemma 3.3 (Alternate version of Lemma 7.2 of [9]). For λ, ξ sufficiently small,
there exists δ>0 such that

\dΓZt{s)\SG(Γ) sup Π e~mAuA2\ (3.6)
decomps localization

localizations square pairs

where G(Γ) can be summed to give the cluster bound (1.17).

Let us now consider the derivative dρ/dt. It is also given as a sum of the terms of
the form (3.5), except that in addition to the s-derivatives defining the A, E, and B
terms one ί-derivative must appear. We will show that this ί-derivative gives rise to
the additional factor exp[—O(τ)].

Suppose, for example, the ί-derivative appears in an ,4-tyρe term. Recall that
,4-terms are of the form

A = K?(s)dlKt(s), (3.7)

where the Fermionic kernel is

Kt(s)=tKp(s)+(l-t)Ka(s). (3.8)

Thus
dKJίs) , « , „ < , ~ v < , „ *,~
^MW _ 2 / y / 4\u2f)i/2cr\ί/2ηr> \ ίf\-1/2\ /YΠ~ l/2\ (3 9)

dt \ueZ2, u2odd ' )s

Now observe that in the sum (3.9) the first term, corresponding to the value
u = (0,0), is missing. Thus the product over localization pairs in (3.6) will include at
least one pair that is O(τ) apart. Summing over all the terms giving rise to the
activity ρ, we obtain an additional factor exp[ —O(τ)].

It is immediately clear that the same behavior is to be expected in when the
ί-derivative occurs in E or B terms; somewhere there will be a kernel dKt(s)/dt
which will give rise to a sum of terms, in each of which a pair of localization
squares are forced to be at least τ apart.

Case III. Γ crosses the top of the strip, and its length is less than O(τ).
In this case we cannot directly use the formula (3.9), since the term

corresponding to the first translate (w2 = ±l) i n (3.9) may not be small. To
overcome this difficulty, we write

where Γ+ lies on one side of the edge, and Γ_ on the other. This is well-defined since
Γ does not wrap around the strip (see Fig. 1).

With this decomposition we have a similar decomposition of the Hubert space,
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We define the operator Kt(s) on $?'(Γ) according to the following kernel which is
partially "reversed" on the off-diagonal portion:

Kt(s)(x,y)

)() Γ or x,yeΓ-9

yeΓ_ or xeΓ_, yeΓ+.
(3.10)

For ί = 0 this is the same as Kt(s) - see (3.8). For t = 1, Kt(s) is Kt(s) on the block
diagonal and — Kt(s) off the block diagonal. Thus any trace of any product of
Kt(sYs (or their derivatives) for t = 0 or t = 1 is unchanged when we replace Kt(s) by
Kt(s) as any nonvanishing trace must have an even number of off diagonal terms;
since the determinant (and its minors) can be represented as sums of traces, this
holds for the determinant (and its minors) as well. Thus the difference ρp(Γ) — ρa(Γ)
may be written as an interpolation similar to (3.4), except that we replace ρt(Γ) by
ρt(Γ) and Kt{s) by Kt(s). We have

dt '

where, again, we obtain a sum of terms with a term containing dKt(s)/dt appearing
in an A, E or B term. However,

Ot Σ

- 2 Σ XrJ Σ
Γx = Γ + ,Γy = Γ-;or \ueZ2, u2 even

V2)sχΓy. (3.11)

The first term of (3.11) is now of the same form as (3.9), and so produces a factor
exp [ — O(τ)]. In the second term of (3.11) the restriction that u2 be even prevents Γx

from being translated next to Γy and we again obtain the decay exp[ —O(τ)].

4. Resummation

In this section we will complete the proof of Proposition 3.1 by combining the
formula given in Eq. (3.1) for Za — Zp with the estimate of Lemma 3.2 for the
difference of the activities \ρa(Γ) — ρp(Γ)\. The crucial fact we still need is the
vanishing of the free energy in each phase of the model, proved in [9] following the
methods of [2],

Let us examine the sum appearing in (3.1). Each term is of the form

ρ,(Γ1)...ρd(Γfc)ρp(Γfc + 1)...ρp(ΓM). (4.1)

Our strategy will be to divide the clusters appearing on this sum into large and
small clusters, and resum the small clusters.

Let Γ be a large cluster if it is associated with a ρd factor, if \Γ\ > I, or if it
surrounds another large cluster. Thus all Γ that wrap around the strip (in either the
vertical or horizontal direction) are large. Small clusters are those that are not
large.
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We rewrite the sum appearing in (3.1) as follows:

oo i

Za-Zp= Σ ^ y Σ Qd(Γi) .Qd{Γn)ρp{Γn+1)...ρp(Γn+m)

m = 0 large, compatible

+ Σ A Σ QP{Γ[)...QP{Q. (4.2)
4 = 0 q\ {ΓΊ,...,Γ'q} small

compatible with {Γi, ...,Γn + m}

We now fix Γ1? ...,Γπ + m. Let

Z s m a l l = Σ "7 Σ Qp(Γl)...ρp(Q. (4.3)
4 = 0 ql {Γ\,...,Γq} small,

compatible with {Γ i,..., Γn + m}

We prove the following lemma:

Lemma 4.1. For appropriate values of the parameters of V and for τ sufficiently
large,

|Z s m a U |^exp[O([dΓ1[+ ... +|3Γ Λ + J) + β - ^ / τ ] . (4.4)

Proof The clusters Γi9..., Γn+m divide the volume A into a number of sub-volumes
(say {Λ{i)}) with fixed boundary conditions. Then we can write

Zsmall = Π ^smallV^ ' )
i

Now we make use of the results from [2,9] that the free energy of each phase of the
model is zero.

In the finite volume A{i\ the complete (fixed boundary conditions) cluster
expansion has zero free energy but may have a boundary contribution as large as

The expansion for Zsmall(Λ(ι)) differs from this in that
• We have removed large clusters.
• We have periodic activities ρp.

Both of the above alterations result in corrections of order e~O{l) to the free energy.
Thus

°^\Λ^n • (4.5)

Since £\dA{ϊ)\ = Σ\dΓt\9 and ΣM ( OIύ\A\ = lτ9 our proof is complete. •
i i i

We may now proceed to the proof of Proposition 3.1. We have

\Zp-Za\^ Σ
π =i,
m = 0 large, compatible

xexp[O(|0Γ1 |+ ... + |aΓ Λ + J) + e -°«/τ] . (4.6)

Each factor ρd(Γ) contributes a factor of e~°(τ+\Γ^ by Lemma 3.2; each factor
£p(/L»rge) either contributes a factor of e " O{1+|Γ|) or surrounds another large cluster,
in which case we only get e~ 0 ( | Γ | ), but the entropy is reduced since Γ cannot get too
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far from the cluster it surrounds:

Σ ~, Σ Π e-wH Σ -.o(n+m-Pγ
p = 0 Pi {Γ\,...,Γ'P} s u r r o u n d ί = l p = 0 pi

other large clusters
(4.7)

where m' is the number of geometrically large "large" clusters. Thus

\zp-za\
oo 1 n oo 1 n + m'

ύ Σ j-λ Σ γ[e-<*+™-" Σ - ^ Σ Π e-<*+™-»
n=ί HI {Γu...,Γn} i = l m' = 0 W ! {Γn+i,...,Γn + m/} i = w+l

(4.8)

if we adjust the parameters of V so that our decay rates are greater than the
entropy growth. We choose τ sufficiently large, and we are done. •

We are now ready to prove Theorem 3. We have
τ H | = \Zp-Ξ(l, τ)Za\

|l-S(/,τ)|.(4.9)

We showed earlier that \Zp — ZJ<l/4, and we have Zp = n — 1. Finally,

| 1 — Ξ(l,τ)\ = O(e~τβ)

for large τ, so that by taking τ > /, we have

\Ύre'τH-ΊrΓe-τH\<l/2

as needed. •
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