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Abstract. It is shown that for a large class of potentials on the line with su-
perquadratic growth at infinity and with the additional time-periodic dependence
all possible motions under the influence of such potentials are bounded for all
time and that most (in a precise sense) motions are in fact quasiperiodic. The class
of potentials includes, as very particular examples, the exponential, polynomial
and much more. This extends earlier results and gives an answer to a problem
posed by Littlewood in the mid 1960's. Along the way machinery is developed
for estimating the action-angle transformation directly in terms of the potential
and also some apparently new identities involving singular integrals are derived.

1. Introduction and the Results

In the early 1960's Littlewood [LI] asked whether or not the solutions of the
Duίϊing-type equations

x + g(x)=p(ί), where p(t + l)=p(t) (1.0)

are bounded for all time, i.e. whether there are resonances that might cause the
amplitude of the oscillations to increase without bound. In this paper we study
the more general problem of describing the behavior of solutions of the system
of the form

x+Vx(x,t) = 0, (1.1)

which is a Hamiltonian system governing the motion of a particle on the line
subject to a time-periodic force. We show that under appropriate growth assump-
tions on V for large x, the system is near-integrable for large amplitudes in the
sense that "most" large amplitude solutions are quasiperiodic and all solutions
are bounded for all time with no smallness assumptions on the time-dependence
of V(x, t). Intuitively, one might expect that if V(x, t) is superquadratic in x, then
the larger amplitude solutions oscillate faster giving rise to a twist in the Poincare
map of the (x, x) plane and thus a hope of applying Moser's twist theorem to
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prove boundedness. This intuition turns out to be too crude: Littlewood [LI]
(see also [L2], [LO]) produced an oscillator x + Ur(x) = p(ή with U satisfying

• oo as x —• co, U e C00, and with a periodic piecewise constant p(t) pos-
sessing an unbounded solution. This was accomplished by modifying the quartic
potential U(x) = \xA in such a way as to create a resonance for a particular
solution while still preserving the superlinear growth of U'(x) at infinity. Further
details can be found in [LI, L2, LO].

The problem of boundedness of solutions for (1.1) can be separated into
two parts: first, to gain the information on the period map (also called the
Poincare map or the stroboscopic map) (x, x)t=o —> (x, x)t=i, and second, to use
this information to decide whether or not the solutions are bounded. Neither
of these two problems is fully tractable. This is due to the implicit character
of the relationship between the potential V(x, t) and the Hamiltonian H(θ, I, ί)
expressed in the action-angle variables. In other word, Eq. (1.1) cannot be solved
explicitly and a qualitative estimate has to be made. Such estimates are provided
in this paper.

The second problem, of a more general nature, lies in determining whether
or not a given map has escaping orbits. This fundamental classical problem was
solved only relatively recently by KAM theory [Ml, HE, Rl, R2, M2, SZ]: the
only known way to assure that all iterates of a map are bounded is to show that
there are invariant circles arbitarily close to oo in the (x, x) plane of the map.
In fact, the invariant curves are necessary for the boundedness, as was shown
by Birkhoff ([Bl, B2]); in that sense there is no hope of proving boundedness
without demonstrating at the same time the existence of an invariant curve. In
fact, earlier attempts to prove boundedness [Dl], [D2] without using the invariant
tori contain a mistake.

The first boundedness result is due to Morris [MO], who showed that all
solutions of x + x3 = p(t) are bounded, with p(ή e C°. Subsequently, this
result was extended to a wider class of systems with polynomial potentials (of
even degree) by Dieckerhoff and Zehnder [DZ1, DZ2]. The restriction on the
constancy of the leading coefficient that was required in that latter work was
removed by Laederich and the author in [LL], by using a different transformation
to a normal form. It might seem surprising at a first glance that all solutions
of, say x -f a(t)x3 = 0, with a smooth a(t) = a(t +• 1) > 0 are bounded for all
time-after all, the potential F(x, t) = \a(ήx4 undergoes a large change in the
course of one ί-period and thus could (it seems) "pump up" the oscillations of
x(t) as in fact happens in the linear case 3c + a(t)x = 0 when there is parametric
resonance, for instance, in the Mathieu equation [S]. In the nonlinear case just
mentioned, the nonlinearity does not allow the resonance to persist. In contrast
to this, Littlewood's counterexample is based on constructing a resonance for
a nonlinear case, but this construction violates the monotone twist condition
[AD, BE, HA, KA, M], see [L2]. We mention finally an elegant result by Norris
[N] for Eq. (1.0) when the x- and ί-dependence separate: if g(x)/x < g'(x) (a
superquadraticity condition), and if g(x) is analytic in a strip around the x-axis
in the complex plane, then the system is near-integrable for large energies; the
same result holds for the subquadratic growth g(x)/x > g'(x) as well. (For a
geometrical discussion of this condition see the end of this section.)

It should be pointed out that the result of Morris and its generalization by
Norris hold with no smoothness assumptions on p(t). This is due to the fact that
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the Poincare map (x, x)ί=o —• (x, x)x=i is a small perturbation of the completely
integrable Poincare map of the autonomous equation x + g(x) = 0 . By contrast to
this, in the case of a more general potential F(x, t), with a stronger ί-dependence
the Poincare map mentioned above is not close to an integrable one, and higher
smoothness in t is necessary to construct the change of variables in which the
system is (say) C(4)-close to an integrable one. We point out that although
the smoothness of p(t) does not affect the smoothness of the Poincare map, it
does affect its proximity to an integrable map. This remark is illustrated by the
counterexample of Littlewood, in which the construction of a non-near-integrable
Poincare map is crucially dependent on the discontinuity of p(t). As soon as we
make p(t) smooth, Littlewood's construction (of a "bad" map) fails, as can be
shown by more careful estimates; this suggests that smoother p (for a fixed g)
give rise to "nicer" (i.e., closer to integrable) Poincare maps.

We conclude this brief historical discussion by mentioning a related problem
when F(x, ί) in (1.1) is periodic in x as well as in t\ the nonlinear pendulum
with periodic (zero-average) forcing is a primary example. In this case it has
been shown that, as long as F(x, t) is sufficiently smooth, there exist invariant
tori y = /(x, ί), where x mod 1, t mod 1, which are preserved by the flow x = y,
i = 1, y = -V(x, t) in the phase space {(x, ί, y)} = Γ 2 x R , [M3, CZ, LI]. In
particular, for any solution there exists a constant C > 0 such that for all time
IYI < C
|X| <. <^.

The main result of this paper is the following

Theorem 1. Assume that the potential function V (x, t) = F(x, ί + 1) tends to oo as
|x| —> oo and that it satisfies conditions (1.2), (1.3), and (1.4) below.

Then Eq. (1.1) is near-integrable for large energies, more precisely for any 0 <
ω < 1 satisfying the Diophantine conditions

1 _s
" ^ \Q\

 2 f° r an* 0 ψ q, p € Z ,
2

the Poincare s map P : (x, x)t=o —* {χ> x)z=i of Eq. (1.1) possesses countably many
invariant circles with rotation number ω and these circles cluster at infinity in
the (x, x) plane. These circles are the intersections of the invariant tori in the
(x, x, t mod 1)-space with the {t = 0}-plane, Fig. 1.1; each such torus carries a
quasiperiodic solution with basic frequencies 1 and k + ω. All integers k > fco(ω)
are represented by an invariant torus. In particular,
1) All solutions are bounded for all time: sup(x| + |x|) < oo.

R
2) Most solutions with large amplitude are quasiperiodic, i.e. most initial condi-
tions (in the sense of Lebesque measure) with large |x(0)| + |x(0)| give rise to
quasiperiodic solutions: x(t) = f(t, (ω + k)t), where f is a function on a 2-torus.
3) Any sufficiently large number is a rotation number for some solution, i.e. there
exists ρo such that for any ρ > ρo there exists a solution xρ(t) with that rotation
number1. Furthermore, for any rational p/q > ρo there exists a periodic solution
with that rotation number; the corresponding periodic point of the Poincare map is
a Birkhoff periodic point.
1 The standard definition of the (forward) rotation number is ρ = l/2π lim arg(x, x). Another

ί-MX>

interpretation of ρ is one half the average number of zeros of the solution during the forcing period:
ρ= lim 1/2T (# of zeros of x(ή on the interval 0 < t < T)

T—>-co
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Fig. 1.1. Invariant tori in the extended phase space of Eq. (1.1)

The last statement 3) is a direct consequence of the Aubry-Mather theory;
one can say much more by just applying the results of that theory [AD, BE, BH,
HA, KA, MAI, MA2] to the Poincare map of the system, using the information
gained here.

Conditions on the potential F(x, t).

For some constants c, cχ9 a > 0, 0 < μ < —— I - — a
have 1 O ϋ V2

and all x and t we

dkxdτt
<c\xΓkV1+μ,

-- + c\ < Wx < a < - , where = V/VX,

and

(1.2)

(1.3)

(1.4)\b\S\V\, \dk

xd
τ

tW\<c\x\{-k, /c + τ < 5 , where U = Vt/Vx

Remark 1. Condition (1.4) can be weakened to read \dk>τU\, \dk>τW\ <
furthermore, the above assumptions on V can be weakened to require that these
hold for |x| > A, for any fixed A. These stronger statements do not pose principal
new difficulties.

Remark 2. Even a very special case of μ = 0 includes, together with the polynomial,
some new examples, e.g. the exponential potential V(x, i) = (2 + cos t) cos hx.
(Condition (1.3) holds after subtracting 2 +cost from V - this does not affect
Eq. (1.1).) For μ>0 the class widens drastically to allow some oscillation in x.
A very particular example is V(x, t) = p{t) (x + cos]/x) 2 n, where n is (specifiably)
large and p(t) e C ( 6 ) is periodic and positive.

An Outline of the Proof of Theorem 1. There are two parts: first, the formal reduc-
tion to normal form and second, the estimates. The formal reduction (Fig. 1.2)
consists of the following sequence of transformations; the quadruples list the
position, the momentum, the time in that order with the Hamiltonian in the last
place:

x,x,t;H0 = -j (θ,I,t;H = (τ,h9θ;J),

where A is the standard action-angle transformation of (x, x) into (θ, I) with t
as the parameter (hence the extra term St in the Hamiltonian), B is the change



Quasiperiodic Motions in Superquadratic Time-Periodic Potentials 47

yτ
Fig. 1.2. The transformation to normal form and invariant tori

into time and energy as the new position and momentum, with the angle θ now
playing the role of new time, and C is another action-angle transformation to
make the leading term of the Hamiltonian independent of the position variable.

The estimate of the composition C o β o f the maps in the above diagram and
a subsequent application of Moser's twist theorem will result in Theorem 5.1,
which we restate here for convenience:

Theorem 2. If the Hamiltonian function H(θ, /, t) = Ho{h 0 + H\(θ9 h t) is peri-
odic in θ and t and satisfies for some β > 0 the growth estimates

\δ'td
kHι(θ,I, t)\<cΓk-βH0(I, t), + k<5,

and if the inverse function Io(H) = Io(t, H) of HQ(I, t) in H satisfies

\d{dk

HI0(t, H)I < c t f - % ( ί , H), j + k<5,

k<2
cH-%{t9H) < \dk

HI0(t9H)\9

(5.1)

(5.2)

(5.3)

then the Hamiltonian system

= H i, / = HQ

possesses invariant tori I = / (0, t) carrying a quasiperiodic flow, in any region
I > M, for an arbitrarily large M, Fig. 1.2.

This theorem is actually a combination of Theorem 5.1 and the results of
Sect. 4.

The following three theorems estimate the action-angle change A in the
diagram; they are restatements of Theorems 6.1-6.3:

Theorem 3. // the potential V(x, t) satisfies the superquadraticity condition
(1.3) together with the bounds (1.2) and (1.4), then there exists β = β(μ, a)
such that the action-angle Hamiltonian Ho + H\ satisfies the bound (5.1).

Theorem 4. If the potential V satisfies the bounds (1.4), then Ho(I,t) satisfies
(5.2), where IQ is the inverse function of Ho in I.

Theorem 5. If V satisfies (1.2), then Ho(I, t) satisfies the twist conditions (5.3).

Potentials with Blow-Up and Pulsating Billiards. One can apply the same methods
to the cases when the potential blows up at one or two (end) points.
For instance, one can show that the potentials

Vi(x,t)=
XΔ — i

or F2(x,ί) =
X-b(t)
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t*<t

t**>t

R (t*) < R (t) < R (t**)

Fig. 1.3. Potentials with finite or semifinite domains and pulsating "billiards"

where a > 0, and α, b € C^5\ give rise to near-integrable motion for large energies.
The potential V\ can be viewed as a "softened" potential of the Fermi-Ulam's
"ping-pong." The latter problem deals with a particle bouncing between two rigid
periodically moving walls. If the motion of the walls is sufficiently smooth then
the velocity of any motion is bounded for all time. This was shown by Moser
(unpublished lecture notes) and independently by Douady [DO] and Laederich
and the author [LL].

This kind of a potential with a blowup at one end arises in the motion of a
particle z e IR2 governed by z -f gradz V = 0, where V has an S0(1) symmetry:
V(z, t) = W(\z\, ί), with V(z, t) = V(z9 t + 1) as usual. The angular momentum
M = z Λ z = Im zz is a conserved quantity: M = zΛz+zΛz = —zΛVz = 0,
the latter because Vz\\z by symmetry. The polar coordinates r, θ : z = reιθ satisfy
r2θ = M and r — r2θ2 + Wr(r, t) = 0; substituting the expression for θ = Mr~2

we obtain the equation for r valid for all motions with the fixed value of M:

r + £ / Γ ( r , ί , M ) = 0,

M2

where U = —j + W(r, t).

One can show that if the effective, or the reduced, potential C7(r, ί) satisfies
the conditions similar to (1.2)—(1.4) then all motions are bounded.

A particular case of this statement gives a stability statement about the
"pulsating soft billiards": let V(z, t) = (z/R(t))2N, where R(t) is periodic and
positive. For N large, the potential is near zero inside the circle away from
its boundary and it rises very steeply outside the circle, making this problem
the elastic analog of the usual billiard whose potential is zero inside the circle
and infinity outside. One can show using similar methods that if R(t) e C(5),
then the energy of any motion will stay bounded for all time, and hence each
solution r(t) has an upper and a positive lower bound for all time. The same then

M
is true for the angular velocity θ = — . An explicit formulation of conditions

for near-integrability for the potentials which blow up at finite x will be given
elsewhere.

Remark 3. It was stated in [Dl] and [D2] that every solution of 3c + g(x) = p(ή
g(x)

is bounded for all time, provided that —> oo and that p is periodic and

continuous. The statement seems to be false without further assumptions. The
argument does not use the continuity of p(t) and thus should apply to Littlewood's
counterexample, which, however, exhibits unbounded solutions. (The original
paper of Littlewood contained some minor errors which were found and corrected
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by Long [LO]. A much simplified version of Littlewood's counterexample with
an optimal estimate on the growth of g(x) can be found in [L2].)

Other Results: Identities and the Growth Rate for the Period T(H). We give a
brief sample of some of the simplest results from the appendix. These auxiliary
facts could be of some independent interest. The main results from the appendix
are contained in A2 and A4; we do not discuss these here and touch only on
a part of Appendix A3. The period of the solution of an autonomous system
x -f Vf(x) = 0 with the energy H is given by / dt = f(ds/v), or by the singular
integral [Al]

x+(H)

x-{H)

where the limits x±(H) of integration are the points where the denominator
vanishes: V(x+) = //, and V(x) < H for x_ < x < x+. To be specific, let us also
assume that 7(0) = 7'(0) = 0 and that V'{x) φ 0 for all x φ 0. Then one has
the following formula for T\H):

rW-Vί

Proof of this is given in Appendix A3.

The relationship between the potential and the period as a function of the
energy has been studied starting with Abel [AB] of the more recent papers we
mention [K, M4, SW]. The latter paper contains differentiation formulas for the
period as a function of the energy (different from our formulas).

A Remark on the Twist Condition. This is essentially a repetition of an observation
made in [L2], where it was pointed out that the period of solutions ofx+V'(x) = 0
as a function of the energy is a monotone decreasing function if V"{x) > V (x)/x
(the same condition appears in the result of Norris). We note first that this
condition follows from the above condition Wx = (V /Vx)x < 1/2 — a, a > 0, in
the case when 7(0) = Vf(0) = 0 (there is no loss of generality in this assumption).
The latter condition on W in turn guarantees the monotonicity T'(H) < 0, as
follows from Eq. (1.5). We give here a geometrical proof of the fact that the
condition V" > V'/x implies that the period is a decreasing function of the
energy. Let z(t) = (x(ί), x(t)) be a solution of 3c -f 7'(x) = 0 in the phase plane,
and let ζ = (ξ(t), η(t)) be a solution of the system linearized around z(t). Assume
that each solution vector z(t) rotates clockwise in the phase plane. The criterion
is based on the following geometrical observation, Fig. 1.4.

Take any solution z(t) and let ζ(Q) be parallel to z(0). If ζ(t) turns clockwise
faster than z(t) at t = 0, then the period T(H) of the oscillations is a decreasing
function of the energy (or the amplitude, or the area enclosed by the curve). In
other words, then the Poincarέ map possesses a monotone twist (with radial lines
as the reference foliation). Expressing the above idea analytically, we rewrite the
condition on the angular velocities of z and ζ in the form

d ίy\ d fη\ Λ y η
- - > - 7 , whenever - = ±.
dt\x) dt\ξΓ x ξ
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Fig. 1.4. A sufficient condition for monotone twist: any solution vector turns slower than the collinear
to it linearized solution vector

Using the governing equations x = y9 y = — F'(x), ξ = η, ή = —V"(x)ξ, the
above criterion reduces to

V

Norris [N] gave an alternative proof of this condition using the Sturm com-
parison argument.

The plan of the paper is as follows.
Section 2. Reduction to the action-angle variables (step A9 Fig. 1.2).
Section 3. Reduction to the normal form at infinity (steps B and C).
Section 4. Application of KAM assuming the estimates on normal form.
Section5. A transformation lemma: Estimating the normal form in terms of

the action-angle Hamiltonian.
Section 6. Estimating the action-angle Hamiltonian in terms of F(x, ί).
Appendix:
Al. An inverse function lemma.
A2. Estimates on the operators S£9 Jί9h9M.
A3. Algebra of the action-angle maps: Differentiation formulas and identities.
A4. Estimates on the action-angle map.
By far the main difficulty lies in the estimates on H via V carried out in

Sect. 6.

2. Reduction to the Action-Angle Variables

In this section we carry out the standard reduction to the action-angle variables.
We refer to [Al] for further details.

2.1. A geometric description. Let us denote the Hamiltonian for Eq. (1.1) by
y 2

Jf (x, y9 t) = — + V(x, t). Fixing t as a parameter, we let / = J(x, y, t) denote
the area enclosed by that level curve of Jf7 which passes through (x, y), Fig. 2.1.
We assume that the level curve in question is (topologically) a circle, at least
for I large enough (this is guaranteed if V is a monotone function for large |x|,
increasing for x > 0 and decreasing for x < 0). The geometrical meaning of the
definition of the action-angle variables is summarized in Fig. 2.1.

d2x
To define the symplectic angle θ = θ(x, y, ί), we look at the system —=- +

as1

F(x, ί) = 0 (with s playing the role of time and t = const), consider that periodic
solution which passes through (x, y)9 Fig. 2.1, and let θ = θ(x, y, t) be the ratio of
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• ΔA ΔI

ΔA

Fig. 2.1. The definition of the action-angle variables. To each point (x, y) we assign the action I
given by the area enclosed by the level curve through (x, y) and the angle θ which is given by the
proportion of the area of an infinitesimal ring enclosed between the y-axis and (x, y)

the time it takes the solution f x, — 1 to travel between the y-axis and the given
V dsj

point (x, y) to the period T = T(x, y, t) of this solution. The transformation
(x, y) -> (θ, I) is area-preserving, as follows from the definition of / and 0 and
from the zero-divergence property of the Hamiltonian flow x" -h Vx(x, t) = 0. We
note that θ is defined mod 1.

2.2. The formal definition. To construct the map (x, y) —• (0, /) more formally, we

y2

let Ho(I, ή be the value of Jf = —- + F(x, ί) on that level curve which encloses

area / in the (x, y) plane, i.e. we define Ho(I, t) (implicitly) by

(2.1)

Jt(x,y,t)=H0(I,t)

with time t as a parameter. We define now the generating function S(x, /, ί) as
the area (shaded in Fig. 2.1):

S(x,I,t)= I ydx,

c

(2.2)

where C is the part of the level curve J-f (x, y, t) = Ho(I, t) connecting the y-axis
with the point (x, y), oriented clockwise. This defines S up to an integer multiple
of I = <f ydx since C is defined up to an integer number of full trips around the
level curve. We define the map (θ, /, t) —> (x, y, t) via

Sx{x,I,t)=y, SI(x,I,t) = θ; (2.3)

it is well-known to be symplectic:

dx A dy = dx Λ (Sxxdx + SxIdI) = SxIdx Λ dl

dθΛdl = (SIxdx + Sndl) Adi = SIxdx A dl.

The last definition (2.3) is equivalent to the geometric definition above. Equation
(1.1) in the new variables (0, /, ί) retains its Hamiltonian character with the new
Hamiltonian

H(θ, /, ί) - HQ(I9 ή + Hι(θ, /, t), where H{ = St{x9 /, t), (2.4)

with x = x(θ, I, t) defined implicitly by (2.3).
We complete this section with the formulas that will be used later in the

estimates.
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2.3. Expressions for Ho(I, t) and H\(θ, /, t). Rewriting Eq. (2.1) we obtain the
implicit definition of Ho(I, t):

y/HQ(I,t)-V(ξ,t)dξ, (2.5)

where x_(/, t) < x+(J, t) are given by V(x+9 t) = HQ(I, ί), Fig. 2.1. Restating this
slightly, HQ(I, t) is defined as the inverse function (in /) of

y/H-V(ξ,t)dξ, (2.6)

where x~(H, t) < x+(H, t) are given by V(x±, t) = H.
To write down H\ more explicitly, we write the area S as

S(x9 I,t) = y/2J y/H0(I,ή-V(ξ9ήdξ,

0

so that

H (0 I rt - ^ XiT 3tH0(I9t)-dtV(ξ9t)Hι(β9 /, ί) - — / . dξ, (2.7)
2 J y/Ho(I, t) — K(ζ, t)

0

where x(θ9 /, t) is defined implicitly by S7(x, /, t) = θ, (cf. 2.3) i.e. by

r x

Ύ dlHo{I>t] ί m a f v(? rt = θ• ( 2 8 )

2 J y/Ho(I9 t) — V(ξ9 t)
o

This formula has a simple dynamical interpretation: djH0 is the inverse of the
period of the solution emclosing area /(ί is fixed as a parameter so that the system
is autonomous): djH0 = T~ 1(7, ί). The rest of the product in the left-hand side of

(2.8) is the time / — it takes to go from x = 0 to x; Eq. (2.8) therefore coincides

with our first definition of θ.
3. Reduction to the Normal Form at Infinity by Averaging

The Hamiltonian (2.4) is still far from time-independent, even in its leading term,
and at this stage it is not clear that it is a small perturbation of an integrable
system. In this section we choose new variables that "soak up" the unpleasant
time-dependence in the leading term. (The meaning of the word "leading" is
formal so far as no estimates have been made as yet.) Following Poincare,
Arnold [A] or Moser [M3], we change the variables by choosing H, t as the
new momentum and position, while giving θ the role of the new time. The
precise definition of this transformation (θ9 /, t) -» (q9 p, T) is as follows: q = t,
p = H(θ9 /, ί) and T = θ. Rather than burdening the reader's memory with
new symbols q9 p, Γ, we reserve the old notation (ί, H, θ) for the new variables
with position, momentum and time occupying the first, second and third place in
the triple. The flow in this (ί, H, #)-space is Hamiltonian where the Hamiltonian
/ = I(ί, H, θ) in the inverse function2 of H(θ, /, t): indeed, the canonical 1-forms

2 with t, θ playing the role of parameters
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ΛΛNΣ (t, H)\W

(τ,h)

Fig. 3.1 The Hamiltonian averaging

coincide up to a sign [A]:

Idθ - H(θ, J, ήdt = -(Hdt - I(t9 H9 θ)dθ).

Along with I(t, H, θ) we define /0(ί, H) as the inverse in H of Ήo(/, t) (t is still
a parameter) we write

I(t9H9θ)=Io(t,H)+h(t,H9θ), (3.1)

thus defining I\. Now that t has become a new position variable, it can be
eliminated from the leading term in (3.1) by choosing action-angle variables in
the ί, //-plane as was done by Arnold [A].

We are looking for a function Σ(t9 ft) generating a map (ί, H) •-> (τ, h) via

Σt(t9h)=H9 Σh(t9h) = (3.2)

such that the Hamiltonian of the transformed system would be τ-independent in
its leading part, that is,

/o(ί, Σt(t9 h)) Ξ= J0(h) (3.3)

should depend on h alone. As an additional condition, we want the map (3.2) to
preserve periodicity: if (ί, H) ι-> (/, h)9 then (t + 1, H) ι-> (τ + 1, h). These two
conditions define Jo(h) (up to a constant) specifically, (3.3) gives Σt = HO(HQ(K), t)
and thus Σ can be taken as

Σ(t9h)=l Ho(JQ(h)9ξ)dξ.

o

The periodicity condition translates into

1 1

(3.4)

Σh(l h) - Σh{09 h) = A J Ho{Mh)9 ξ)dξ = ̂ j J Ho(J, ξ)dξ\j=Mh) J^

which holds if we choose Jo (ft) as the inverse function of the averaged Hamiltonian
1

H0(J) = I Ho(J, ξ)dξ.

o
Having thus specified the transformation (3.2), we apply it to the flow defined

by I(t,H9θ); the new flow will be Hamiltonian, and the new Hamiltonian
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J(τ, ft, θ) is obtained simply by substituting (3.2) in (3.1), since the change (3.2)
is ^-independent :

, 0 ) , (3.5)

where J^ί, ft, θ) =h(t,H9θ).
This completes the reduction; so far all this is purely formal with no estimates.

In the next Sect. 4 we assume some estimates an J and apply KAM theory to
prove boundedness of solutions of (1.1). These estimates are proved in Sects. 5
and 6.

4. Application of KAM Theory Assuming the Estimates on Normal Form

We state the key assumptions on the transformed Hamiltonian Jo + J i in Sect. 4.1
and we prove the existence of invariant tori using Moser's twist theorem in
Sect. 4.2. The main job of proving these assumptions is done in Sects. 5 and 6
below.

4.1. Assume that Jo (ft) and Ji(τ, ft, θ) satisfy the following

Hypothesis on Jo, J\ - There exist constants α > 0, b > b' > 0, β > 0, C > c> 0
such that for all ft large enough we have for Jo and J\ (actually, (4.1) and (4.2)
follow from (4.3), but we list them for future use):

ch-kJ0(h) * <

and the main estimate for Ji, Jo:

\dίduJι(τ, h, 0)1

Mh)
Jό(h)

<ch

>cha,

>ch-\

-kMh)1-'

Ch~kJ0(h),

3 l + k<5.

(4.1)

(4.2)

(4.3)

(4.4)

These estimates are proven in Sects. 5 and 6 under the assumptions on V (x, ή
stated in Theorem 1. Here we use the above estimates (4.1)-(4.4) to apply Moser's
twist theorem.

4.2. Application of KAM. The equations corresponding to the Hamiltonian
J = Jo 4- J\ are

where δh denotes — . To bring ft down from the neighborhood of oo we rescale
it by d n

J^(ft)=εr, l < r < 2 . (4.5)

Small ε correspond to large ft since JQ (ft) —• 0 as ft —> oo by (4.2).
We now have the advantage of the fixed range for the new variable3 r.

3 The resulting map (/, h) *-+ (τ, r) reverses the orientation. We could have chosen JQ(H) = εr ι to

obtain an orientation-preserving map
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The transformed equations are

^=R2(τ,εr,θ)

with R\ = 3/,Ji(τ, h(εr), θ) and R2 = —ε ° δτ Ji(τ, /ί(εr), 0).

We claim that for some v > 0 and εo > 0 the estimates

< ε1 + v (4.7)
dτkdrι

hold for all 0 < k + I < 4, i = 1, 2, 1 < r < 2, 0 < ε < ε0. Before proving this
claim we use it to apply KAM. Integrating Eq. (4.6) from θ = 0 to θ = 1 we
obtain the Poincare map

1 ' ' ' (4.8)
Π = r o + β 2(τ, r9ε)

with Q12 still satisfying the same estimates (4.7) as R^-
The map (4.8) of the covering strip {(τ, r) : τ e 1R, 1 < r < 2} of the annulus

S1 x [1, 2] into the covering plane R x R of the cylinder S1 x R satisfies the
conditions of Moser's small twist theorem [Ml], as extended later by Rϋssman
to the C(4)-case [Rl,2]. We conclude that for small enough ε the map (4.8) has
an invariant curve in the annulus. Retracting the sequence of transformations
back to the original system, we conlude that there exist invariant curves of the
Poincare map P : (x, x) ί = 0 —• (x, x)t=i of the original system (1.1) arbitrarily far
from the origin.

Equations (4.8) show, moreover, that the map satisfies the monotone twist
condition, so that we can invoke the Aubry-Mather theory; retracing the trans-
formations we obtain for the map (x, x)t=o —• (x, x)t=i the existence of minimal
Mather sets for any rotation number ρ beyond some ρo> and of Birkhoίf periodic
orbit for any p/q > ρo

In the rest of this section we prove the estimates (4.7) on the remainders,
assuming (4.1)-(4.4).

To estimate R\ = dhJ\ we use (4.4), (4.3), and (4.5) in that order; the abbrevi-
ation h(εr) = his used throughout:

(4.4) iβ

•, h(εr), θ)\ < \ch J o (h)\

- i T
! Ύ-tJ'

We estimate J o

 β by using JoW(4<2) ^ ch~b t o obtain h > C(HQ)~5 ; together with

j 4 1 ) > cha this gives Jo > C(JQ)~% = c(εr)~i, and thus the desired estimate

< Cεiβ. Using this we obtain
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If we take v > - β and choose 0 < ε < εo with εo small enough, we obtain (4.7)
b

for R{ and for k = / = 0. For R2 we have

\Ri\ =
J"

(J[)2

(4-3) ft-2Jo
< cε -Γ-TTό

(4.4)
Γiji-β
Ό Jo

as claimed. The remaining estimates (4.7) on the derivatives of R^i follow by
differentiating these remainders and using the Hypothesis. To be more precise,
each differentiation by / does not change the bound ε1 + v by (4.4). We show that
the application of the r-derivatives to R\ does not violate the bounds either.
The case of R2 is treated similarly and is omitted. For the sake of brevity we
let F(h) = F(/, ft, θ) = d2Ji{I, ft, 0), so that # ! = F{h(εr)) (we suppress the
remaining variables).

Differentiating F(h(εr)) with respect to r we obtain

3rF(A(βr)) = F'K (hr = ^h(εr)\

)) = F"\ΐr + F'hrr (4.9)

ΘΪFihiεr)) = F'"h] + 3F"hrhrr + F'hrrr

δ*F(h(εr)) = F^h4

r + 6F'"h2hrr + 3F"h2

r + 4F"hrhrrr + F'hrrrr.

Our main estimate (4.4) gives

F(h) < dCk-χJx

ϋ-
β, k = 1, ... , 4, (4.10)

/ δ\ik)

and we estimate I — I h(εr). Differentiating the composition J'ϋ{h(εr)) in (4.5)
we obtain \ d r '

^rrrr ^ r r r { r r rr + jξ>tξ = 0 .

Expressing the highest r-derivative from each of these four equations, we
obtain

- h(εr) < ch(εr), k = 1, 2, 3, 4;

indeed,

using this in

together with

\hr\

(4.3):

ε

J

J

///
0

'o

'{h)

<

εh
hJo(h)

(4.3)

< C

J'"
hrr = -J»h

ch, we obtain hn

εh
Jό(h) C

< ch, etc.

εft
εr

< ch;

(4.11)
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Using now (4.10) and (4.11) in (4.9), we obtain the desired estimate on dj

\r)kF\ < rh~k~ι Jl~β - hk — rh~ι ll~β < p 1 + v

the last inequality has been proven above. This completes the estimate on the
remainder in (4.6).

5. Estimates on the Reduced Hamiltonian

It remains to prove the estimates (4.1)-(4.4) on J = Jo + J\. Actually, (4.1) and
(4.2) follow from (4.3) at once by integrating the latter differential inequality, and
only (4.3) and (4.4) remain to be proven. In this section we reduce these estimates
to the ones on H (/, ί, θ). More precisely, we will prove

Theorem 5.1. If H0(h t) and H{{θ, J, t) obey, for some β > 0,

| δ { S 7 * / ϊ i ( 0 , /, ί)l < cΓk-βH0(I, ί ) , i Λ - k < 5 , (5 .1)

and if the inverse function Io(H) = Jo(ί, H) of HQ(I, t) in H satisfies

\d{dk

HIo(U H)\ < cH-kIQ(t, H), j + k < 5, (5.2)

cH-kI0(t, H)k^2 < \δk

HI0(t, H)\, (5.3)

then the reduced Hamiltonian J = Jo (A) -f Ji(τ, A, θ) satisfies (4Λ)-(4.4).

Proof We assume that (5.1)-(5.3) hold.

5.1 Proof of (4.4) is the longest and we address it first; we start by proving a
similar estimate for /:

\dι

td
k

Hh(t, H, 0)| < cH-kI0(t, Hγ~β , / + k < 5, (5.4)

and then we show that the action-angle map (ί, H) —> (τ, A) satisfies

\dι

rd
J

hH(τ, A)I < c A 1 " 7 , (5.5)

\dι

τd{t(τ, A)I < ch~j (5.6)

(these last two estimates depend only on the properties (5.2)—(5.3) of Ho since
the map is defined in terms of Ho alone). The estimates (5.4)-(5.6) imply (4.4).
Indeed, recall that Ji(τ, A, θ) = h(τ, H, θ), where t = ί(τ, A), H = H(τ, A), and
Jo (A) = HQ (A), the latter denoting the inverse function. Using now (5.4) and
(5.5) in dι

τd
k

hJι(τ, A, θ) = dι

td
k

hh(t, H, θ), where t = ί(τ, A), H = H(τ9 A) together
with the induction in / + k, we arrive at (4.4). We prove (5.4) and (5.5)-(5.6) in
the following two subsections.

An Inverse Function Estimate (5.4). Using the definition of I(t, H, θ) as the
inverse function of H(θ, I, t) = H0(I, t) + Hι(θ9 I, ή:

H, (5.7)

where we treat H as the independent variable and θ, t as parameters, we obtain

and finally, expanding

h(H) = I(H) - I0(H) = I0(H - Hi) - J0(ff)
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in Taylor's series:

Hi

h(H) = -/£(H)fl!(/(»)) + J <(// - //i + s)ds, Hi = Hi(/(//)). (5.9)
o

We will now estimate Hi (/(//)) via (5.7), then use it in (5.8) to estimate I(H)
and finally use this in (5.9) to estimate I\(H). To estimate Hχ(I(H))9 note that
/(//) -> oo as // —• oo [as follows from (5.1) with I = k = 0 and (5.3)], and that
|#i(/) | < \HQ(I) for all / large enough and for all t, θ; consequently,

|Hi(/(H)) |<^iίo(/(H)) (5.10)

for all H large enough and for all ί, θ. To estimate new /(//) we use (5.10), (5.8)
and the monotonicity of /Q in H [cf. (5.3)], obtaining

y (5.11)

which again holds for all sufficiently large H. Wishing to get rid of the factors \

and \ above, we use (5.3) to conclude that

and I0(JH) <do(H), (5.12)

which leads [using (5.11)] to

c~ιIo(H)<I(H)<cIo(H). (5.13)

This in turn is used to bound H\(I(H)) as follows:

(5.1) (5.13) R (5.13)

I(H)-PH(I(H)) JiHΓtHiΠH))

From (5.3) we obtain HQ(CIQ) < C\HQ(IQ) = c\H, and thus

β, (5.14)

which we now finally use to estimate h(H) from (5.9).
Estimating the first term, we get

(5.14) R (5.3)

< cΓQ(H)HI-β(H) <

as desired. The second term in (5.9) is bounded by

H2 sup Γή{H)<Hl sup H~2I0(H){5<
E-Hx<H<n H-

~ Ί ~ (5.10,12)

cHfH'2 sup J0(H) <

This completes the proof of |/i| < C/Q"^, and it remains to estimate the
derivatives of L.
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Estimating 3#Ji(iϊ), 1 < k < 5. This is done by differentiating (5.9), as follows.
Considering H-derivatives at first, we note that each differentiation of h(H)

in (5.9) lowers its growth or rather the growth of its upper bound by one power
of H, since for 1 < m < 5 we have (1) d%ΓQ(H) < cH~m~ιIo(H) by (5.2); (2)
dfHid) < cIlJHo(I) [by (5.1)]; and (3) dψ{H) < cH~mI{H). We prove now this
last inequality and thus (5-4) for / = 0. Differentiating (5.8):

I'(H) = I^H - #i (/(#)) (1 - H[(I(H))If(H)),

we express

nH)=UH-Hύί+I,{H

l_HιyH[, (5.15)

where Hi = Hι(I(H)). The denominator above is close to one for large H-indeed,

QH - H,) • H[ = Γ0(H - HX) • HMH - HJ) „, ffff*0*
"oMθ(W — Hi))

^ 0 a s H - > C 0

For H large enough we get

ί(H) < 2ίQ(H - Hλ)
 {<] c(H

proving the case m = 1. The estimates for higher m follow by differentiating (5.15)
and using the estimates obtained in previous differentiations inductively: we note
that the differentiation of (5.15) m times gives l^m\H) in terms of the lower
derivatives. We omit the tedious but obvious details. We conclude by pointing
out that the differentiation of J ( m )(iί) with respect to 11 times, 1 < / < 5 — m does
not increase the order of growth of the upper bound, as follows by application
(5.1) and (5.2) after each ί-differentiation of (5.15).

5.1.2. Proof of the Transformation Estimate (5.5-6). We first express (τ, h) in
terms of (ί, H) and then show that the inverse function satisfies the desired
estimates.
1. Expressing (/, h) via (ί, H): From Eq. (3.2) and (3.4) we have the expressions
for τ :

t

J ^ J Ϊ { h ) , (5.16)

and it remains to express h via (ί, H)\ recall that J0(ί, H) = JQQI) [Eq. (3.3)], and

jo(h) = 5^(ft), so that

h = i?o(/o(ί, H)) ά£ G(t, H). (5.17)

Substituting the last expression into (5.16) we obtain

ί

τ = / w(/o(ί> H)'ξ)dξ' J ό ( / ? o ( / o ( t > H ) ) ) = F(ί'H) > (5 18)
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Eqs. (5.18) and (5.17) give an explicit expression for the inverse of the map
(τ, h) -> (ί, H) which we now proceed to estimate.
2. Note that F, G obey the estimate

\d&HF\ίcH-JF9

\dldj

HG\<cHl-jG, i + y ' < 5 ,

as follows from the estimate (5.2) on the unperturbed Hamiltonian. (We recall
that the map is determined by Ho alone.)

3. Denoting ( τ ) = χ ( ) = γ ( ) = φ, we rewrite (5.18) and (5.17) as

W \HJ \GJ
X = φ(Y) and differentiate by X : - — = φ'(Y)~~ι. Since the action-angle map φ

oX
is area-preserving, i.e. detφf(Y) = 1, we obtain a simplification for the inverse

U=Lφ'(y), (5-20)

where L is the linear operator acting on 2 x 2 matrices according to L ( , =

4. The last relationship (5.20) used inductively with the estimates (5.19) on φ'
and its derivatives gives (5.5) and (5.6).

5.2. Proof of (4.3). We recall that J0(h) was defined by

Ho(Jo(h)) = J Ho(Jo{h),t)dt = h,

o

i.e. Jo(h) = HQ (h) is the inverse of the ί-verage of the inverse of /o, and proving
(4.3) amounts to the following general statement on implicit functions:

Lemma 5.1. If the function F(x, i) satisfies

cFk< xk\dk

xF(x,ή\k< CF,

with no I I for k = 1, for x large enough (5.21)

and if

\Ft\ < cF (5.22)

then the inverse function f of the t-average of the x-inverse of F, defined by

1

(5.23)

o

where F~~x is the inverse function of F(x, t) in x, satisfies

i
k<2 , ,,v k<5

cf(x) < xk\f{k](x)\ < Cf(x); no\-\fork=l, (5.24)

the same estimate as F.
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To apply this lemma we choose x = h and F(x, t) = Io(K t); recalling the
definition of Jo(h) we have g(x) = Jo(h) and (5.24) translates into the desired
estimate (4.3).

Proof of Lemma 5.1 goes by differentiating (5.23).

1. Case k = 1. First, we obtain [ with ' = — 1 :

V 3xJ
/ I v -1

f / { ) Jf { X ) = \ J F'(F-i(f(x),t),t)

Using the estimate (5.21) on F' we obtain

or
cf(x) min F~ι(f (x), t) < f'(x) < Cf(x) max F^ί/Ύx), t).

t t

It remains to prove that

ex < min F~l(J{x\ t) < max F^ifix), t)<Cx. (5.25)

To that end we first show that (5.22) holds for F~ι as well:

\dtF~i(y, i)\ < cF~ι(y, i). (5.26)

Differentiation of F~ι(F(x, ή, t) = x by t gives

F (x t)
F~^(F(χ t) t) = —FΓ^(F(x t) t) - FΛx t) — -— -

where 2 and 1 indicate partial derivatives with respect to the second and the first
arguments. Using (5.22) for the numerator and (5.21) for the denominator we
obtain

\F2l(F(x,t\t)\<ex.

For an arbitrary y > 0 large enough there exists (correspondingly large) x
such that y = F(x, ή, and the last estimate gives (5.26), which we use to prove
(5.24). Dividing (5.26) by F " 1 and integrating from t = to to ί, we obtain

Pick now a specific to, namely the one which gives the integrand in (5.23) its
average value: F~1(/(x,), to) = x; setting y = /(x), we get

Taking max and min over 0 < t < 1 yields (5.25) thereby proving (5.24) for fc = 1.
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2. Case k > 2. Differentiating the definition (5.23) of the inverse we obtain the
expressions for f{k) with the notation G(/(x), t) = F~ιiJ{x), t):

I

f G'dff' = ί,
0

1

G"Λ (/')2+ /G'dt-f" = 0,
o

1 1 1

G"!dt ( / r + 3 / Gr/rfί / 7 " + / Grrfί //r/ = 0, (5.27)

0 0

1 1

/ G^dt - (f)4 + 6 / G'"dt - {f'Ϋf + 3 / G"dt - (f"Ϋ
0 0 0

1 1

+ 4 / G/rrfί f'Γ + ί G'dt / ( 4 ) = 0,

and finally

1

/ G(5)Λ if')5 + 10 / G(4)Jί (f03/7 ' + 15 / G//rrfί / ; (f ; / ) 2

0 0 0

1 1

+ 10 / G'"dt if'Ϋf" + 10 / G/rdί / 7 W

0 0

+ 5 / G"dt f'fW + / G'Λ / ( 5 ) = 0

( pi \ m

-J G{y,t)\y.f{x)aadf=f(x).

The above identities (5.27) give us /^(x) in terms of its lower derivatives:

fW(x) = ( j G'dλ
- 1

x X amnι...nm j G(m)dt f{nι+l)...f(n"+i), (5.28)

m>2,n, >δ °

with integer coefficients αmni..Λm, and we estimate f^k\x) by induction. Assume
that (5.24) holds up to k — 1 derivatives and prove it for k. We have just shown

that the first factor ( f G'dt j = f lies between cx~ιf and Cx~ιf for large x,
\o /
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and only the sum in (5.28) needs be estimated. To that end we need an estimate
on the inverse function G(y, t) of F(x, t).

Lemma 5.2. If a real function φ(x) satisfies \φ^m\x)\ < cx~mφ, 1 < m < k and
φ\x) > x~ιφ{x) for all x large enough, then the inverse function xp = φ~x satisfies
\ψ{m)(y)\ < cy~mψ(y) for 1 < m < k. If moreover, \φ"(x)\ > cx~~2φ(x), then
\ψ"(y)\ > cy-2ψ(y).

Proof of this lemma goes by differentiating the identity φ(ψ(y)) = y and using
the estimates given in the statement of the lemma. We omit the details. D.

Applying Lemma 5.2 to G(y, t) = F " 1 ^ , t) we obtain cy~mG(y, t) < \G{m){y, t)\
< Cy~mG(y, t), where the first inequality holds for m = 1, 2 and the second for
1 < m < 5, as follows from (5.21). We note that the constants can be chosen
independent of t. Substituting y = f(x) in the above inequality we obtain

cΓm(x)G(f(x), t) < \GM(f(x), t)\ < CΓm(x)G(f(x), ί),

which implies, by (5.25), that

cxΓm(x) < Gm < Cxf~m(x),

and it remains to estimate the products of the derivatives of/ in (5.28).
We note that in (5.28) wf + 1 < k - m + 1 < k - 1, so that the inductive

assumption on the derivatives of f(x) is applicable to (5.28); we obtain (for the
upper bound) :

/<*>(*) < Cχ-ιf(x) £ amn,..nm(CmxΓm(x))
m+/ίi+...+wm=/c

m>2,«,>0

the lower bound on f"{x) is established in the same way using (5.28) for k = 2
[i.e. (5.27b)].

This completes the proof of Lemma 5.1 and thus of the estimate (4.3). D

6. Estimating the Action-Angle Hamiltonian H(θ, /, t)
in Terms of the Potential F(JC, t)

In the preceding sections we have reduced the problem to the estimates (5.1)—(5.3)
on the action-angle Hamiltonian H = H0(I, t) + H\{θ, /, t); (5.1) says that H\
should not be too large, (5.2) says that Ho should not behave too wildly and (5.3)
is a twist condition, i.e. a convexity condition on the Hamiltonian.

In this section we finally address the main difficulty of the problem: find a set
of conditions on V(x, t) which would imply the above estimates (5.1)—(5.3).

Theorem 6.1. If the potential V(x9 t) satisfies the superquadraticίty condition

Wx<a<^, (6.A)

together with
\dp

xdfU\, \dp

xdfW\ < cxι~v, p + q<5, (6.B)
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where W = V/VX and U = Vt/Vx, and

\xpdp

xdfV(x,t)\<cVi+μ, μ = cons t > 0 , p + q<5 (6.C)

for all x, ί, then there exists β = β(μ, a) > 0 SWC/J that the bound (5.1) holds:

|a{3?ίfi(0, /, ί)l < cΓk-βH0(I, t), / + fc < 5. (5.1)

Theorem 6.2. // ί/zβ potential V satisfies the above estimates (6.B), then HQ(I, t)
satisfies (5.2):

\d{dk

HIo(t9 H)\ < cH-kh(t9 H)9 j + k<5. (5.2)

Theorem 6.3. IfV satisfies (6.A) then Ho(I, t) satisfies the twist conditions (5.3),

cH-kIo(t,H)\k<dk

HIo(t,H). (5.3)

6.1. Proof of Theorem 6.1. 1. We begin by showing that the superquadracity
condition (6.A) implies the superlinearity of Ho in I:

H0(I) > c/1+feS ; (6.1.1)

we suppress the ί-dependence in the notation.
To relate / and Ho(I), we note that the level curve y2/2 + V(x) = Ho(I) lies

inside the rectangle with the sides 2y/2Ho(I) and 2F~ 1(H 0(/)), so that

Using now the bound V > cx1/a which follows by integrating the superquadratic-
ity condition (6.A), we obtain cV~ιHo{l)) < H0(I)a, and thus

whic is equivalent to (6.1.1).

2. We show now that if for some δ > 0 the inequality

\dι

td
kH{(θ, I, t)\ < cΓMH0(I, t ) δ

9 I + k < 5 (6.1.2)

holds, then it together with (6.1.1) implies (5.1) with β given by

^ - 1 -
 ( 6 L 3 )

This reduces the proof of (5.1) to showing that (6.1.2) holds with some 0 <
δ < \ — a; the last inequality is necessary to have β > 0.

Indeed, the implication (6.1.2) => (5.1) amounts to showing that (for all / large
enough and for all t)

j-k+ljjδ <cΓk-βH^ ( 6 > L 4 )

Ho = Ho(I, ί), or equivalently,

which holds because of (6.1.1) if = 1 + - — r - , which is the same as (6.1.3).
1—0 1 + 2a

This reduces the estimates (5.1) to (6.1.2) wherein the main difficulty sits. We
will prove that (6.1.2) holds with δ = lOOμ.
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In order to assure β > 0 we need δ < ~ — a, or μ < ^ (̂  — a), as in fact is
required in the main theorem.

3. The expression for H\. With all the reductions now finally out of the way, we
come to the substance, i.e. to the proof that (6.1.2) holds with δ = lOOμ.

Recall that H\ = St(x, /, f)U=χ(#,/,ί)>

S(x

X

, I,t) = V2 J ^H(I,t)-V(ξ, t)dξ.

From now on we write H instead of Ho without risk of ambiguity. Differentiation
of S with respect to the last argument yields

(6.1.5)

It should be emphasized that x = x(θ, I, t) in the last expression.
Let K = K(I, t, ξ) = Ht{I, t) - V,{ξ, t); differentiating (6.1.5) with respect to

/ yields, according to (A3.12) (see Appendix):

= d,

+

K(I, t, ξ)

y/H-V(ξ,t)

dξ

dξ } X

= -K(I, t, x) J L(ξ, I, t) -j==

lE-V
(6.1.6)

L is given in terms of H and V by (see Appendix)

— + — rr + π
Hi H

and 5£ is the linear differential operator acting on functions of x, I, t, according
to

v

4. Proof of (6.1.2) with I = 0: it suffices to show that (δ = lOOμ and dξ =

I, ί)| < cΓkHι+δ/2, k<4,

f f ( )
dξ/^H-V(ξ) throughout):

L(ξ, I, t)Λξ

δk

<cΓkH~ι+δ/2, k<4,

<cΓkHδ, k<4,

(6.1.7)

(6.1.8)

(6.1.9)

where x = x(θ, I, t) and dj refers to the total derivative: dif(x, I) — fxxi + / / .
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4.1. Proof of (6.1.7).

\δkK(x, J, ί)| < \dkAH{h 01 + \dkjVt{x, 01

According to Theorem 6.2 and Lemma A 1.1, the first term on the right is
bounded by cI~kH(I, ή, for k < 4; this is better than we need. To estimate the
second term dkVt(x, t) we have to differentiate the composition of two functions
(Vt(-9 t) and x( , Θ, ή); this was already done in (4.9):

D2 = djVt(x9 0 = Vxxtx] + Vxtxπ,

#3 = djVt(x, t) = Vxxxtx] + 3VxxtxIxII + Vxtxiii,

D 4 = d*Vt(x, 0 = Vxxxxtx] + 6Vxxxtx}xπ + 3Vxxtx
2jj + AVxxtxιxιπ + VxtxIIΠ .

Combining (6.C) with the estimates on the /-derivatives of x from Lemma
A4.1: dkjxφ, I, t) < cΓkxH\ we obtain, recalling that V{x, t) < H(I, t):

\Dj\ <cΓjHv+μ+i.

This proves that (6.1.7) holds with δ = llμ.

4.2. Proof of (6.1.8).

Case k = 1: We have, in the notationίfx = dx/^/H — F(x) (Appendix A3):

3/ I Ldξ=L I Ldξ + ί ^{L)άξ, (6.1.10)

0 0 0

and since \L\ < c/" 1 and ^f(L) < cl~2 (Lemma A2.1), we obtain

dι \ Ldξ

x χ+

<cr2 fdξ<cr2 fdξ,
0 0

where x+(I, t) = x+(θ = \, I, t). We note that

V2 J " 4 H/(/, 0
o

(= \T(I, t), the period for the associated autonomous system, which is the
derivative of the area with respect to the energy [Al]).

Since Hi > c!~ιH, we obtain

Ldξ<cΓιH-\ (6.1.11)

o

as desired, completing the case k = 1.
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Case k = 2: Applying <3/ to (6.1.10), we obtain:

d2 J Ldξ = UdjL) J Ldξ, Ldι j Ldξ, nL) j Ldξ, I <£2{L)dA, (6.1.12)

where {f\, . . . ,/„} denotes a linear combination of functions f\, ... , fn with
integer coefficients.

First, |δ/L| < cl~2 by Lemma A2.1. Furthermore, since

/ Ldξ < cΓιHγι < cH~ι, (6.1.13)
j

we obtain the desired bound on the first term in (6.1.12). The same bound is
valid for the second term in (6.1.12) using (6.1.11) and the fact that \L\ < c/" 1.
For the remaining two terms we use |«Sf(L)| < d~2Hv and i?2(L) < cI~3Hv

(Lemma A2.1). This completes the case k = 2.

Case k = 3: Applying <9/ to (6.1.12) we obtain

d] j Ldξ = Ud2L) j L, (diL) U j L \ L (dj J L \ (3ji?(L)) J L,

£e{L)d! j L, i?2(L) j L, j i f 3 (L) | , (6.1.14)

where J L = J Ldξ, etc.; we prove that all these terms are bounded by cI~3H.
Considering the first one we have by Lemma A2.1:

where
\d\Wx\ = Iδ/ίW^x/)! = \Wxxxxj + Wxxxπ\ < cΓ2H2v,

(6.1.15)

using the assumptions on W and the estimates on x/, xπ from Lemma A4.1.
This gives \d}L\ < d~3H2v. Using \ f L\ < cH~ι we obtain the desired bound
on djL f L. That the same bound cI~3H~~i+2v holds for the second, third and
fifth terms in braces in (6.1.14) follows from the estimates already mentioned in
previous steps. The remaining terms in (6.1.14) satisfy the same bound according
to Lemma A2.1.

Case k = 4: From (6.1.14) we get

^+1 ί L = jdJ^m(L)3f-w-n t U I ^k+1(L)0 < m + n < kl,

or more explicitly,

a,4 / Ldξ = UdΊDdj-" J L (n = 0,1,2,3), d}g{L) J L, (δ/JS?(L))d, | L,

&{L)d] j L, (d,J?2(L)) J L, i?2(L)3, ί L,

5£\L) J L, J &\L)X. (6.1.16)
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We have \(d]L) (d3

n'
n f L)\ < cΓ4H~ι+3v - for n = 0, 1, 2 this follows from

our previous steps, and for n = 3 we have, using (6.1.15) and Theorem 6.2:

\d}L\ < cΓ4 -

and \d3Wx\ = \Wxxxxx] + 3WxxxxiXπ + Wxxxm < d~3H3v by the asumptions on
W and Lemma A4.1, so that

: cΓ4H3v.

The remaining terms in (6.1.16) are estimated in the same way as above using
Lemma A2.1.

This completes the proof of (6.1.8)

4.3. Proof of (6.1.9). Abbreviating &{K) = JSf, £>2(K) = if(JSf(X)) = J^2, etc,
we use the differentiation formula to obtain

\ ί Ί
Ldξ) , / £*p+ dξ >,

/ i+j+m=p ^ )

where m > 1, i, j > 0 and i 4- j < p = 1, 2, 3, 4. Applying Lemma A2.2 to this
formula, we obtain

3\

Using Lemma A2.2 again we estimate (p < 4):

/

/* 1

J£p dξ < cl~p H dξ < cl~p H — < cI~pHv

This completes the proof of (6.1.9) and thus of (6.1.2).
4. Proof of (6.1.2) with k = 0. Differentiating Hi we obtain

dtHλ =dt ί Kdξ = K ί Mdξ + / J((K)dξ, (6.1.17)

where M and Jί are given by (A3.5) and (A3.6). The desired first estimate
|3ίfli| < cIH$ follows from \Ht\ < cH (Theorem 6.2), \Vt\ < cVHμ (assumption),
\M\ < cHμ, Jl(K) < c H 1 + v (Lemma A2.2) - these estimates give

cH
1 + 2 v ίdξ = cH1+2v -^ < cIH2v < cIHμ,

δl
the inequality before last holding by Theorem 6.2.

Differentiating now (6.1.17) in order to estimate higher derivatives, it suffices
to prove that (here x = x(θ, /, t), as usual):

\dι

tκ(x, /, 01 <
X

'{ J M(ξ, /, t)dξ
o

{ J Jί(K)dξ

(6.1.18)

(6.1.19)

<cHδ , (6.1.20)

with δ < 100μ.
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5.1. Proof of (6.1.18). d\K = dι

t

+1H(I, t)-d\Vt(x, t)\ the first term is bounded by
cH according to Theorem 5.2 and Lemma Al.l. The second term is given by

y

ri+...+rg+s=/
rj>l,q>0,s>Q

(6.1.21)

where Cqrs are integers and dt denotes the total derivative. The value q = 0

dι+ιV
corresponds to the term in (6.1.21) (with no factors involving x).

By Lemma A4, \dr

t

ιx ... dr

t

9x\ < xqHqv. Using this inequality together with
(6.C) in (6.1.21) we obtain (6.1.18) with δ = μ + 4v = 81μ.

5.2. Proof of (6.1.19). The proof is almost identical to that of (6.1.8).

5.3. Proof of (6.1.20). The proof is analogous to that of (6.1.9).

6. Proof of (6.1.2) for all k, I. We represent dffiHi by the points in the integer
lattice

k =

[ = 0

1 = 1

1 = 2

1 = 3

1 = 4

1 = 5

0

i
•

•
i
•
1
•

•

1

i
•
i
•
i
•

•

2

i
•
i
•
i
•

3

i
•

•

4 5

i
•

It remains to estimate the terms not lying on the lines I = 0 and k = 0; we
proceed in the direction indicated by the arrows, considering the four columns in
the diagram.

For the column k = 1 we need to estimate

d\diHγ = d\dι ίK = d[(κ ί L+ ί
j \ J j

1 < / < 4,

and it suffices to prove [cf. (6.1.7)-(6.1.9) that for 1 = 1,2, 3, 4,

\d'tK\ <cH1+δ/2,

<cH-ι+δ'2,

<cHδ.

(6.1.22)

(6.1.23)

(6.1.24)

(6.1.22) has already been proven.
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For (6.1.23) we use d\ f L = d\~x{L / M + / Jf(L))9 and estimate the
ί-derivatives of each term in the last expression. By Lemma A2.1 we have

\dι~ιL\ < cΓιHv. (6.1.25)

The ί-derivatives of J M are given by (6.1.19), and we estimate the remaining
term

dι~ι / Jί{L) <cH
" J

using Lemma A2.1.
This completes the proof of (6.1.23).

Proof of (6.1.24). We use the identity

3ί

-l+v / = 1,2, 3 , 4 ,

\dn

t [ M\ , I JϊιSe(K)X

applying Lemma A2.2 we obtain (6.1.24).
The remaining columns k = 2, 3, 4 are estimated in the same way, using

the results of Lemmas A2.1, A2.2, and A4.1. The cases k = 2, 3, 4 are done
analogously. This completes the proof of Theorem 6.1. D

x+(H,ί)

6.2. Proof of Theorem 6.2. We recall that J0(ί, if) = 4 / ^/2(H-V(ξ, t))dξ.
o

Let us denote the operators involved in the differentiation formulas (A3.2) and
(A3.3) by 3P and<T:

U =

x(H,ή

vx'

(6.2.1)

(6.2.2)

so that

and

and the proof reduces to showing that any composition of Jf and .T of length
< 5 applied to K = 1 gives a function of (ί, H, x), 0 < x < x+{H, t) bounded
by cH~k, k being the number of occurrences of J f in the composition. Note first

that since — and — commute, so do 3Γ and #P, and it suffices to show that

< cH~k, i + j < 5.

1 k

Lemma 6.2.1. The kth composition of jf applied to K = 1 is given by

(6.2.3)

(6.2.4)
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where Pk is a polynomial of degree k in its fc+1 variables, and where each monomial
(). . \γih) (n < /̂  fs s u c n ιnat ιne number of differentiations equals the number

of factors: ^ ip = n.

Proof of the lemma. For k = 1 the statement is obvious. Equation (6.2.1) gives
the recurrence relation

Vi + ̂  £ P*-i - ~ , (6.2.5)

which shows that if the statement of the lemma holds for k — 1 then it does
forfc D

Lemma 6.2.2. The compositions of ^Γ and 2tf applied to K = 1 is given by4

where Pjk is a polynomial of degree j + fe and each monomial

has the property: the number of factors equals the number ofx-dijferentiations:

(6.2.7)

Proof The statement holds for j = 0 by the previous lemma (there is no U-
dependence at all). We show now that if it holds for some j then it does for
j + l (<5) . We have by (6.2.2):

Hk3Γ^ι^k{\) = -UxPjk + dtPjk - UdxPjk .

We see that as the result of one application of 2Γ to TTj Pjk, each monomial

of Pjk gets acted upon by the operators —UxId, dt and —Udx. Each of these
operations preserves the property (6.2.7) and the resulting expression Pj+ιtk is a
polynomial in Up>q, Wr's and p, q, r, 2 are in the range

P + q<j + ί9 p<j, r + s< j + l + h, r < ; + l . D

Lemma 6.2.2 and the estimates on U, W from the statement of Theorem 6.2
complete the proof of the latter. D

x+(H,t)

63. Proof of Theorem 6.3. Differentiating I o = 4Λ/2 J y/H-V{ξ, t)dξ we
obtain, using (A3.2): °

^=4VΪ J (6.3.1)

denotes b\dq

xU
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where Jf (1) = — ( - + Wx ), and since Wx > — - + C\9 we obtain —— >
H \2 J 2 uH

XI$. To estimate the second derivative we could use A3.2 again: |

/ JV2(l)y/H-Vdξ, where

^^ [( +
WWXX>,

and to estimate the second derivative it is sufficient to have the lower bound on
J f 2 ( l) ; however it is not necessary: the bound can be obtained (as the theorem
states) with only one derivative of W by using the identity (A3.14):

x+(H) x(H)
ί 1 \

(6.3.2)W^Vdξ = 1 / f - l

and
x+(H)

f§=2V2 I iξ, (6.3.3)

where άξ =
H-V

Since Wx < \ — a we have, using (6.3.2) and (6.3.3):

ri

Appendix

Al. An Inverse Function Lemma. As elsewhere in this paper, c > 0 denotes a
constant and different constants are denoted by the same letter c unless their
value is of more than transient interest.

Lemma Al.l. If a real function f of two real variables x, t (t viewed as a param-
eter) satisfies for some c > 0 and N G N :

\dk

xdlf(x,t)\<cx-kf(x,t) (Al.l)

for all x > 0 /αrge enough and for all k, i : k + i < N and if moreover,

dxf(x, t) > cχ-ιf(x, ί) > 0 (A1.2)

for all x > 0 large enough, then the inverse function g(y, t) of f in x satisfies

\Sk

yd[g{y,t)\<cy-kg{y, t), (A1.3)

for all k + i < N and for all y large enough.
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Proof. We proceed by induction in N. For i + k = 1 (A 1.3) is easy to check: first,

for ί = 0, k = 1 we have gy(y, t) = — and (A 1.2) gives
jx(x, t)

\gy(y, t)\ < j ^ - = cy-'giy, t), (A1.4)

as desired. Second, for ί = 1, k = 0 the definition g(/(x, ί)> ί) = x gives g^y, t) =
—gy(;y, ί)/ί( x

? 0» where x = g(y, t), and the desired estimate follows from (A 1.4)
and (Al.l):

\gtiy, 01 < cy~ιg{y, t) cf{x, t) = cg(y9 t).

To carry out the induction step we show that if the implication (Al.l) & (A 1.2)
=>(A1.3) holds for i + k < N - l(N > 2) then it holds for i + k = N as well. To
that end we derive a formula for dk

yd\g{y, t).
Differentiating k > 0 times the definition /(/(x, t)9 t) = x by x and expressing

the highest derivative, we obtain with y = /(x, ί):

x y y a

k a

mι+...+mr=k

[cf. (4.9)] where ak

rm = <4,mu...,mr

 a r e integers. Differentiation of (A1.5) by t is
ambiguous unless we specify which variable is independent; let it be y\ then
x = χ(y9 t) = g(y, t) and the application of d\ to (A1.5) gives

ajajgίy, t) = Σ <« Σ (PT)(d<(df(g(yt) t))Q

Here we used the Leibnitz differentiation formula for the ίth derivative of the
product of three functions. For the case k = 0 we have a separate formula, by
differentiat ing gt(y, t) = —gy(y, t)ft(x, t):

i—l / « \ / / J \ i—1~r

r=0

where — denotes the total derivative and the subscript 2 indicates the differenti-

ation with respect to the second argument.
We activate now the inductive assumption: (Al.l) & (A1.2)=>(A1.3) for i + k <

N — 1. Assume that (Al.l) holds for i + k = N and prove (A1.3) for i + k = N.
First let k > 0, so that (A 1.6) is applicable.
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First, we have p = i — q — s = N — k — q — s<N, and

1
cy kg(y, t)k

* fχ(g(y, t), t)

by induction on p. Next, q+r — i — p — s + r <i — p — s + k < N, and thus

\d?dr

yg(y,t)\<cy-rg(y,ή (A

by the inductive assumption on g.
Finally, s + m; <i + k = N, and

(A1.8)

J ] f(g(y, t), t)cg(y,

l<j<r

= cg(y> 0~V\ (Ai.io)

using (Al.l) and the inductive assumption on g.
Using now (A1.8)-(A1.10) in (A1.6) we obtain (A1.3) with i + k = N, as

desired. It remains only to consider the case fc = 0; this is done in a similar way
using (A1.7). D
A2. Estimates on if, Jί, L, M. The following expressions L,M, ^£ and Jί arise in
the process of differentiation of the action-angle transformation and are estimated
in this section. These expressions are given by the formulas (A3.6-9) below.

Lemma A l l . If the potential function V(x, t) satisfies \xqd%dτ

tV\ < cV1+μ,

\dτ

td
J

xW\ < φ | w , τ+j<5, (All)

and
(A2.2)

where W = V /VXt U — Vt/Vx, then there exists a constant v < 20μ such that for
all τ + i + / < 3 we have

\d]d\Jίm{M)\<cΓiH\

and

(A2.3)

(A2.4)

(A2.5)

(A2.6)

(A2.7)

where L, M, if', and Ji are given by the formulas (A3.6-9) below.

Lemma A2.2. Under the asumptions of Lemma Al.l, the kernel K(x, /, t) =
Ht(I, t) — Vt(x, t) satisfies for some v < 20μ:

\dτ

td\Jtm&ι(K)\ < cΓ^H1^ τ + i + m + / < 4

and
r-/rjl+v m + / = 5.

Proof of Lemma A2.1. We start with the proof of A2.6; the proof of A2.7 is
virtually identical and is omitted.
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The main ingredient in the proof is a tractable expression for the composition
if4 = cgo% m ô f5 w hich we obtain by first writing i f as the sum if = if i + i f 2 + i f 3
of three linear operators acting on / = / (x, t) via

= h(Wf)x

where h = Hi/H.
We have

i;=l,2,3

and proceed now to obtain an expression for the compositions of the elementary
operators i ^ ; . Using the commutation relations [J^i, if 2] = 0, [ifi, if3] =
-(/z7//z)ifi, and [JS?2, ^3] = -(/z//2/z)i^2, we obtain

p
s<3

where p is the number of times if 1 occurs in the composition, similarly for q
and r, where h® = djh and where αpyr/ are integers.

Using induction, one shows that

where Apij are integers.
The proof of (A2.6) now follows at once from the estimate (A2.1) on W and

Theorem (6.2) according to which d\h < cl~~s~ι

9 s = 1, 2, 3, 4.
The remaining inequalities in the Lemma are proven in a similar way by using

in addition, when necessary, Lemma A4.1.
Proof of Lemma A2.2 is completely analogous and we omit it. D

A3. Differentiation Formulas and Identities
Derivatives of the Action I(t9 H). For simplicity we assume further that V(x, t) =
V(-x, t); furthermore, there is no essential loss of generality in assuming that
V(x, t) satisfies V(0, i) = Vx(091) = 0, Vxx(x, t) > 0. For any H > 0 we define
x+(H, t) > 0 by V(x, t) = H. Let K = K(x, t, H) be a real function continuously
differentiable in x, t9 and H. Define

x+(H,t)

t,H)= J K(ξ,t,H)y/H-V{ξ9t)dξ.

Then

4
= / J^(K)VH -Vdξ (A3.2)
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and

x+(H,t)

0

== / 3T(K)VH -Vdξ . (A3.3)
When K = 1, we obtain the action integral: (l/4\/2)^(ί, H) = /0(ί, #) .

4 *+(#»') dξ
Derivatives of the Period T(H, t) = —= f -—- are given by

V2 o yjn— V(ξ, t)

T(Ht) T (l - 2 ̂ Λ dξ (A3 4)
4 dH T{H> ή - 2H J V 2 V* ) VH-V(ξ,t) ( A 3 4 )

0 s

and
x+{H,t)

v 2 d f

4 dT J

VVξξ Vt VξΛ dξ

y/H-V{ξ,t)-
(A3.5)

Derivatives of the Action-Angle Map (x, y) H^ (0, /) : (A3.10) and (A3.ll). Let
(x(θ, I, ί), y(θ, I, ή) be the point in the xy-lane corresponding to the action-angle
variables J, θ as described in Sect. 2.

The following expressions L, M and the operators if, J( will play a key role:

2HV - v} r

 ( A 1 6 )

- ψ • (A3.7)
* X

The linear differential operators if and Jί act on functions f(x, ί, /) according
to

f ( 5 ) (A3 8)

and

We point out the close similarity between $£ and Jί - in fact, one obtains if
by replacing the ί-differentiations in Jί by the /-differentiations.
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Derivatives of the action-angle map are given by ( as usual, W = — and

A
and

δt
x(θ, I,t) = VH-V ί M ,dξ : + ^W-U.

J VH-V H

(A3.10)

(A3.ll)

One could easily obtain similar expressions for dty,

Derivatives of Singular Integrals. Let again K = K(x, ί, /) be a smooth function
of three variables.

We have the key identities:

h
χ(θ,i,t)

.12)

where L = L(x, I, t), is given by (A3.6), / K = J K(ξ, /, ήdξ, with d = dξ/

y/H-V, 5£ given by (A3.8), and / &(K) = f &{K) (ξ91, ήdξ. Similarly for the
ί-derivative: °

jt J K = K J M (A3.13)

with the abbreviations as above.

Some Interesting Identities. Under the above assumptions on V, we have (sup-
pressing the ί-dependence which plays no role here):

x+(H)

x+(H)

ΎJ
dξ

/H-V

V
where W = —~,

x+(H)

J v "
0

x+{H)

and

H
dξ

0

+ 2Py-

(A3.14)

(A3.16)
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It should be noted that x e (0, x+(H)) in the last identity is arbitrary, while in
the previous two identities the upper limit of integration is x = x+.

An infinite hierarchy of further identities of this kind can be obtained using
the method of proof outlined below.

The last identity can be used to study the blowing up of the integral on the
left-hand side of (A3.16) as x | x+(H).

Proofs

Proof c
gration; (A3.1) becomes
Proof of (A32). Let us choose — - ^ — = σ e [0, 1] as the new variable of inte-

H

t m o ΓΞ ί

differentiating by H, observing that —— ξ(σ, t, H) = — and simplifying we ob-
tain (A3.2). D όH Vχ

p. /-) T/

Proof of (A33). Applying — to (A3.17), we use — ξ(σ9 ί, H) = . D
dt dt Vx

Proof of (A3.10)-(A3.12).

dξ K(I, t, x) a

χ(θ,i,t)

dt ί K(I, t,

0
/H-V JH-V

dt

, U ξ)dξ

0
y/H{I,t)-V(ξ,t)

To find the expression for dtx(θ, /, t) we differentiate the identity Hi f
o

A)~ 1
x , -Γ7Γ = θ, where T = ^ r r / Γ x is the period of the frozen system.V( - V)
We obtain

, t)

H,
ΓH-V JH-V

dt

dξ

y/B{I,t)-V{ξ,t)
= 0,

and

Hit
(A3.19)

Using the differentiation formula (A3.20) below for singular integrals, we
obtain for the last term in (A3.18),

HjtVx ξ=χ
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we used the assumption F(0, t) = Vx(0, t) = 0. Setting K = 1 we obtain the
expression for the last term in (A3.19) as well:

Substitution of the last two expressions into (A3.18) leads, mercifully, to the
cancellation of the boundary terms, resulting in (A3.12). The remaining identities
are proven similarly. D

An Auxiliary Formula. Let A(λ, x), B(λ), W(λ, x) be real functions of independent
real variables x and λ such that the expressions below are well defined. Then

d_ f _ A(λ, ξ)dξ
dλ

dξ
+ B

W\ A
(A3.20)

W(ξ)
Proof goes by first choosing the new variable σ = in the integral and then
differentiating the integral. D B

A4. Estimates on the Derivatives of the Action-Angle Map: δτ

td\x(θ, /, ί). In this
section, we use the above differentiation formulas together with the assumptions
on the potential function V to obtain the desired estimates on the derivatives in
terms of the action-angle variables.

V Vt

Lemma A4.1. Assume that the functions W = —, U = — satisfy the bounds

then

\xqdldτ

tV\<cVμ+\ p + τ < 5 ;

\dτ

tδ\x(θ, 1, ί)| < c/-'x(0, /, t)Hv, i + τ < 4,

where v = v(μ) < 20μ is a constant5.

Proof, la. The formula for xj: We recall (A3.10):
X

dξ
h(I,t)W(x,t), (A4.1)

where h = , W = V/Vx.

5 Whose value can be estimated much more precisely. For τ + i < 2, for instance, the estimate holds
with v = 0. We sacrifice this precision to avoid further complications in the exposition
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lb. The estimate of xj: For 0 < ξ < x we have V(ξ, t) < F(x, t), and thus

< 1. Now, \L\ < cl~ι using the assumption on W which for p = 1

gives ** < C. Using this in (A4.1) we obtain

Xj < c/^X.

2a. The formula for x//: We first differentiate Λ/H — V in (A4.1) and obtain using
(A4.1):

where ίfί =
obtain

(A4.2)

. Using this and the differentiation formula (A3.12) we

( X \ X X

hVH - V - l-Vx ί Lάξ j j Lάξ + VH-VL I Lάξ

+ VH-V ί &(L)<tξ + ft/ w +
o

2b. Estimating x//: It suffices to prove that
X

J Ldξ <cΓ

(A4.3)

(A4.4)

[for 0 < x < x+(/, ή] - indeed, all the remaining terms in (A4.3) are estimated by
cl~2x in the same way as in lb - one only needs to use the bound |JS?(L)| < cl~2

(Lemma A2.1) for the fourth term in (A4.3) and Wx < c in the last term in
(A4.3), together with the last estimate on x/. Now, (A4.4) is equivalent to

-B(x) = -cΓι —

= Ldξ< cΓL — VH - V = B(x), (A4.5)

which holds for x = x + : ^4(x+) = B(x+) = 0, and it remains to prove that
-B'{x) > A{x) > B'{x) for 0 < x < x+.

After multiplying by y/H — V both sides in — B' > Λf > Bf these inequalities
reduce to

Δ\ L vχ Δ

here V = V(x,t). Since ~(H -V)>0, this holds, if we have
X

l-cΓι>L>-l-cΓι,

which we do if c is fixed at a large enough value.

c/_l \L±±(H_



Quasiperiodic Motions in Superquadratic Time-Periodic Potentials

3a. The formula: differentiating (A4.3) we obtain
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xiπ =

x \ x 1

lϋ-V - Vx J Ldξ j j Ldξ (A4.6a)

( X s

\JE-V ί ί£{L)dξ j (A4.6b)

Ή-VL / Ldξ +

i). (A4.6c)

3b. The estimate: We show that (A4.6a) is bounded by d~3xHv; indeed, \dih\ <

cΓ\

the latter,

fLdξ T-2 Jdξ ( checking

d, J Liξ Lfutξ + f se(L)iξ < cl~2 Jdξ J, and it remains

to show that Vxxxj f Ldξ
0

< cΓ2VH -VHV. TO that end, we write

Vxxxj j Ldξ < cVxxxΓι J Ldξ =

0 0

xK

X

< CιΓιHμVx j Ldξ < aΓ2Hμy/H - V .

Proving the desired bound on (A4.6b) and (A4.6c) is straightforward; in

addition to the estimates mentioned above we use \djL\ < cl~2,

cΓ3 f dξ Indeed, J

f <?{L)dξ

<cΓ3 Jdξ by
o

the differentiation formula and the estimates on if (L) and 5£2{V) from Lemma

A2.1 , I ft//1 < cI~2H (Theorem 6.2), and Wxx < cx~ι. Further estimates proceed

in the same way and pose no new difficulties. D
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