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Abstract. Using Morse's theory of reconstructions we define the space of all the
universes - the Superspace. On the Superspace we investigate the geometry of the
DeWitt metric. It is shown that the geodesic flow corresponding to the DeWitt
metric is exponentially instable. The dynamical system described by the
Einstein equations of evolution (Einstein dynamics) has the same type of insta-
bility also, if 1) the Universe is inflationary in some local domain, 2) in some local
domain the Universe does not change its volume, but changes the conformal
geometry very quickly as compared with the conformal potential. So, the Einstein
dynamics is unstable on the Superspace, therefore the following quantum theory
considered on the minisuperspace (a submanifold of the Superspace with a finite
dimension) says nothing about the "real" quantum theory on the Superspace, and
in the Superspace the semiclassical approximation is close to the quantum
approximation only during a short time.

1. Introduction

In a number of recent papers different approaches to quantizing gravitation are
considered. However, in all these papers the methods presented are applied solely
to minisuperspace models and quantized in a semiclassical approximation. Here a
question arises: what connection is there between these toy models and the "real"
quantum theory? In this paper we try to answer this question.

For quantization of the classical theory first of all a corresponding space is
needed, which must include possible states of variables describing the theory. In
cosmology that space must include the set of possible Universes [1]. While
considering the quantum cosmology the global properties of that space are used
[2]. Therefore we consider several properties of the Superspace. For this purpose a
natural definition of the Superspace is given and the geometry of the metric given
by the ADM Hamiltonian of gravitational and material fields is investigated. The
geodesic flow stability and the Einstein dynamics in the Superspace has been
investigated. In fact, this work is a continuation of the approach of [3].
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2. World, Universe, Superspace

The set of d-dimensional Universes will be described as follows. We assume, that
the Universe is closed (compact and without boundary).

By 9Jίd+* we denote the set of all d 4-1 -dimensional, smooth (hereafter "smooth"
means from class C, r>2), oriented, compact manifolds (d>l),

Wld+1 = {Md+ί} = {all d + 1-dimensional smooth,

oriented, compact manifolds}.

c-world (i.e. spacetime with material fields, see Appendix A) will mean the

following triad: ( M - \ g(M), Φ(M)),

where Md+1eW+1, and g(M) is a smooth Riemannian metric on Md+ ί, Φ(M) is a
smooth scalar field. (We consider scalar fields for simplicity; the following
definitions can be evidently generalized for material fields of any type.) Denote the
set of c-worlds by Wd+1,

Wd+ * = {w} = {(Md+\ g(M), Φ(M))} = {(Mw, gw, Φw)}.

Let us consider the set of smooth functions on Md+ι without singular critical
points (Morse's function) [4]. We denote that set by %(Md+i),

fe%(Md+ι)

if

feCr{Md+1),

f: Md+1-+S1 = [0,2π]/{0,2π},

For every ceS1, f6%{Md+ί) we denote
1, f(x) =

The compactness of Md+1 and non-singularity of critical points lead, for every
ceS\ /eg(M d + 1 ), to the set 7{/c[Md+1]} which contains a finite number of
points.

For given we Wd+1, fe%(Mw), and ceS1 we have the following triad:

w(w, /, c) = (/C[M J , g, φ),

where g is the metric induced on /[M w ] by gw, φ = ΦJ/c[Mvv] C-Universes (i.e.
space with material fields) are members of the set Ud,

Hd= U U U Φ>f,c),
weWd+ί /e^Mw) ceS1

Ud={u} = {ΓH,gu,^}.

According to Morse's theory [4,5] (here we do not distinguish between the
embedded Tu and the abstract Tu manifolds)
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where Σd is the set of all d-dimensional smooth, oriented, closed manifolds with a
smooth Riemannian metric and a smooth scalar field on them. We shall consider
the empty set 0 as a trivial manifold.

At Morse's reconstructions Ωd are critical with a given metric and scalar field.
Thus, if we consider the c-world w and fe ^(M^1),

and if there exists a unique c such as cί<c<c2, Y{/C[MW]} Φ0, then

w(w, /, c) = ω e Ωd.

So the manifold Tw is defined by two manifolds belonging to Σdu{0} and
indexes λu ...,λk of critical function from g(Md + 1) [5], then we introduce Tw as
follows:

where fc is the number of point belonging to ^{/C[MW]}. In the case of fc = l
Morse's n = λ — 1 reconstructions mean contraction of the sphere Sn embedded in
Tσι into a point, and then expansion into the sphere Sd~n~i.

For example, if d = 2, fc= 1, n = 1, we have

It is clear that Tσι(n)Tσ2 = Tσ2(d-n-\)Tσι [4,5]. If n= - 1 , then

0->0(-l)S ί i-S ί ί,

a sphere is born from nothing, and vice versa

the sphere vanishes.
k> 1 is the unification of the reconstructions of the k = 1 cases. The spaces ω

from Ωd have singular points (7{/c[Md+1]}), though the c-worlds including those
spaces are smooth.

In order to construct the set Ud as a space there is needed a topology, a system of
open sets. We solve this problem as follows: first we define the set of "smooth"
curves Ud.

A mapping like

is needed a "smooth" one in Ud, if

so, that

O is the strongest topology on Ud, for which every curve from the set of "smooth"
curves

U U W )
weWd+i /e8f(M)

is continuous on [0,1] (cf. [6]).
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By c-Superspace we mean an Ud with topology O(lίd, ©). Then we denote that
space by Ud again.

Linear connectivity of Ud depends on the Ω^°-boardism group [4]. If Ω p + 0
(l° Z, Ωs° = Ωψ = Ωl° = 0, Ωf = Z), then Ud is not connected linearly and the
number of non-connected pieces of Ud depends on Ωψ*. Connectivity of Ud also
depends on the type of material fields as well: if φ is not a usual scalar field (i.e.
having real values), but has values from the non-trivial group G, then Ud will not be
connected even if Ωs

d° = 0 [7].
The space of c-Universes with given manifold T we denote by lί%,

Notice that, if Te Σd, then CUd

τ (closing of the subspace Ud

τ with respect to Ό
topology) includes points from Ωd. It is clear that the Ud is not complete and if
Te Ωd, then the topology induced on the U^-subspaces is discrete.

By c-Superspace some authors mean Ud

τ for some fixed Te Σd. We call such
subspace T-superspaces.

3. Geometry of Superspace

It is clear that there is no Banach structure on Hd, i.e. Ud is not a manifold (it follows
from discreteness of the topology induced on Ωd). But such structures exists on any
Ud

M9 for MeΣd.
Let us fix any MeΣd and consider Ud

M. In this case Ud

M is the space of all smooth
Riemannian metrics and smooth scalar fields on M. It is known [8,9] that there
exists smooth Banach structure on such spaces. If S2(M) is the space of symmetric
2-covariant tensor on M and S(M) is the space of function then the tangent bundle
of Ud

M is [10]

where φ is the Withney sum.
Let us denote the set of symmetric 2-contravariant tensor densities (scalar

densities) by Sj(M)(Sd{M)) [10,11]. Let

< ( π , p ) , ( f e , χ ) > = j π /c + p χ .
M

Now we introduce a metric on Ud

M such that the kinematical part of the
Hamiltonian given by ADM formalism could be expressed by that metric (we take
# = 1 , ^ = 0). So, we have the following metric on Ud

M [10, 12, 13]

®[g, Φ~\ (K χ;KS)=i dμ(g) ( - tr(fc) tr(Λ) + tr(k x h) + χS),
M

where

= (dctg)ίl2dxιΛ...Λdxd,

abkab, {kxh)ab^kacg
cdhdb.
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The metric © has inverse metric © ~* and

where

( π , p ) , ( ρ ^ ) e T * C

π = πfdμ(g), ρ = ρ'dμ{g),

p = p'dμ(g), q = q'dμ(g).

By means of this metric we can map TUd

M on T*Ud

M and vice versa - T*Ud

M on
711^. These mappings are of the following form [10]:

© f t:TUd

M->T*Hd

M ?

= (-l/(d-l)tτ(π')gab + π'ab,p').

Notice that every /c-tensor from S2(M) can be introduced by the following form
[14]

where

tr(FΓ) = 0, F F r = 0 {{V-kTΊ\=VkτJ),

there exists a vector field Z on M such that

kL = 2zg - (2/d)gV • Z, kL

ah = VaZb + VbZa - (2/d)gabVc • Z c ,

Hence T{θφ)Vίd

M can be introduced as a sum of perpendicular subspaces

where

Perpendicularity of these subspaces is evident
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In the above 4 spaces the vectors belonging to T£tφ)U
d

M have negative length
("timelike" vectors) and the others have positive length ("spacelike" vectors). Note
that vectors tangent to the orbit, passes through the point (g, φ) and is
diffeomorphic to (g, φ) (see Appendix A), have the form [6, 10, 11]:

and

^ φ ) o r b i t c ^ ^ M Θ ^ φ ) U d

M Θ ^ φ ) ^ . (3.2)

As on a manifold of finite dimension, on Ud

M there exists a Levi-Civita connection,
i.e. a Riemannian one without torsion [15]. In that case, as it is shown in
Appendix B (cf. [3, 12, 16]),

Γ[g, </>] (k, χ;ω,φ;h,9) = iϊ dμ(g) {-tr(fe) tr(ω) tr(ft)
M

+ 3 tr(/c) tr(ω x ft) + tr(ω) tr(/c x ft) + tr(ft) tr(/c x ω)

- 4 tr (k x ω x ft) + tr (ft)χφ + tr(ω)χθ - tr(fc)φθ},

9ϊtem [g, </>] (ω, φ; fc,χ; /, σ; ή, θ)
= J Jμ(g) {(1/4)tr[(/c x ω - ω x Jfc) x (Λ x /-/ x Λ)]

M

+ κ2[tr(/ι x ω) tr(fc) tr(/)- tr(/ x ω) tr(fe) tr(A) + tr(/c x /) tr(ω) tr(Λ)

- tr(k x ft) tr(ω) tr(/) + J{tr(ω x /) tr (k x ft) - tr(ft x ω) tr(fc x /)}

+ tr(fc) tτ(l)9φ - tr(fc) tr(ft)φσ + tr(ω) tr(ft)χσ - tr(ω) tτ(ϊ)χ9

+ d{tτ{ω x l)χS-tr(ω x ft)χσ + tr(fc x h)φσ — tτ{k x

or [see Eq. (C.4)]

9ίiem[g,φ~] (ω,φ; k,χ; /,σ; ft,9)

= J Jμ(g) {(l/4)tr[(fe x ώ - ώ x k) x (ft x Γ-Γx ft)]
M

+ /c2{tr(ώ x I) tr(fc x ft)-tr(ft x ώ) tr(fc x I)

+ tr(ώ x I)χθ-tr(ώ x ft)χσ + tr(fc x ft)φσ-tr(fe x

where

Note that Ricci (9ϊtc) and scalar (91) tensors not always exist on infinite
dimensional manifolds. Appendix C [Eqs. (C.2), (C.3), (C.5), (C.6)] implies

Therefore, if d = 6 then
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Hence, it is meaningless to write 91 in the Wheeler-DeWitt equation, so far as 91 is 0
or ± oo [2].

And if we consider m scalar fields, then Eqs. (C.9), (CIO),

These relations show that in case of small dimensions and few scalar fields in
c-Superspace there exists a certain instability. The geodesic flow of such
c-Superspace is more unstable than in case of larger dimensions or many fields (cf.
[17]).

4. Dynamics in Superspace

Let us consider some M-superspace and investigate the geodesic flow given by the
(5-metric on it. That geodesic flow coincides with the dynamical systems defined by
the following Hamiltonian [9],

^ίg.Φ; π,p]=(l/2).©-1[g,(/)](π,p; π,p).

Let us consider now the stability of this geodesic flow (cf. [19]) corresponding to
a velocity-dominated Universe [18]. We describe the projection of two neighbour-
ing geodesies on the submanifold of the homogeneous conformal metrics c-HC, (cf.
[3, 12, 20])

c-HC = {(g,φ)eUd

M, (M, g, φ)-homogeneous, ξ(x) = const, φ{x) = const},

where

and therefore,

As shown in [3], there exists an exponential instability on c-HC, i.e.

LHC(s)~exp(;is),

where s is an affine parameter for the geodesies projected on c-HC [12]

ds α

and [3], (see Appendix D),

/l = max{(-ω f)
1/2, ©j<0}.

i

Now we evaluate λ. Equation (C.7) implies

d
X KJ{vi9 u) = Ricc(w, u) = - - ,

i=i 4
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where vt and u are vectors from c-HC and are orthogonal to each other, n is the

dimension of c-HC — 1 — 1 (vector w), i.e. n= — 2, therefore

Following [3],

λ>0 and λ2>7¥±Άl) (4J)

L(s)~ξsexp(λs),

and [12] implies

ί(s-s2)
q +(s-s ί)

q- "timelike" geodesic

L(s) = \ γϊc{s-so)
q+ "null" geodesic

[{s — s1)
q+(s2~s)q- "spacelike" geodesic,

where c 2 = τc2(α2 + p2), p = ξ^(dφ/ds)\0, s1 = s0 — c, s 2 = s 0 + c, dso/ds = 0,

q± = - ( 1 + — ) . Which implies that, for s-» + oo,
2\ c J

Js "timelike" geodesic
\]/ΐcsq+ "null" geodesic,

where q+ <\{\ +λ/κ). So, "timelike" and "null" geodesies have weak instability
(for these geodesies the Lyapunov characteristic number is 0).

In the "spacelike" case, in a finite interval of "time" As = s2 — sί = 2c, L(s)
becomes +oo. This means that "spacelike" geodesic is very unstable (for these
geodesies the Lyapunov characteristic number is + oo).

Consider now the dynamics with the following Hamiltonian in M-superspace
[10-13]

<#[g, φ, π, p] = (1/2) © x [g, φ] (π, p, π, p) + F[g, φ~],

where

\\φ\\ gφwφlb

The dynamics given by this Hamiltonian corresponds to Einstein's equations, if
the constraint equations [11] are added,

These equations constrain only initial conditions, but not dynamics. The
equations corresponding to the Hamiltonian are [10,11]

VXX= -®*(dV)ΞΞ - g r a d ( F ) ,
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where V is a co variant derivative on the M-superspace (see Appendix B),

fdgά

κds* ds

and

we have

M

t r ( ω ) r D/-x , tA ™ u^ιι2 + F ( ^ | + ( F ( 0 ) + zl0)χ} ,

where

Δψ= —g ψ\abi * \ψ)~

Then,

^F 1
— =(dQtgy2{(Ricab(g)--4

dV__

Therefore,

(dξ, VxX) = ^f[ J
(4.2)

, grad(F)> = ^ {Ric"»(g)-^ ^'"φ 1 6}, (4.3)
fl'Ϊ 2

XX> = - < # , g r a d ( F ) > = -(F'(ψ) + J ψ ) . (4.4)

Here the following expressions have been used [3,12]:

dη
A

where (cf. [3,12]) ξ(x); ηA(x), A = l,...,-— 1; </>(x)-coordinates are chosen
such that 2

3 VU' J Γ τ

dζixf1 " M ? V M M M9 W

It is known that this system of equations has inflationary solutions,

ξ x ξ0 exp {{d/2)Hs}, ηAccηi = consf4,

φacφo = const, ^'(^o) ̂  0,
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hence,

L(s) = ξsLHC(s)cc const exp{(d/2)Hs},

i.e. inflationary solutions are unstable with respect to conformal perturbations
(LHC(0)>0).

In general, when

KdηΛ

9VxXy\>KdηΛ

9gnd{V)>\,

i.e. conformal geometry changes very quickly as compared with the conformal
potential, then

or

ds \ ds <

and L increases exponentially, if

d\nξs <xλ

—: h TT oc const
ds ξs

(e.g. £oc const).
So, L increases exponentially, if
I. ξsccexp((d/2)Hs\ local volume of the Universe increases exponentially

(inflationary Universe).
II. ^-ocO, the Universe changes local conformal metrics very quickly as

as
compared with the conformal potential, leaving the local volume unchanged
(conformal Universe).

5. Conclusions

So it is clear that in any M-superspace, therefore in the Superspace, the Einstein
dynamics and the geodesic flow are unstable. The instability is exponential, if
1) the gravitational and material fields are changed very quickly as compared with
the potential (velocity dominated Universe [18]), the case of geodesic flow. Notice
that with small dimensions d and few scalar fields m the geodesic flow is more
unstable, than in case of larger dimensions or many scalar fields;
2) the Universe is inflationary in some local domain, (inflationary Universe);
3) the Universe does not change its volume in some local domain, but changes the
conformal geometry, (conformal Universe).

In such cases the instability of dynamics implies that:
a) the quantized system on a submanifold of finite dimension (e.g. the minisuper-
space) tells us very little about the "real, complete" quantized system, because
according to the Heisenberg uncertainty principle there are always virtual
perturbations along other frozen directions, and these perturbations are unstable,
b) in the Superspace (moreover, in the minisuperspace) the semiclassical appro-
ximation is close to the quantum approximation only during a short time [21,22],
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H~ί f i f l t i U i (H> 1) d ί ίtiaΐcc-H~ί for inflationary Universe (H> 1), and ίconf oc ί - j ) for "conformal

\ - I

Universe" I - j > 1 and (4.1) implies that ίconf <y2(d +1) ( -

In further investigations, where the complete Hamiltonian will be considered
[23] without preliminary condition, we shall give final answers to these questions
(see the Introduction).

Appendix A

Let Q be a smooth manifold and E(Q) a vector bundle over Q with a projection
π: E(Q)-+Q. Denote the group of (orientation-preserving) diffeomorphisms of Q by
Diff(0. Consider now an equivalence relation on E(Q). We say that fx e E(Q) is
equivalent to f2eE{Q), / 1 ~/ 2 , if 3ιeDiff(Q) such that ιjUΊ)=f2.

Let (&(Q) be a space of all the equivalence classes

mo>-m

and

In that case we name the members of E(Q) "oobjects" (c comes from the word
"coordinate") and the members of G(Q) we name "objects." So, defining some
"c-object" (oworld, c-Universe, c-Superspace) we shall have an "object" (world,
Universe, Superspace). In this paper the symbol "c" has only this meaning.

Appendix B

If / is a function defined on Ud

M, then by Df(x) we denote the derivative of the
function / and by £>/• ω(x) the value of the derivative on ω e Tx%

d

M [5]. Notice that
the following formulae are true [here Dgk h = 0 = Dgl-h and fc,/,/ιeS2(M)],

D9g
ab / ί = - / Λ

Dβ(tr(*;)) Λ=-tr(fcxΛ),

Dg{tr{kx /)) /ι= -2tr(fcx/xΛ),

We have a Levi-Civita connection, therefore [15]

Γ[g,Φl(k,χ; ω,ψ; Λ,5)=(l/2){D®[g,ψ] (Λ,5)(*,χ; ω,φ)
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where

, Φ1 • (K ») (K χ;ω,φ) = Dg®lg, φ] • h(k, χ;ω,ψ) + Dφ®lg, φ] Hk,χ; ω, ψ)

= DgU dμ(g)(-tτ(k)tr(ω) + tr(/cxω) + χφ\ • h
{M j

= ί dμ(g) [(1/2) tr(Λ) tr(fc x ω) + tr(ω) t φ x fc) + tr(/c) tτ(h x ω)

- (1/2) tr (fe) tr (ω) tr (h)+(1/2) tr(%<p - 2 tr (/i x k x ω)].

Therefore,
l(k,χ;ω,φ;h,&)=i\ dμ(g){-tr(fc)tr(ω)tr(/ι)

M

+ 3 tr(fc) tr(ω x h) + tr(ω) tr (fe x/ι) + tr(/ι) tr(fc x ω)

- 4 tr(fe x ω x /z) + tr(/i)χφ + tr(ω)χθ

For any vector fields X, Y,Z,UeTUd

M the covariant derivative and the 9ίteτn
tensor are defined as

Went[g, φ-\ (X, Y)Z = {\VX9 Py] - F^.y]}Z,

SRtem [g, 0] (C/? Z, X, 7) = ®[g, 0] (I7,»iem [g, 0] (X, Y)Z).

Then, one can see that

SRtem [g, φ] (ω, φ;k,χ; /,σ; h, 9)

χ)(ω,φ; /ι,5)-D2©[g,φ] .(Λ,S; k,χ)(ω9φ; l9σ)

; ω,φ)(k,χ; U ) -

; fe,Z; U), Γ[

; fe,χ; Λ,θ), Γ[g,(

where

D2®lg, Φϊ - (I, σ; k, χ) (ω, φ; h, 9) = D[D®[g, </>] (/, σ)] (fe, χ) (ω, <p; h, 9)

= (1/4) J dμ(g) {tr (0 tr (fe) tr (ω x fc) + 2 tr(Λ) tr (fe) tr (/ x ω)

+ 2 tr(ω) tr (fe) tr (/ x h) + 2 tr (0 tr(ή) tr (fc x ω ) + 2 tr(/) tr(ω) tr (fe x ft)

+ 2 tr(ω) tr (ft) tr(fe x I) - 4 tr (fc) tr (/ x ω x ft) - 4 tr (0 tr (fc x ω x ft)

-8tr(ft)tr(fe x ω x Q-8tr(ω)tr(fe x ft x Z)-4tr(ω x Z)tr(fe x ft)

-4tr(ft x /)tr(fe x ω)-2 t r ( ω x ft)tr(fe x I)

+ 8 tr(fe x / x ω x ft) + 8 tr(/ x fe x ω x ft)

+ 8 tr(I x ω x k x ft) - tr(fc) tr(ί) tr(ft) tr(ω) + (tr(fc) tr(ί) - 2 tr (fe x
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; k,χ; lσ), Γ[g,φ]{ ; ω, ψ; h,9))

=(1/16) f dμ(g){-d/(d-l)tr(k)tr(t)tr(h)tr(ω)
M

+ 4[tr(ft x ω x Z x fc) -f tr(ft x ω x fc x Z) + tr(ft x / x fc x ω) + tr(ft x fc x Z x ω)]

+ (3d - 2)/(d -1) [tr (fc) tr (/) tr (ft xω) + tr (ft) tr (ω) tr (fc x /)]

+ tτ(h) tr(fc) tr(ω x Z) + tτ(h) tr(Z) tr(ω x fc) + tr(ω) tr(fc) tr(ft x Z)

+ tr(ω) tr(/) tτ(h x fc) - 4[tr(/z) tr(ω x fc x Z) + tr(Z) (fc x h x ω)

+ tr(ω) tr(fc x Z x h) + tr(fc) tr(/ι x ω x 0] - (9d - 8)/(d - 1 ) tr(/ι x ω) tr(fc x Z)

+ (3d-4)/(d-ί)(tr(hxω)χσ + tr(kxl)Sφ)-(d-2)/(d-l)(tv(h)tτ(ω)χσ

+ tr (fc) tr(/)βφ) + (tr (A)φ + tr (ω)S) (tr (Oχ + tr(fc)σ) - d/(d - ί)χ3φσ}.

Therefore,

9ίtem[g,</>](ω,φ; fc,χ; Z,σ; Λ,θ)

= J^(g){(l/4)tr[(fcxω-ωxfc)x(/ιxZ-Zx/ι)]

+ κ2[tr(/i x ω) tr(fc) tr(Z) - tr(! x ω) tr(fc) tr(Λ) 4- tr(fc x Z) tr(ω) tr(ft)

- tr (fc x h) tr (ω) tr (/) + d{tr{ω x I) tr(fc x ft) - tr(ft x ω) tr(fc x Z)}

+ tr(fc) tr(t)$φ - tr(fc) tτ(h)φσ + tr (ω) tr (h)χσ - tr (ω) tr(Z)χθ

+ d{tr(ω x /)χθ-tr(ω x % σ + tr(fc x ft)φσ-tr(fc x Z)Sφ}]}.

Appendix C

We can consider the metric (5 on Ud

M as follows (cf. [12]):

(v(M) N )
^Superspace = = J W X ^Homogeneous = = ^ ^ ) ΓT 2-ι ^Homogeneous ( »

M N - > o o (̂  l V j = l J

where

M

^^Homogeneous u^> \ΛJH^I\, L,

then,

= f d dxRiem^= lim <-±—- Y Riem
M N I N i l

^ Y Riem^V, (C.I)
M N-*σo I N i = l J

5Rics- f Λ Ric^ = lim ί l Σ Ric[,j, (C2)

M
£- lim {("ψX1 Σ Λίij. (C3)
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Using these relations we compute 9ίiems by Riem^. Notice that

G&= -dξ2(x) + κ2ξ2(x)Gx

φ = -dξ2(x) + κ2ξ2(x)(

GH=-dξ2+f(ξ)Gcφ,

i.e. GH is torsional multiplication of — dξ2 and Gcφ [24]. If VH is a covariant
derivative of GH, Vξ of -dξ2, Vcφ of Gφ then [24].

where (Xξ,Xcφ) the natural projection of X,ψ=ln[f(ξ)] = \n{κ2ξ2),

RiemH(Z, 7)Z = Riem ί(X ί, Yξ)Zξ + Rkmcφ(Xcφ, Ycφ)Zcφ

+UK(Xϊ Zξ)Ycφ-hψ(Yξ, Zξ)Xcφ + Gcφ(Xcφ, Zcφ)Hv(Yξ)

- Gcφ(Ycφ>Zcφ)Hψ{Xξ)} +iί{Xξ(ψ)Zξ(ψ) + Gcφ(Xcφ,Zcφ) \\dψ||2} Ycφ

- {Yξ(ψ)Zξ(ψ) + Gcφ(Ycφ,Zcφ) \\dψ\\2}Xcφ

+ { Yξ(ψ)Gcφ{Xcφ, Zcφ) - Xξ(ψ)Gcφ( Ycφ, Zc

where

=~jμxt> Riem4=0,

therefore
RiemH(X, Y)Z = Ricmcφ(Xcφ, Ycφ)Zcφ

- κ2{Gcφ(Xcφ, Zcφ)Ycφ - Gcφ(Ycφ, Zcφ)Xcφ}.

And
RiemH(U, Z, X, Y) = κ2ξ2[_Rkmcφ(Ucφ, Zcφ, Xcφ, Ycφ)

-κ2{Gcφ(Xcφ, Zcφ)Gcφ(Ycφ, Ucφ)- Gcφ(Ycφ, Zcφ)Gcφ(Xcφ, [/c

If l/=(fc,χ), then Ucφ=(£,χ) [here F=(ω,9)] and

Gcφ(U, Y) = Gcφ(Ucφ, Ycφ) = tr(£x

Hence it follows from Eqs. (C.1-C.3) and [3], that

SRtem[g,φ]{ω,φ;k,χ;l,σ; h,3)

= I dμ(g){l/4)tr[(£x ώ-ώ x /F) x {Ex T-Tx Ej]
M

+ κ2{tτ(ώ x I)tr(fe x h)-tτ{hx ώ)tτ(kx T)

+ tr(ώxϊ)χS-tτ(ώ x % σ + tr(fc x h)φσ-tr(kxϊ)φ9}}, (C.4)

R i c H = ~ ^ , (C.5)
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From [3] we have

Ricc=-(d/4)Gc, (C.7)

(C.8)

In the general case, if there are m scalar fields,

^ 2 (C.9)

(CIO)

Appendix D

Notice, that in HC the instability of geodesic flow does not immediately follow
from [3], i.e. from instability on c-HC, because only the existence of the 2-surface is
shown, on which the two-dimensional curvature K = const <0. But in the general
case (not only homogeneous Universe) that direction can be from spaces tangent
to the orbit (we mean conformal orbit). Hence, we say that two c-Universes are
going exponentially away from each other, but in fact this movement is along the
orbit. It means that departing c-conformal Universes (conformal metrics) can be
very close Universes (conformal geometries), while the c-Universes can differ
much.

Now let us show that there is a vector orthogonal to the velocity of geodesies,
which is not tangent to the orbit, and on the 2-surface extended on that vector and
velocity of geodesies, 5i = const <0.

Assume that k is a vector tangent to the geodesic. Let us take any β vector field
on M and consider

aδaί>>

where

® [g, φ] (S,») = 1, β°wβ
b+(1 - 2/d)β"βb

a=0.

It is clear that

fe, 8) =9ttent(/c,S, k,») = \Jμ{g) {(β%bβ
b)2

-(βcβ
c)(β%Kbβ

b)}^o.

Choose β so that

βakabβ
b=o.

There exists such β, because tr(/c) = O, tr(fe x fc)φθ, which means that (the smallest
93, Λ(/c, 95) = const <0. As tr(S) = 0 and %a = 0, then &eT£*φ)U

d

M and we have
[see Eqs. (3.1), (3.2)] V(g, ψ) e l&, 33£Γto>φ)orbit, on which the statement made
above is based.
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