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Abstract. Poisson manifolds are the classical analogue of associative algebras. For
Poisson manifolds, symplectic realizations play a similar role as representations
do for associative algebras. In this paper, the notion of Morita equivalence of
Poisson manifolds, a classical analogue of Morita equivalence of algebras, is
introduced and studied. It is proved that Morita equivalent Poisson manifolds
have equivalent "categories" of complete symplectic realizations. For certain types
of Poisson manifolds, the geometric invariants of Morita equivalence are also
investigated.

Introduction

Poisson manifolds are the classical analogue of C*-algebras (or noncommutative
algebras). One can find counterparts in Poisson geometry for many concepts in
C*-algebras. For instance, representations of C*-algebras correspond to symplectic
realizations of Poisson manifolds, traces of C*-algebras to invariant measures on
Poisson manifolds, automorphism groups of C*-algebras to Poisson flows on
Poisson manifolds, etc. The similarities between these two distinct subjects are
more than conceptual; they are also reflected in the techniques and methods of
studying these subjects. Therefore, it would be useful in the study of Poisson
geometry to develop comparable techniques to those used in the theory of
C*-algebras, such as the theory of Morita equivalence.

The theory of Morita equivalence goes back to Morita [Mo] in the 1950's,
who proved the fundamental theorem: two rings have equivalent categories of left
modules if and only if there exists an equivalence bimodule for the rings. This
concept of equivalence was first generalized to the context of C*-algebras, in the
name of strong Morita equivalence, by Marc Rieffel [Riel-Rie4]. It turns out now
to be one of the most important equivalence relations in C*-algebras, playing a
crucial role in understanding the structures of some C*-algebras, such as
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transformation C*-algebras and foliation C*-algebras. Morita equivalent
C*-algebras have many similar features. For instance, they have equivalent
categories of Hermitian left modules, isomorphic K-groups, and so on.

In the present paper, we introduce and study an equivalence relation for
integrable Poisson manifolds, which we expect to play a similar role for Poisson
manifolds that Morita equivalence plays for C*-algebras. As we know, the role of
symplectic realizations in the theory of Poisson manifolds is similar to that of
representations in the study of noncommutative algebras. One of the main theorems
in this work is that Morita equivalent Poisson manifolds have equivalent
"categories" of complete symplectic realizations, a result parallel to the fundamental
theorem in the theory of Morita equivalence of C*-algebras. In fact, this machinery
of Morita equivalence, it turns out, is very successful in handling the computation
of realizations for some particularly interesting Poisson manifolds [X2].

The notion of Morita equivalence of symplectic groupoids introduced an [XI]
plays an essential role in this work. In fact, we show that the α-simply connected
symplectic groupoids of Morita equivalent Poisson manifolds are Morita
equivalent as symplectic groupoids.

In Poisson geometry, a large variety of interesting Poisson manifolds are regular
Poisson manifolds; therefore Morita equivalence for regular Poisson manifolds is
of particular interest to us. For symplectic manifolds, a complete invariant of
Morita equivalence is just the fundamental group. In general, however, it is far
from completely solved as to what quantities of Poisson manifolds completely
classify the Morita equivalence classes of Poisson manifolds. So far, two interesting
results have been obtained in this direction. One is that a regular Poisson manifold
is Morita equivalent to a zero Poisson manifold if and only if its symplectic leaves
are all simply connected and its fundamental class vanishes, or equivalently, if and
only if the regular Poisson manifold is a locally trivial bundle of simply connected
symplectic manifolds. The other is that for Poisson manifolds in which the
characteristic foliations are trivial fibrations π:P = S x Q ->Q, the variation lattice
$Q of symplectic structures along symplectic leaves is a complete Morita
equivalence invariant. These facts suggest that, roughly speaking, Morita
equivalence is an equivalence that measures the symplectic leaf space and the
variation of the symplectic structures along symplectic leaves of a Poisson manifold.

This paper is organized as follows.
Some basic facts concerning Morita equivalence of symplectic groupoids are

recalled in Sect. 1. In Sect. 2, the definition of Morita equivalence of Poisson
manifolds is introduced and several interesting examples are discussed. Section 3
is devoted to the discussion of symplectic realizations of Morita equivalent Poisson
manifolds, and Sect. 4 and 5 are to the Morita equivalence of regular Poisson
manifolds as described above.

Finally, note that in this paper, manifold always means a connected smooth
manifolds, and symplectic groupoids are always assumed to be α-connected.

1. Morita Equivalence of Symplectic Groupoids

The notion of Morita equivalence of symplectic groupoids was introduced in [XI],
based on the notion of equivalent topological groupoids introduced in [MRW].
In this section, we recall some basic facts concerning this Morita equivalence.
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Definition 1.1. Symplectic groupoids G=*G0 and H=$H0 are called Morita
equivalent if there exists a symplectic manifold X and surjective submersions p from
X to GO and σ from X to H0 such that

1. G has a free and proper left action on X\
2. H has a free and proper right action on X;
3. the two actions commute with each other,
4. p induces a diffeomorphism from the quotient space X/H onto G0;
5. σ induces a diffeomorphism from the quotient space G\X onto H0; and
6. the graph of the G, H actions:

Q = {(g,x,h,g-x h)\geG, heH and xεX such that g-χ h makes sense}

c=G xX xH xX~

is a lagrangian submanifold, where X ~ denotes the symplectic manifold X with the
opposite symplectic structure.

(X\ p; σ) is called an equivalence bimodule between symplectic groupoids G and H.

It is known that this Morita equivalence indeed induces an equivalence relation
among symplectic groupoids [XI],

Given a symplectic groupoid G=*G0, by a symplectic left G-module, we mean

a symplectic manifold F together with a smooth map J:F^G0 such that F->G0

admits a symplectic left G-action. J is usually called the momentum mapping of
the module F. The symplectic left modules of a given symplectic groupoid G
becomes a "category" ζ(G) in the following sense: the objects of ζ(G) are symplectic
left G-modules, the morphisms are canonical relations satisfying certain compatible
conditions with the groupoid actions, and the composition of morphisms is
set-theoretic composition of relations. More precisely, a morphism from a
symplectic left G-module Fl to a symplectic left G-module F2 is a lagrangian
submanifold J? <=:F2*GoF~ that is invariant under the diagonal action of G. In
fact, ζ(G) is not a true category. However, it does satisfy all the axioms of a usual
category except that it requires the transversality assumption for the composition
of morphisms being a morphism. A fundamental result regarding Morita
equivalence of symplectic groupoids is the following:

Theorem 1.1. Morita equivalent symplectic groupoids have equivalent "categories" of
symplectic left modules.

2. Morita Equivalence of Poisson Manifolds

With the preliminary in Sect. 1, we can introduce the concept of Morita equivalence
for Poisson manifolds.

Definition 2.1. Two Poisson manifolds P^ and P2 are said to be Morita equivalent
if there exists a symplectic manifold X together with a Poisson morphism p:X^P±

P o
and an anti-Poisson morphism σ:X-+P2 such that Pl<-X—>P2 is a complete full

dual pair [Wl ] with connected and simply connected fibres. X is called an equivalence
bimodule.
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We say that a dual pair Pί +-X Ap 2 is complete if both p and σ are complete in

the sense that the pull back of any complete Hamiltonian is still a complete
Hamiltonian on X.

Remark. (1) The idea to relate Poisson manifolds by means of dual pairs is due
to Weinstein. These dual pairs were studied in [Wl], where many similarities
between related Poisson manifolds were discovered.

(2) It was proved by Weinstein that such a dual pair as in the preceding
definition naturally induces an affinoid structure on X [W3]. Consequently, both
P1 and P2 are automatically integrable in the sense of Dazord [Dl]. Namely, they
admit global symplectic groupoids. In fact, the horizontal and vertical groupoids
arising from the symplectic affinoid structure on X are exactly the symplectic
groupoids over P1 and P2, respectively.

Many examples of Morita equivalent Poisson manifolds arise from Poisson
reduction theory, to be discussed in [X2]. Here, we list some interesting simple
examples.

Example 2.1. Let S be a connected and simply connected symplectic manifold, M
a connected manifold with zero Poisson structure; then the direct product S x M
is Morita equivalent to M. In fact, if we take X = S x Γ*M, p = (id, pr): X -> S x M,
and σ = pτ:X-+M, where pr is the natural projection from T*M onto M, then
S x M < - X - » M i s a Morita equivalence as defined above.

In particular, every connected and simply connected symplectic manifold is
Morita equivalent to a one point space with zero Poission structure. Therefore,
simply connected symplectic manifolds play a similar role in Poisson geometry as
the algebra of compact operators in C*-algebras.

Example 2.2. Let (S, ω) be any symplectic manifold with symplectic form ω; then
(S, aω) is Morita equivalent to (S, bω\ provided that ab φ 0.

In order to see this, we take X to be the fundamental groupoid Π^S), equipped
with the symplectic structure ώ = αp*ω — bσ*ω, where p and σ are the source and
target maps of the groupoid /^(^respectively. It is clear that p:/71(5)-^(S,αω) is
a Poisson morphism, while σ:Π1(S)^(S,bω) is anti-Poisson. For any υltv2eTxX
such that ΌI is tangent to the p-fibre through x and υ2 is tangent to the σ-fibre
through x,

ώ(ι?ι, ι>2)
= (aP*ω)(vι> ^2) - (bσ*ω)(vί9v2)

= aω(Tpυl, Tpv2) — bω(Tσvί9 Tσυ2)

= 0.

I.e., /9-fibres and σ-fibres are ώ-orthogonal. Therefore, it follows immediately that
(S, aω) and (S, bω) are Morita equivalent as Poisson manifolds.

In fact, Weinstein has observed that for symplectic manifolds a complete
invariant of Morita equivalence is just the fundamental group.

Proposition 2.1. Let Sl and S2 be any symplectic manifolds. S^ is Morita equivalent
to S2 if and only ί/π1(51) = π1(52).

Proof. Suppose that S1 and S2 are Morita equivalent with equivalence bimodule
(X p σ). Then p:X ^>Sl is a fibration with connected and simply connected fibres.
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It follows from the exact sequence

0 = π^p - fibre) -> π^X) -» πl(SJ -» π0(p-fibre) = 0

that π^X) Ξ π^SJ. Similarly π^X) ^ π ί ( S 2 ) . Hence, π^S^) £ π1(S2).
Conversely, let S\ and 5Ί be the universal covering spaces of Si and S2,

respectively, and G = π1(S1)^π1(S2). Take X = (SlxS2)/G equipped with an
obvious symplectic structure obtained in a similar way as in Example 2.2, where
G acts on S^ x S2 diagonally. Let p X^S^ and σ:X-*S2 be the two natural

projections. It is clear that Sί^-X -^S2 is an equivalence bimodule. Q.E.D.

Remark. For any given fundamental group (i.e., a group which is a fundamental
group of a certain manifold), there always exists a symplectic manifold with this
group as its fundamental group (one can simply take the contangent bundle of
the manfold having this fundamental group as the symplectic manifold). Therefore,
the Morita equivalent classes of symplectic manifolds are in one-to-one correspond-
ence with the fundamental groups of manifolds.

3. Symplectic Realizations of Morita Equivalent Poisson Manifolds

For Poisson manifolds, symplectic realizations play a similar role as representations
do for C*-algebras. Therefore, the study of symplectic realizations of Poisson
manifolds is of particular importance in Poisson geometry. First of all, let us recall
the definition of symplectic realizations.

Definition 3.1. (\_CDW~]) Let P be a Poisson manifold. A symplectic realization of
P is a pair (X,p\ where X is a symplectic manifold and p is a Poisson morphism
from X to P. A symplectic realization p:X-^P is called complete if p is complete
as a Poisson map, i.e., the pull back of every compactly supported function on p has
a complete Hamiltonian vector field on X\ a symplectic realization is said to be full
if it is a submersion.

Suppose that (Γ=$P,%,β) is a symplectic groupoid and p:X-+P is a symplectic
realization of P. According to Theorem 1.1 in Chap. 3 of [CDW], Γ has a local
action on X. In general, it is not a global action. However, if Γ is α-simply
connected, a remarkable fact concerning complete symplectic realizations emerges
that any complete symplectic realization of P becomes a symplectic left /"-module
in a natural way. In other words, Γ has a global action on any complete symplectic
realization of P. This fact has also been proved independently by Dazord [Dl].

Theorem 3.1. Let Γ be a symplectic groupoid over P. If X is a symplectic left
Γ-module, then its momentum mapping p:X ->P is a complete symplectic realization.
Conversely, if Γ is α-simply connected and p:X^P is a complete symplectic
realization, then X naturally becomes a symplectic left Γ-module.

Proof. Suppose that p\X-+P is the momentum mapping of a symplectic left
Γ-module; then p is a symplectic realization [MiW]. Given a complete Hamiltonian
/eC°°(P), we denote the Hamiltonian flow of α*/ on Γ and the Hamiltonian flow
of p*/ on X by φ* and φp

t, respectively. Then it is clear that for any given xεX,
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φp(x) = (φ*u) χ, where u = p(x) [CDW]. Since α is always complete as a source
map of the symplectic groupoid Γ, therefore φp

t is also complete.
Conversely, according to Theorem 1.1 in Chap. 3 of [CDW], there exists a

lagrangian immersion Λc Γ x X x X~, maximal among all lagrangian immer-
sions contained in K = { (r, x, y) \p(y} = α(r) } and containing / = { (u, x, x) | p(x) = u }
as a submanifold. It is clear that (r,x,y)e/l if and only if there exists a point ueP
and k functions hieCco(P) such that if φ* and φp denote the products of Hamiltonian
flows of a*/it- and p*/zt in the same order, respectively, r = φ\u) and y = φp(x). It
is easy to see that β(r) = p(x) = u.

By p, we denote the projection from Γ x X x X ~ onto Γ x X given by
p(r,x,y) = (r,x). First of all, we claim that p(Λ) = Γ^PX = {(r,x)\β(r) = p(x)}. To
prove this, it suffices to show that Γ*PX g p(Λ). Given any (r, x)eΓ*PX, we assume
that u = β(r) = p(x). Sin'ce β-fΐbres are connected, there exists a product of
Hamiltonian flows φ* generated by α*Λ f, such that r = φΛu. We denote by φp the
corresponding product of Hamiltonian flows generated by p*/zt in the same order.
It follows from the completeness of p that φp always exists. Let y = </>p(x); then it
is clear that (r,x,y)e/l; therefore, (r,x)ep(Λ).

Moreover, Λ is a graph over Γ*PX.
Let Pi denote the natural projection from /I onto its ι th factor (/ = 1,2,3). For

any xεX, let u = p(x}eP. Consider the map pί:p~l(x)^ β~ί(u). Since p2:Λ-+X
is a submersion, dimpJ 1(x) = dimj8~ 1(M) by dimension counting. In fact, pl has
the path lifting property. To show this, it is sufficient to consider those paths in
β~ (u) of the form φ*(u\ which is a product of Hamiltonian flows generated by
α*Λ / ? (/z^C00^)). Then ((/)»,x,0f(x))6p~1(x) is clearly a lift of φ*(u\ It follows
immediately from the path lifting property that p t :p~ 1 (x) -^β~l(u) is a submersion.
Furthermore, since dim p^" *(x) = dim j8~ I(M), p t is a local diffeomorphism, therefore
a covering map. However, β~l(u) is simply connected, so pl is a diffeomorphism.
Hence, Λ is a graph over Γ*PX.

It is not difficult to see that such a graph Λ defines a groupoid Γ-action on
X, which can easily be checked to be symplectic. Q.E.D

As in [XI], we can introduce the "category" ζ(P) of complete symplectic
realizations for a given Poisson manifold P, in which the objects are complete

pi

symplectic realizations of P, the morphisms from a symplectic realization X±-*P
P2 _

to a symplectic realization X2-*P are lagrangian submanifolds in X2^PXi , and

the composition of morphisms is set-theoretic composition of relations.

Proposition 3.1. Let (Γ=$ P, α, β) be an a-simply connected symplectic groupoid, and
Pl P2

X1-^ P and X2 -» P be complete symplectic realizations of P. Then any lagrangian

submanifold & c X2*PX~ is invariant under the diagonal action of Γ, where Γ acts
on Xl and X2 as defined in Theorem 3.1.

Proof. According to the proof of the preceding theorem, it suffices to show that
the flow of the vector field (Xp*h,Xp*h) leaves JS? invariant for any /ιeCx(P). Now
(Xp*h,Xp*h) is a Hamiltonian vector field in X2 x X^ generated by the function

(p*/z)(x2)-(/?*/2)(xι), which obviously vanishes on <£. Since & is a lagrangian,

( X * * ) is tanSent to ̂  Q E D
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Consequently, the "category" of complete symplectic realizations of P coincides
with the "category" of symplectic left Γ-modules.

The following theorem is one of the main results in this section. It plays a key
role in proving Theorem 3.3, and is in fact one of the principal motivations behind
the introduction of Morita equivalence of Poisson manifolds.

Theorem 3.2. Let P1 and P2 be integrable Poisson manifolds. P± and P2 are Morita
equivalent if and only if their a-simply connected symplectic groupoids are Morita
equivalent.

Proof. Let (G^P^aί^β^ and (#=*P2,α2,/?2) denote the α-simply connected
symplectic groupoids of P1 and P2, respectively.

Suppose that G and H are Morita equivalent with equivalence bimodule

(X\p\ σ). It follows from Theorem 2.1 in [XI] that P1<£-X^>P2 is a full dual pair.

Each p-fϊbre (σ-fibre respectively) is diffeomorphic to an α-fibre of H (a b-fibre of G
respectively), hence is connected and simply connected. Moreover, by Theorem 3.1,
both p and σ are complete Poisson morphisms. Therefore, P: and P2 are Morita
equivalent as Poisson manifolds.

Conversely, suppose that P{ and P2 are Morita equivalent integrable Poisson
manifolds. According to Theorem 3.1, X becomes a symplectic left G-module and
a symplectic right H-module (note that σ is anti-Poisson, so the groupoid action
of H should be a right action instead of a left action). We show below that these
two actions commute.

Given any #eG, xeX and fteH such that β±(g) = p(x) = u and σ(x) = α2(Λ) = v.
We may always assume that g = φΛ1(u) and h = \l/β2(v). Then

= g-(χ-h).

It remains to show that the left (right respectively) G (H respectively)-action
on X is free and proper so that G\X (X/H respectively) is anti-Poisson (Poisson
respectively) diffeomorphic to P2 (P^ respectively).

To show that G acts on every σ-fίbre freely and transitively, it is sufficient
to show that for any xεX, if u = p(x) and υ = σ(x), the map λ:β~l(u)-*σ~l(υ)
defined by λ(g) = g-x is a diffeomorphism. We shall use the same techniques as in
Theorem 3.1. to prove this.

For any yeσ~l(υ\ since σ"1^) is connected, there exists a product of
Hamiltonian flows φp generated by functions p*ft f so that y = φp(x\ Take
r = φ*(u)eβ~l(u); then λ(r) = r χ = φp(x) = y. Thus, λ is surjective. In fact, it can be
shown exactly by the same argument as above that λ has the path lifting property.
Therefore, A is a submersion. Moreover, dimσ"1(ϋ) = dimj?~1(M) by dimension
counting, so λ is a local diffeomorphism. Hence, λ is a covering map. However,
since σ"1^) is simpley connected, λ must be a diffeomorphism. Hence, it follows
that σ induces a diffeomorphism from G\X onto P2. This diffeomorphism is
anti-Poisson, since σ is an anti-Poisson map. Similarly, p induces a Poisson
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diffeomorphism from X/H onto P^. Therefore, G is Morita equivalent to H as a
symplectic groupoid. Q.E.D.

As an immediate consequence of this theorem, we have the following:

Corollary 3.1. The Morita equivalence of Poisson manifolds does give rise to an
equivalence relation in the set of all integrable Poisson manifolds.

Another very important consequence of Theorem 3.1, Theorem 3.2 and Propo-
sition 3.1 is the following theorem, which is indeed the main result of this section.

Theorem 3.3. Morita equivalent Poisson manifolds have equivalent " categories" of
complete symplectic realizations.

It is of the utmost importance for Morita equivalence of C*-algebras that equivalent
C*-algebras has equivalent categories of representations [Riel-Rie4]. In some
sense, the preceding theorem may be considered as a classical analogue of this
fact in Poisson geometry. Indeed, the preceding theorem is our main purpose of
introducing Morita equivalence for Poisson manifolds.

Remark. We will see in Sect. 5 that the converse of Theorem 3.3 is not necessarily
true as in the case of C*-algebras.

4. Morita Equivalent Regular Poisson Manifolds

One of the basic questions in the theory of Morita equivalence is the classification
of equivalence classes of Morita equivalent Poisson manifolds. This is relatively
simple to solve in the case of symplectic manifolds, as we have seen in Sect. 2.
However, this question becomes very difficult to answer for general Poisson
manifolds. In this section, we attempt to investigate this problem for regular Poisson
manifolds. First of all, we need to recall some definitions by Dazord.

Given a regular Poisson manifold P and a symplectic full realization p:X ->P,
let ̂  denote the characteristic foliation of P and π:v*^-*P be the conormal
bundle of 3F. For any peP and ΘGV*^, we denote (p*θ)# as the vector field along
p~1(p) defined by:

(p*0)#Jω = />*0, (1)

where ω is the symplectic form on X.

Definition 4.1. (Dazord [D/,D2]) We say that the fibre p ~ l ( p ) is complete, if for
all θev*^, the vector field (p*0)# on ρ~1(p) is complete.

Definition 4.2. (Dazord [D7,D2]) A symplectic realization ρ:X^>P is called a
realisation isotrope de Libermann (RIL in abbreviation) if p is a surjective sub-
mersion and all its fibres are connected, isotropic and complete.

A theorem due to Dazord (Theorem 6.1 [Dl]) asserts that any RIL is complete
as a Poisson morphism, i.e., a complete symplectic realization. In fact, as an
equivalent definition, a RIL is a complete symplectic realization that is a surjective
submersion with connected and isotropic fibres.

Suppose that (G^G0,ocl,βl) and (H=$H0,oc2,β2) are Morita equivalent
symplectic groupoids with equivalence bimodule (X;ρ\σ}. Consider the Stefan
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foliation 2F p n 3F0 on X, where 2F p and 3F0 are the foliations on X induced from
the p and σ-fibrations, respectively. We have the following:

Proposition 4.1. Suppose that both G0 and HQ are regular Poisson manifolds.
1. The foliation ^pr\^σ has constant dimension, and its quotient space Xί is a
Poisson manifold.
2. The natural projection τ'.X-^X^is a symplectic full realization.
3. The map P!^!-* GO (σί:Xί-^HQ9 respectively) naturally induced from p (σ

respectively) is a Poisson (an anti-Poisson respectively) map.
4. Every symplectic leaf of X1 is of the form ρ~1(LGo) = σ~1(LHo), which is

symplectically diffeomorphic to LGo x L~o, where LGo and L~o are related
symplectic leaves of G0 and H0 (see [XI] for the definition of related symplectic
leaves), respectively. Therefore, Xί is a regular Poisson manifold.

Proof. (1) We first show that the foilation J^nJ^ coincides with the foilation
induced from the /G-orbits (or /H-orbits) on X9 where IG (IH respectively) is the
isotropy groupoid of G (H respectively).

If x = g y for some 0e/G, then σ(x) = σ(g y) = σ(y) and p(x) = p(g y) = a^g) =
β^g) = p(y), in other words, x and y lie in the same leaf of J%n 2Fσ. Conversely,
if σ(x) = σ(y\ then x = g-y for some geG. Combining this with the condition
p(x) = p(y\ we have a^(g) = ρ(g-y) = p(x) = ρ(y) = βv(g\ i.e. geIG. Similarly, one
can prove that the foliation J% n &*σ coincides with the foliation induced from the
/^-orbits on X. Since G0 is a regular Poisson manifold, the isotropy group of the
symplectic groupoid G at each point of G0 has the same dimension. Hence, the
foliation J%n 3Fa has constant dimension. Moreover, since G acts on X freely and
properly and IG is a closed subgroupoid of G, 7G acts on X freely and properly.
Therefore, X/(^pn^σ) = IG\X is a smooth manifold. It is clear that the graph of
the foliation ^pn^σ:C = {(x,y)\p(x) = p(y\ σ(x) = σ(y)} is a coisotropic submani-
fold of X x X~9 since the mapp x σ:χι— >(p(x),σ(x)), from X to G0 x HQ , is a
Poisson map and C = X*(pXσ)X~. Then it follows immediately that X{ naturally
becomes a Poisson manifold [W4].

Claims (2) and (3) are quite obvious.
(4) Clearly, p — pγ °τ and σ = σ1°τ. Hence,

Since pl x σ^.X^ -+GQ x H~ is an injective Poisson immersion, L is a symplectic
leaf of Xί if and only if (p^ x σ^L) is a symplectic leaf of G0 x H~. Thus, our
conclusion follows immediately from this property. Q.E.D.

Remark. It is easy to see that the left G-action and the right H-action on X induce
a left Poisson G-action and a right Poisson H-action on Xί9 respectively, and these
two induced actions commute with each other.

Theorem 4.1. Suppose that (G^G0,(x.lyβ1) and (/ί=3H0,α2>j32)
 are Morita

equivalent symplectic groupoids with equivalence bimodule (X; p; σ). If both G and
H are cn-simply connected and their base spaces G0 and H0 are regular Poisson
manifolds, then the morphism τ'.X-^X^, as defined in the preceding proposition, is
a RIL.
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Proof. Since every τ-fibre is an intersection of a p-fibre and a σ-fibre, it is connected.
Moreover, since p-fibres and σ-fibres are symplectically orthogonal, all τ-fibres are
isotropic. It remains to show that all τ-fibres are complete. By J^Go and J*Ho, we
denote the characteristic foliations of G0 and //0, respectively, and by J*, we denote
the characteristic foliation of Xv. Given any zeX1 and any ώ in the conormal
bundle v*^, there exists an element ω in the conormal bundle of^Gϋ atu = pι(z),
such that p*ω = ώ, since J^ = p*J^Go. Therefore, p*ω = τ*p*ω = τ*ώ. Hence,
(τ*ω)# = (p*ωf.

To prove the completeness of (p*ω)#, let us denote the flow of (p*ω)# by φp

t

and the flow of (α*ω)# by φ*. It follows from the α-simply connectedness of G that
φp

t (x) = φ*(ρ(x))'X for all xeX. Hence φp

t is complete if φ*(p(x)) is a complete flow.
However, φ* is generated by the vector field (α*ω)#, which is tangent to the isotropy
group at p(x) and is right invariant, in other words, (α*ω)# can be considered as
a right invariant vector field of an isotropy group of the groupoid G, hence must
be complete. Q.E.D.

Theorem 4.2. Suppose that P^ and P2 are Poisson manifolds with symplectic
foliations being thefibrations n^P^-^Q^ and π2:P2->β2, respectively. Pί is Morita
equivalent to P2 if and only if there exists a diffeomorphism ψ'.Qι-+Q2 such that

Pι*ψP~> has a RILiA^P^P", with pr^τ and pr2°τ having connected and simply

connected fibres, where P1 *ψP2 ={(*> y)\xεPι ana y^^2 such that ^(πι(x))= π 2 ( y ) }
is equipped with the Poisson structure naturally induced from those on P1

and P~.

Proof. Let p = pr1°τ and σ = pr2°τ\ then both p and σ are surjective Poisson
submersions. For any feC^PJ and ^eC°°(P2),

{p*/,σ*^} = {τ*pr?/,τ*pr*0} =τ*{pr*/,pr*g} -0,

so p-fibres and σ-fibres are symplectically orthogonal. It follows from dimension
counting that dim X = dim Pί + dim P2. Therefore, the tangent spaces of p-fibres
are the symplectic complements of the tangent spaces of σ-fibres, and vice versa.
According to Theorem 6.1 in [Dl], τ is complete as a Poisson morphism. Since
both prί and pr2 are complete Poisson morphisms by construction, p and σ are
complete. Therefore, P1 and P2 are Morita equivalent as Poisson manifolds.

Conversely, if P t and P2 are Morita equivalent, there exists an equivalence

bimodule X:Pi+-X^+P2. Let G and H be the α-simply connected symplectic

groupoids over P^ and P2, respectively. Then G and H are Morita equivalent as
symplectic groupoids. Intoduce a map φ from Qλ to Q2 as follows. For any
xeβi, corresponding to the symplectic leaf π~ ί(x) in P1? there is a unique symplectic
leaf of P2 assumed to be n2

1(y) for some yεQ2. Then, this correspondence x\-+y
defines a map ψ from Q1 to Q2. It is clear that this map ψ is in fact a diffeomorphism
from Q1 onto Q2 and P1 *ψP2 is Poisson diffeomorphic to Xl9 the Poisson manifold
introduced in Proposition 4.1. Hence, it follows from Theorem 4.2 that
r.X-tP^p-teXJisa RIL. Q.E.D.

As a direct consequence of this theorem, we have the following condition
characterizing regular Poisson manifolds Morita equivalent to zero Poisson
manifolds.
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Theorem 4.3. Let P be a regular Poisson manifold with symplectic βbration π:P— > β
and [ζ] the fundamental class of P. P is Morita equivalent to Q with zero Poisson
structure if and only if all the symplectic leaves ofP are simply connected and [ζ] = 0.

Proof. Suppose that P is Morita equivalent to Q equipped with the zero Poisson
structure. According to Theorem 4.2, there is a diffeomorphism ψ' Q-+Q such that
P*ψQ~ has a RIL. Without loss of generality, we may always assume that φ = id
so that P*</,β~ = P. Therefore, we have a RILτ Jf-^P such that both τ and π°τ
have connected and simply connected fibres. By ,̂ we denote the reseau over P
associated to this RIL; then τ~i(p)^v*&r/0lp for any peP, where 2F is the
characteristic foliation of P and v*^ is the conormal bundle of 2F (see [Dl, D2] for
more details). Since both τ~1(p) and v*ϊF are simply connected and &p is a discrete
group, 3%p must be 0. Hence, & = 0. It follows from the equation d Jv = [ζ]
(Theorem 5.2 [D2]) that [ζ] =0.

Moreover, for any geβ, from the fibration (τ-fibre)-^(πoτ)~1(^)->π~1(^), it
follows that

Thus, π ί ( π ~ ί ( q ) ) = 0.ln other words, every symplectic leaf of P is simply connected.
Conversely, if [ζ] = 0, then r.v*^ -»P with the symplectic form τ*σ + i*dλ is

a RIL of P (cf. [Dl]), where σeί22(Γ*P) is a closed extension of the symplectic
forms along symplectic leaves of P, dλ is the standard symplectic structure on T*P
and i:v*έF->T*P is the natural inclusion. It is quite obvious that τ~l(p) = v*^
is simply connected for any peP. Given any symplectic leaf L of P, which is
assumed to be simply connected, it follows from the exact sequence

0-π1(τ-Γιbre)->π1(τ"1(L))-^π1(L)-0

associated to the fibration: (τ-fibre)-^τ~1(L)^L that τ-1(L) is simply connected.
The conclusion thus follows immediately from Theorem 4.1. Q.E.D.

Remark. It would be interesting to figure out the relation between the fundamental
class of Poisson manifolds and the Dixmier-Douady invariant of continuous trace
C*-algebras [Dix]. It seems that the preceding theorem is just a classical analogue
of a well-known similar fact in C*-algebras.

5. Morita Equivalence Invariants

In this section, we will continue to study Morita equivalence of regular Poisson
manifolds. In particular, we will concentrate on the simplest case of Poisson
manifolds where the characteristic foliations are trivial fibrations P = S x Q -> Q.
In this case, a complete invariant of Morita equivalence is obtained, which we
hope is still valid for general Poisson manifolds with locally trivial symplectic
fibrations. First of all, we start with a purely topological result.

Theorem 5.1. Lei Tk-+E^>S be a torus principal bundle with Chern class
([Cι],...,[Cfc]). E is simply connected if and only if S is simply connected and
per([Cj],...,[Ck]) = Zfc, where per([C1],...,[Ck]) 1*5 the image of the group
homomorphism φ:H2(S,Z)-+Zk defined by φ(c) = «[C1],c>,...,<[Q],c»/or all
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Proof. From the exact sequence

0, (2)

it follows that if E is simply connected, so is 5. Hence, it suffices to show that the
statement E is simply connected is equivalent to per( [Cj ],..., [Ck] ) = Zk under
the simply connectedness assumption on S. First, it follows from the universal
coefficients theorem that H2(S, Z) = Horn (H2(S, Z), Z) if S is simply connected.

Let Tk->ETk-+BTk be the universal bundle. There exists a map f:S^BTk

such that E =f*(ETk\ Then/*:#2(£Γfc, Z)-+H\S, Z) maps a family of generators
of H2(BT\Z) to the Chern class ([CJ^.^CQ]). In other words, if we identify
H2(BTk,Z) with Zk, then/* maρs(n l 5...,n f c) to ^[CJ + ••• + nk[Ck]. Hence,

Z) = Zk is given by c^«C1,c>,,..,<CΛ,c». Therefore,

On the other hand, the homomorphism φ:π2(S)-+π1(Tk) in the exact sequence
(2) is the composition of f^:π2(S)( = H2(S9Z))-^π2(BTk)( = H2(BT\Z)) with
δ:π2(BTk)-+π1(Tk). Hence, saying that E is simply connected is equivalent to
saying that φ is surjective, or that f^ is surjective. In other words, it is equivalent
toper([C1],...,[CJ) = Z\ Q.E.D.

Given a Poisson manifold in which the characteristic foliation is a trivial
fibration π:P = S x β->β, the Poisson structure is described by a smooth map
from Q to Z2(5), the space of all closed two-forms on S, denoted by {ωy|yeβ}.

A theorem due to Dazord [Dl] asserts that P is integrable if and only if

K] = [ω0]+Σ^.(y)[C,.], Vyeβ (3)
i = l

for some ^1(y),...,^(y)eCQO(β) and [C1],...,[Q]G//2(S,Z) such that (gl9...9gk):
β->Rk is a submersion and [CΊ],...,^] are linearly independent in
H2(S,R).

Note that per ( [Cl ],..., [Ck]) is then a subgroup of Zk of rank fc. In general,
per([CJ, . . . , [Ck]) Φ Zk. However, we can always choose { g t } and { [CJ } suitably
so that ρer([CΊ], . . . , [Ck]) = Zfc. Below, we say {ωy} is of a standard form if it is
given by Eq. (3) and per([C1],...,[Ck]) = Z*.

In fact, any Poisson manifold with the Poisson structure given by Eq. (3) admits
a RIL [D1,D2], which can be constructed as follows. First, note that there is a
family of one-forms {θy\yeQ} on S such that

where ds is the exterior differential with respect to S. Let E — > S be a Tk-

principal bundle with connection ( Θ ί 9 . . . 9 θ k ) and curvature (C1 ?...,Ck). Let
/ k \

T*ρ/ X Rdgt and

= P*(ω0 + Σ ΛWC,) + φ*(dβ,) + Σ n*^^)) A 0, + f
\ i = ι / i = ι \

(
k

ωO + Σ Qi(y)Ci } + Φ*(^y) + Σ π*(^0i(jO) Λ ^i + ( dλ + Σ ^9i Λ 7i
i = l



Morita Equivalence of Poisson Manifolds 505

/ / * \
where Θy is considered as a one-form on P of type (1,0), I Γ*β / Σ ^^9ι } *s the
quotient space of T*Q under the Reaction defined by ^ ' ί=1 '

π:( T*β/ Σ R^0i )~>(2 is trιe natural projection, (7ι,...,y f c) is a connection of
V / ί = ι /

this principal bundle, dλ is the standard symplectic 2-form on Γ*Q and φ — pxπ.

Then (/", ω) —>P is a RIL. Now we can state our main theorem of this section as

the following:

Theorem 5.2. Let Pi = Sl x Qi and P2 = S2x Q2 be Poisson manifolds with Poisson
structures {ωy\yeQι} and {σz\zeQ2}, respectively. Suppose that both S^ and S2 are
simply connected. Then P^ is Morita equivalent to P2 if and only if {ωy} and {σz}
have the following standard forms:

for some diffeomorphism φ:Q^ -*Q2

Proof. Suppose that P1 and P2 are Morita equivalent. By Theorem 4.2, there
exists a diffeomorphism ψ:Qι~+Q2 such that P±*^P2 has a RIL. Under this
diffeomorphism ψ, we may assume that Q± — Q2 = Q. Then, Pι*^P^ is Poisson
diffeomorphic to 5X x 5^ x Q with Poisson structure given by {(ωr — σy)\yeQ}.
Since P^P" admits a RIL, according to Dazord [D1,D2], {(ωy, — σy)} has a
standard form:

k

[(ωy, - σy)] = [(ω0, σ0)] + Σ

Therefore,

and

It remains for us to show that per([C1],...,[Q]) = per([£)1],...,[Z)J) = Zk. Let
τ .X^Si x S2 x Q be a RIL, such that pr^τ and pr2°τ have connected and simply
connected fibres, and let $ be the reseau of this RIL. We may always write
3& = p*3%Q for a lattice $Q over Q, where p is the natural projection from
Sx x S~ x Q onto Q [D1,D2]. By Theorem 6.1 in [D2], τ induces a RILC:

τ':X-^(S1 xS2 x T*Q)/3l®R^S1 x S2 x(T*Q/^Q®R),

which is in fact a Tfe-principal bundle having Chern class ([Cl5 — D l50],...,
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[Cfc, - Dfc,0]) under a suitable basis. Let Xs^y = τ~1(Sί x {s} x {y}) for some fixed
seS2 and yeQ. Then XSf3, = (pr2°τ)~ x(s, y) is simply connected. On the other hand,
τf:XSty^Sl x {s} x (T*β/^® R)is clearly a Tfe-principal bundle with Chern class
( [Cl , Ό], . . . , [Q, 0] ). It follows immediately from Theorem 5. 1 that ρer( [Q ],..., [Q] ) =
Zk. Similarly, per^], . . . , [D J) = Zfe.

Conversely, without loss of generality, we assume that Qι=Q2 = Q, and
PI = Si x Q and PI = ^2 x Q have Poisson structures {ωy} and {σy} given by the
standard forms:

k
[ω,] = [ω0] +

ί = l

and
/c

[>,] = Oo] + Σ fc
i= 1

respectively. Thus P = Pι*^PJ = $1 x $ϊ x Q has Poisson structure {(ωy, — σy)}.
According to the observation preceding Theorem 5.2, P has a RIL of the form

/ / k \
φ\E x T*Q / 1 ]Γ Rdgt I -> P, where £ can be taken to be any Tk-principal bundle

/ \ i = l /

over Sί x S2 with Chern class ([C1? — Dι],...,[Ck, — Dk]). In fact, we can
construct E in the following manner. Take a Tk-principal bundle E± over Si with
Chern class ([Cι],. .,[Cfc]) and a Tk-principal bundle E2 over S2 with Chern
class ([-/>J,...,[-/>fc]). Let E = (E1 x E2)/T\ with Γfc acting on E1 x E2

diagonally. It follows from Theorem 5.1 that both E1 and E2 are simply connected.
By πt , we denote the natural projection from P onto Pf, (i= 1,2). Then for any

which is obviously connected and simply connected. Similarly, every (π2°φ)-fibre
is also connected and simply connected. Q.E.D.

Remark. With the aid of the preceding theorem, we can construct a counterexample
to the converse of Theorem 3.3. Take a manifold Q and a function geC°°(Q) such
that dg^Q everywhere and g^2g°ψ for all diffeomorphisms ψ:Q-+Q, which is
always possible. For instance, we can take Q = (0, 1) and g(y) = y. Let S2 be the
two-sphere with the standard symplectic structure ω, and let Pί = S2 x Q with
the Poisson structure ωy = g(y)ω and P2 = S2 x Q with the Poisson structure
ωy = 2g(y)ω. Then, according to Theorem 5.2, Pί and P2 are not Morita equivalent.
However, it is obvious that P^ and P2 have equivalent "categories" of complete
symplectic realizations.

Note that the standard form in Eq. (3) is not unique. In fact, if both [ωy] =

l>o] + Σ 0/0>)[CJ and [ωj,] = [ω'0] 4- £ 0fty)[C;] are standard forms of {ωy},
i = 1 i = 1

then ([C!],...,[Cfc]) and ([CJ,...,[C;]) differ by a linear transformation of
G/(fc,Z), as do (dgl9...9dgk) and ( d g ' 1 9 . . . 9 d g ' k ) . In order to find out the intrinsic
invariants of Morita equivalence, we need to recall the constrμction of the variation
lattices ^β, first introduced by Dazord [D1,D2]. It will be useful later on to look
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at this construction in a slightly more general context. Let P be a Poisson manifold
with locally trivial symplectic fibration π:P->(λ Associated to this fibration, there
is a vector bundle H2(S, R)-+Ξ2-^Q, which has a natural flat connection V. Here
S is the symplectic leaf of P. The Poisson structure on P defines a global section
of this bundle, which is denoted by ω. Define a discrete subbundle 0fi of T*Q as
follows. For any yeQ, ξε&f c T*β if and only if there is a ceH2(π~l(y\ Z) such
that

$Q is a covering space over Q, which plays a crucial role in the Poisson integrability
theory of Dazord (see [D1,D2] for more details). Since $Q measures the variations
of symplectic structures along symplectic leaves of the Poisson manifold P, we call
it the variation lattice of P.

In particular, if P = S x Q with Poisson structure {ωy} given by a standard

form as in Eq. (3), then $Q = £ Zdgt. Conversely, we have
; = i

k

Lemma 5.1. If the variation lattice &Q of a Poisson manifold P = S x Q is £ Zdgt

and S is simply connected, then {ωy} has a standard form given by Eq. (3).

This fact is more or less contained in [D2]. Here, for completeness, we outline a
proof.

Proof. By Φv, we denote the group homomorphism from H2(S,Z) to
k y

£ Zdgt(y) c T*β given by Φy(c) = $dωy9 Vce/f2(S,Z). Fix some point yQeQ, and
i= 1 c

let Φ0 = Φyo. Then, there are cl9...9ckeH2(S,Z) such that Φ0(ct ) = dg^y^
(i= l , . . . ,/c). Obviously, cί9...9ck are linearly independent in //2(S,R), since

dgι(yo), ">dgk(yQ) are linearly independent. Now, clearly we have the
decomposition

H2(S, Z) = ker Φ0 © span {c t,..., ck}.

Since H2(S,Z) = Hom(H2(S,Z),Z), there exist [C1],...,[Cfe]eH2(S,Z) so that
< [Cf], c7 > = (50 and < [CJ, ker Φ0> = 0, V i, 7. Thus, it is clear that per([Cj],..., [CJ) =
Zfc and

k

Φ0(c)= X Φo(Ci)<[CJ,c>, VceH2(S,Z).
ί= 1

k

Since ]Γ Zdgf f is a discrete bundle, Φy(cf) = ^/(y) and ker Φy = ker Φ0 for all

k

and i = l , . . . , / c . Hence, Φy(c)= ^ ^(Ci)<[CJ,c>, Vc6H2(S,Z) and j eβ, i.e.,
ί= 1

c ί = l

yTherefore, d[ωy] = Σ ^/(^[CJ. Thus, the conclusion follows immediately.

Q.E.D
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It is worth noting that £ Zdgt= £ Zdht if and only if (dgί,...,dgk) and
i = l i = l

(dhl9. . . , dhk) differ by a linear transformation of Gl(k\ Z). Finally, with Lemma 5.1,
we can formulate the following equivalent version of Theorem 5.2.

Theorem 5.3. Let Pt and P2 be Poisson manifolds as in Theorem 5.2, and let &®
and <%% be their variation lattices, respectively. Pl and P2 are Morita equivalent if

and only if there is diffeomorphism ψ' Qι^>Q2 such that ψ*(3l$) = 9t^.

We conclude this section by the following:

Conjecture. Suppose that P1 and P2 are Poisson manifolds with symplectic
fibrations πί:Pί-+Qί and π2:P2-+Q2, respectively, so that both π j and π2 are
locally trivial as fibrations and have connected and simply connected fibres. Let
#J and $% be the variation lattices of P1 and P2, respectively. P1 and P2 are
Morita equivalent if and only if there is a diffeomorphism ψ'.Qι~+Q2 such that
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