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Abstract. We classify the finite-dimensional irreducible representations of the
quantum affine algebra Uq(sl2) in terms of highest weights (this result has a
straightforward generalization for arbitrary quantum affine algebras). We also
give an explicit construction of all such representations by means of an evaluation
homomorphism Uq(sl2)-^Uq(sl2), first introduced by M. Jimbo. This is used to
compute the trigonometric R-matrices associated to finite-dimensional represen-
tations of Uq(sl2).

1. Introduction

A quantum group is a Hopf algebra Uq(q\ depending on a parameter geC, which
"tends to" the universal enveloping algebra U(a) of a Lie algebra a as q tends to
1. In this paper, we develop a highest weight theory for the finite-dimensional
representations of Uq(a) when α is the affine algebra s/2, assuming that q is not a
root of unity. We also give a concrete construction of all finite-dimensional
irreducible representations of Uq(sl2). Many, but not all, of the results extend
without difficulty to the case of Uq(g) with g any finite-dimensional complex simple
Lie algebra.

As in the case of the quantum groups Uq(g) [10], where there are 2l irreducible
representations of any given highest weight (/ = rank g), the finite-dimensional
irreducible representations of Uq(sl2) are of 4 types depending on the choice of
two signs. One of our main results (Theorem (3.5)) establishes a one-to-one
correspondence between (isomorphism classes of) finite-dimensional irreducible
representations of Uq(sl2) of each type and polynomials with constant coefficient
1. A similar result was proved by DrinfeΓd [4] for Yangians, which are deforma-
tions of t/(g[f]) (but in that case there is no question of signs).

In the cΓassical case, the finite-dimensional irreducible representations of g are
constructed as follows [1]. One proves first that the centre of g acts trivially on
all such representations; thus, one is considering representations of the loop algebra
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= g[ί,ί~1]. For any αe(Cx one has the evaluation homomorphism
eva:L(g)—>g obtained by setting t = a. The pull-back by evα of any representation
K of g is a representation V(a) of L(g), and every finite-dimensional irreducible
representation of L(g) is isomorphic to a tensor product of such evaluation
representations. Moreover, a tensor product F^αJ® *~®Vr(ar) is irreducible if
and only if the Vi are irreducible and the a{ are distinct.

Jimbo [8] defined a quantum evaluation homomorphism Uq(sl2) ^Uq(sl2), so
evaluation representations can still be defined. We prove that every finite-
dimensional irreducible representation of Uq(sl2) on which the centre acts trivially
is a tensor product of evaluation representations; this accounts for two of the four
types, and the remaining two types are obtained by twisting with a certain
automorphism of Uq(sl2). The conditions for such a tensor product to be irreducible
are more subtle than in the classical case, but can be described combinatorially
in terms of the polynomials associated to the factors in the tensor product. An
analogous theory for Yangians was presented in [2].

Jimbo also pointed out in [7] that representations of quantum loop algebras
lead to trigonometric solutions of the quantum Yang-Baxter equation. In Sect. 4,
we compute the solutions associated to all the finite-dimensional irreducible
representations of Uq(sl2).

2. Quantum Affine Algebras

Throughout this paper, geCx is assumed not to be a root of unity.

2.1. For any integer r > 0, define

s=l

and set [0]̂ ! = 1.

2.2. We begin with the definition of a quantum affine algebra in terms of Chevalley
generators. We have modified the presentation given in [4] slightly to enable us
to specialize q, and to simplify certain formulae.

Definition. The quantum affine algebra Uq(sl2) is the associative algebra over C
with generators e f , K* *, i = 0, 1, and the following relations:



Quantum Affine Algebras 263

(efΫef - mq(e*)2efe* + [Ώtf ef(e*)2 - ef(e*)3 = 0, (i Φ j).

Moreover, Uq(sl2) is a Hopf algebra over C with comultiplication

and antipode

Remark. According to DrinfeΓd [3], this deformation of U(sϊ2) is essentially
characterized by the existence of a Cartan anti-involution given by:

2.3. In [4], DrinfeΓd gave a second realization of quantum affϊne algebras which
is more convenient for the concrete construction of representations given in this
paper. We recall this definition now; again we have modified it appropriately to
enable us to specialize q.

Theorem. The quantum qfflne algebra Uq(sl2) is isomorphic to the associative algebra
over (C with generators x^ (keZ),hk (kεZ — {0}), X*1, central elements C±ί and
the following relations:

Ck-C'k

*'~'/r * q-q'1 '

Khk = hkK,

± 2 ± ± - ± 2 ± ± — ± ±

"

where the ψk and φk are defined by the following equalities of formal power series:

k = 0
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k=0 \ k=l

The isomorphism with the presentation in (2.2) is given by:

e*\-*x*9

Remarks.
1. The isomorphism given in [4] is not quite correct. (For example, #Ό and ̂
commute but their images do not.)
2. No explicit formula for the comultiplication is known in terms of this
presentation. Partial information, sufficient for our purposes, is given in
Proposition (4.4).

2.4. In the next section we shall make use of several subalgebras of Uq(sl2)
isomorphic to Uq(sl2). The quantum group Uq(sl2) is generated by elements
e±, K±1 with relations

q-q

The comultiplication is given by

Δ(K) = K®K.

It iŝ  clear from the presentations (2.2) and (2.3) that Uq(sl2) is a subalgebra of
Uq(sl2) in many ways. In fact, it is easy to check that, for all ΐeZ, the map

is a homomorphism Uq(sl2)-+Uq(sl2). (It follows from Proposition (4.1) that the
map is injective.) Let Ul be the image of this map; note that for i = 0, 1, Ul is the
"diagram" subalgebra of Uq(sl2) generated by e^_i and K^r

3. Finite-Dimensional Representations

In this section we state one of the main results of this paper, which gives a
parametrization of the finite-dimensional irreducible representations of Uq(sl2) in
terms of polynomials with constant coefficient 1. The proof is given in this section
and the next.

3.1. We begin with the following analogue of the easy half of the Poincare-
Birkhoff-Witt theorem.

Definition. Let H (respectively N + ) be the subalgebras of Uq(sl2) generated by
C±\K±1 and hk for k =£ 0 (respectively by x£ for all kεZ).
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Remark. It is easy to see from the presentation (2.3) that H is also generated by
{C*1,^-* f o r k £,,()}.

Proposition. We have Uq(sϊ2) = N_HN + .

The proof is almost the same as that for Lie algebras given in [5] (cf. [2],
Proposition (1.11)).

3.2. This motivates the following definition.

Definition. A vector Ω in a representation V of Uq(sl2) is a highest weight vector
if Ω is annihilated by x£ for all fceZ and is an eigenvector of every element of H.
The representation V is a highest weight representation if it is generated by a highest
weight vector.

Proposition. Every finite-dimensional irreducible representation of Uq(sl2) is highest
weight.

Before giving the proof of this proposition, we recall from [10] that there are
exactly two irreducible representations K π ε ,ε= ± 1, of Uq(sl2) of each dimension
n+ 1 ̂  1. In fact, VAtε has a basis {ί;0, vl9...9vn} and the action is given by

One can obtain Kπ _ x from VnΛ by twisting with the automorphism of Uq(sl2)
given by

Proof of Proposition (3.2). Let V be a finite-dimensional irreducible representation
of Uq(sl2). Assume for a contradiction that V contains no non-zero vectors
annihilated by xfc

+ for all fceZ. Let 0 Φ veV be any eigenvector for the action of
X, say

K v = λυ9

By the assumption, there is an infinite sequence of integers k l 5 k2, &3, . . . such that
the vectors v9x^ v9x^2x^ v9x^x^2x^'V9... are all non-zero. Since they are
eigenvectors of K with distinct eigenvalues λ9q

2λ9q
4λ9q

6λ9...9 they are linearly
independent. This contradicts the finite-dimensionality of V.

Hence, the subspace K0 = [veV\x£ v = Q for all /ceZ} is non-zero, and is easily
seen, using the relations in (2.3), to be preserved by the action of the commuting
operators K0,Kl. Let ΩeV0 be a simultaneous eigenvector of K09K1. By
considering the action of the two "diagram" subalgebras (7°, Ul of Uq(sl2), and
using the preceding remarks, it follows that

KiΏ=εiq
niΩ, ί = 0, 1 (*)

for some εi ,== ± 1 and some integers n0 ^ 0, nί ^ 0. This implies that

KCίΏ=εl(εQεl)
iqnι+i(no+nι>Ω (**)

for all i. By applying the preceding remarks to the action of U\ it follows that the
exponent of q on the right-hand side of (**) must be non-negative for all i. Hence,

CΏ=ε0εiΩ. (***)
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It now follows from the relations (2.3) that H acts on V by a commuting family
of operators. Since H clearly preserves the subspace K0, we may therefore assume
that Ω is a simultaneous eigenvector of every element of H. Then Ω is a highest
weight vector for the action of Uq(sl2) on K, and Ω generates V because V is
irreducible.

From equation (***) in the preceding proof, we obtain

Corollary. Let V be a finite-dimensional irreducible representation of Uq(sl2) of type
(1,1). Then, C acts as 1 on V.

3.3. Let Uq(L(sl2)) denote the quotient of Uq(sl2) by the two-sided ideal generated
by the central element C. Note that Uq(L(sl2)) is a Hopf algebra which is a
deformation of the universal enveloping algebra of the loop algebra L(sl2) =
s/zfcr1].

The following result, together with Corollary (3.2), shows that, as far as
finite-dimensional representations are concerned, it is enough to consider
representations of Uq(L(sl2)).

Proposition. For any εo^ = ± 1, there is an algebra automorphism ofUq(sl2) such
that

This is easily verified using the presentation (2.2). In terms of the other presentation
(2.3), one can check that the automorphism is given by

if fc>0,

Except for the trivial case ε0

 = ει = 1> these are not Hopf algebra automorphisms.

3.4. A representation V of Uq(L(sl2)) is highest weight if it is generated by a vector
Ω which is annihilated by the xk for all /ceZ and such that

\l/kΏ=d^Ωί φkΏ=dΓΩ
i n , K ' ' «• AC

for some complex numbers dk (k ̂  0), dk (k ̂  0); note that d^ d^ = 1. The collection
of numbers d = {dk } is called the highest weight of V.

As in the case of semisimple Lie algebras, there is a universal highest weight
representation M(d) of Uq(L(sl2)) of any given highest weight d, which may be
defined as the quotient of Uq(L(sl2)) by the left ideal generated by {xk

(keZ),φk — dkΊ (/c^O), φk — dk \ (fcrgO)}. Moreover, every representation of
highest weight d is a quotient of M(d\ and M(d) has a unique irreducible quotient
V(d).

One of our main results is the following theorem, which gives the precise
condition for V(d) to be finite-dimensional.

Theorem. The irreducible highest weight representation V(d) is finite-dimensional if
and only if there exists a polynomial P with non-zero constant term such that
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in the sense that the left-hand sides of these equations are the Laurent expansions
of the right-hand sides about u = U and u = oo respectively.

Remarks.
1. The polynomial P associated to any finite-dimensional representation of
Uq(L(sl2)) in Theorem (3.4) is unique if (for example) we normalize it so that the
constant coefficient is equal to 1. We shall assume that this is done from now on.
2. A similar result holds for an arbitrary quantum loop algebra Uq(L(g)\ with g
a finite-dimensional simple Lie algebra. To every finite-dimensional irreducible
representation of Uq(L(g)) is associated an /-tuple of polynomials, where / = rank g.

3.5. The following result is the crucial step in the proof of the "only if" part of
Theorem (3.4).

For any ξeUq(L(sl2)), we introduce the elements

?(r) _ ζ
^ r- -, .'

Proposition. There exist elements Pr9 QrεH, r ̂  0, such that:

(0,
Pr = (- l)V2χ0

+wxΓ(1 >K-r (mod UX+),

Qr = (-iγq" 2χ+_^χ-^Kr (modUX+),

for r>0, and P0 = Q0 = 1;

for r > 0;

(iϋ)r

(-iγq-*-»x^-»x^= - Σ xIjQr.j-^-'^ (moάUX+l
7 = 0

for r>0.

Remark. In the classical limit g-»l, the formulae in Proposition (3.5) appear in
[1] (see Eq. (4.5) in [1], for example). In the classical case, the Pr are interpreted
as the coefficients of a certain polynomial and the classical limits of the
(q — q~1)~1ψr as the sum of the rίh powers of its roots. Thus, part (ii) may be
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interpreted as a g-analogue of Newton's formulae relating the elementary
symmetric functions and the power sums.

Part (i) of the proposition can be reformulated as follows. Define

r = 0

Corollary. We have

Ψ(u) = K

Φ(u) = K-1

as elements of H[[u]~\ and ̂ [[w"1]] respectively.

It is now easy to prove the "only if" part of the theorem. Assume that dim V(d) < oo
and let reZ+ be the highest weight of V(d) for the action of the ί7^(s/2)-subalgebra
17° of Uq(L(sl2)), i.e. for the highest weight vector Ω of V(d\ we have

K Ω=qrΩ.

From [10], it follows that the t/°-subrepresentation of V(d) generated by f2is the
(r-fl)-dimensional irreducible representation of U° and, in particular, that

From Proposition (3.5) (i), it follows that

0>(u)Ώ=P(u)Ω

for some polynomial

of degree r. The first equation in the statement of Theorem (3.4) now follows from
Corollary (3.5).

To prove the second equation in Theorem (3.4), apply x ΐ n _ 1 ? π ^ 0 , to both
sides of the first congruence in Proposition (3.5) (πi)r+ι. Considering the action
on Ω gives

n r — n

Σ d-kπr-n + k= Σ dkπr~n-k
k = 0 /c = 0

for 0 ̂  n ̂  r, and

for n>r. Note that, by Proposition (3.7) (ϋ)r_M, the right-hand side of the first
equation is equal to
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Multiplying the nih equation by ur~n and summing from n = Q to oo then gives

as required.
This completes the proof of the "only if" part of Theorem (3.4). The proof of

the converse will be given in Sect. 4.

Remark. By considering the action of the subalgebra I/1, one can prove similarly
that

Ά(u) Ω=Q(u~l)

for some polynomial β of degree r, and that

It follows that Q(u) = urP(u~1).
We now turn to the proof of Proposition (3.5). We shall only prove the formulae

involving the Pr; the Qr case is similar. We define the Pr inductively using (ii)Γ and
P0 = 1. Then the first formula in (i)r follows immediately from that in (iii)r by
multiplying on the left by x* . We prove the first formula in (iii)r by induction on
r, the case r = 1 being trivial.

For the inductive step, the crucial result is the following formula:

(iv)r

X + Wx-fr+^S^-^-X + W x - W + JL-L^^x + ir-l^-W]^ (mθdUX + ).

q + q

Assuming this for a moment, we obtain, using (iii), and (i)r,

χ + (r)X ι-(r+l) = ̂ -rχι-(_1^-raχrpr + _i^_ί-r(r-l) £ _ [2] Γ+ p^ ι Rr

q + q j=o
(modUX+l

which gives (iii)r + 1 after some simplification.
Turning now to (iv)r, we begin by proving

(v)r

In fact,
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Now
r-l

i = 0

r- 1

= L^Jg 2-( v^O ) Xl vX0 )

using X^XQ =q2x^x^. Thus,
(vi),

Hence,

1 / r

r +(r+l) γ--ι _ * I TT π-2j
C o ' l ] ~

after summing the geometric series. This proves (v)r.
A similar argument using

proves

x0 x1 =

Using (v) r_1 ? we have

Γ« (using (vi),.!)

Γw (modl/A-+)
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using (v)^. Hence,

(modl/A-+)

γ + (r)v-(r) , ,,-2r+l κ-γ + (r- 1) J L"l?-*l J r- H , -r + 1 if γ + (r- 1)Γ
0 x1 -hg ΛXO < -- _— q --

using (vi)J.. This simplifies to

and (iv)r is proved.

4. Evaluation Representations

4.1. In this section we define a family of type (1, 1) representations of Uq(sl2\ Their
existence depends on the following result.

Proposition. For any αe(Cx, there is a homomorphism of algebras Q\a:Uq(sl2)-^
Uq(sl2) such that

for all keZ.

Proof. We first construct evα in terms of the Chevalley generators. Set

To show that this defines a homomorphism Uq(sl2)-^Uq(sl2), one must check that
the relations in (2.2) are satisfied. This is immediate except for the four quartic
relations, which reduce to

and a similar relation with + and — interchanged. This is easily verified using
the defining relations of Ut(sl2). Using the isomorphism in (2.3), we find

evα(C)=l,
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We find from these equations and the relation

that

q-q

The formulae in the statement of the proposition can now be proved for k ̂  0 by
induction, using

The proof for k < 0 is similar.

Remark. The classical limit of evfl is the homomorphism L(s/2) = s/2[ί, ί~1]->5/2

is obtained by setting t = a. We refer to evα as an evaluation homomorphism.

4.2. Representations of Uq(sl2) can thus be obtained by pulling back representa-
tions of Uq(sl2) by the homomorphisms evα. It is clear that the representations
VnΛ of Uq(sl2) lead to representations of Uq(sl2) of type (1,1), but that the
Vn f _ ! do not; we denote VnΛ simply by Vn from now on.

Defmitjon. For any integer n ̂  0 and any αeC x, the evaluation representation Vn(a)
of Uq(sl2) is the pull-back of the representation Vn of Uq(sl2) by the evaluation
homomorphism eva:Uq(sl2)->Uq(sl2).

Remark. The representation V0(a) is trivial for all αeCx but we shall see that for
n ̂  1, the representations Vn(a) are all distinct. Moreover, the Vn(a) are irreducible
since evfl is surjective. Since evfl(C) = 1, the Vn(d) may be regarded as representations
of Uq(L(sl2)).

Proposition. The action of the elements xk

+ on Vn(a) is given by:

In particular, Vn(a) is a highest weight representation with highest weight vector v0.

Proof. This follows immediately from Proposition (4.1) and the formulae preceding
the proof of Proposition (3.2).

Corollary. The polynomial P associated to Vn(a) is given by

= (l-qn~lau)(l-qn'3au)" (l-q-n+ΐau).

Proof. We must compute the eigenvalues dfc

+ of ψk on the highest weight vector
v0. Now, for fc>0,

while ψQ ΌO = K-VQ = qnv0.
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Hence,

i^-M-,-,^^

We must therefore check that

P(M) l-^"1^ '

which is clear.

4.3. Before studying the evaluation representations further, we pause to complete
the proof of Theorem (3.4). For this, we need the following multiplicative property
of the polynomials associated to the finite-dimensional irreducible representations
by the "only if" part of Theorem (3.4) which we have already proved.

Proposition. Let V and W be finite-dimensional representations of Uq(L(sl2)) and
assume that the tensor product V® W is irreducible. Let PV,PW and Pv®w be the
polynomials (with constant coefficient 1) associated to V, W and V® W in Theorem
(3.4). Then,

Corollary. Let V and W be finite-dimensional representations of Uq(L(sl2)) If V® W
is irreducible, then it is isomorphic to W®V.

Remark. There are simple examples of finite-dimensional representations V and
W of Uq(L(sl2)) for which V® W is not isomorphic to W® V (see the remark at
the end of Subsect. (4.8)).

4.4. The proof of Proposition (4.3) depends on the following partial description
of the comultiplication of Uq(L(sl2)) in terms of the presentation in (2.3). Let X±

denote the subspaces of U = Uq(L(sl2)) spanned by the x£ (feeZ).

Proposition. The comultiplication Δ of U satisfies:

(i) modulo UX2

+®UX_,
k

\ = x£®K+l®x£ + X x£_.®\l/h (k^0),
i = l

fc-l

) = x ΐ f c ® K ~ 1 -f 1 (x)x^k 4- X xί f e + ί®φ-ι, (k> 0),

(ii) modulo UX+®UX2_,
k-l

k

i=l
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(iii) modulo UX+ ® UX_ + UX. ® UX + ,

Proo/. The formulae are proved by induction on fe. The initial case of each of the
six formulae follow from the action of Δ on the Chevalley generators given in
Definition (2.2), and the isomorphism in Theorem (2.3). One then obtains

Using the relations

the first of the formulae in parts (i) and (ii) follows. The rest of parts (i) and (ii) is
proved similarly. Finally, part (iii) follows from parts (i) and (ii) using (for example)
the relations

k if k> 0,

Remark. This proposition can be formulated most simply by introducing the
elements

Ψ(u)=

φ(u)= £ φ_ku \

fc^O fc<0

of the Hopf algebras of formal power series Uq(L(sl2}}®<£\_[u\~\ and Uq(L(sl2))(
<C[[u~1]]. The first formula in the proposition is equivalent to the statement that

modulo (ί/X+ ® I/^-)[[M]]; the next three formulae can be expressed in a similar
way. The first formula in part (iii) is equivalent to the statement that, modulo
(VX+ ® UX. -f UX- ® I/-Y+)[M], the element Ψ is group-like:

Δ(Ψ]= Ψ®Ψ;

and similarly for Φ.
Proposition (4.3) is an obvious consequence of Proposition (4.4). For (4.4) (i)

implies that the tensor product of highest weight vectors in V and W is a highest
weight vector in V®W, and the group-like property of Ψ then implies the
multiplicative property of the polynomials.
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A similar argument completes the proof of Theorem (3.4). Let P be any
polynomial with constant coefficient 1, and let its roots be C l 5 . . . , C r (repeated
according to multiplicity). Set αf = £.~ 1 and consider the representation
V= Vl(al)®- ®Vl(ar). It is clear that V contains, up to a scalar multiple, a
unique vector Ω of weight r (i.e. such that KΏ= qrΩ\ namely the tensor product
of the highest weight vectors in each factor. It follows by a standard argument
that the subrepresentation V of V generated by Ω contains a unique maximal
subrepresentation V". By the previous argument, the finite-dimensional irreducible
representation V'/V" has associated polynomial

This completes the proof of the "if" part of Theorem (3.4).

4.5. Recall that if V is any finite-dimensional irreducible representation of a Hopf
algebra A, the vector space dual K* can be made into a representation of A by
using the antipode S:

Recall also that S is a coalgebra anti-homomorphism, so that

(V®W)*^ VF*(x)K*

for any two representations V and W of A.

Proposition. The dual of the evaluation representation Vn(ά) is isomorphic to Vn(q2a).

Proof. This follows from the relation

satisfied by the antipode S of Uq(L(sl2)). The relation is easily proved by checking
it on the Chevalley generators of Definition (2.2).

4.6. To describe the conditions under which a tensor product of evaluation
representations is irreducible, we need some simple combinatorial definitions and
results.

Definition. A non-empty finite-set of non-zero complex numbers is said to be a
q-string (or simply a string) if it is of the form {ζ,q~2ζ,q~4ζ,...,q~2rζ} for some
CeCx and some rεZ + .

Example. The roots of the polynomial associated to an evaluation representation
Vn(a) form a ^-string Sn(a) with ζ = qn~1a,r = n—l.

4.7.

Definition. Two q-strings Sί and S2 are said to be in general position if either

(i) S1vS2 is not a q-string, or
(ii) Sί£S2 or S2gS!.
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Example. The strings Sm(a) and Sn(b) are not in general position if and only if

_==q±(m + n-2p + 2)

a

for some 0 < p ̂  min {m, n}.

By a set with multiplicities, we mean a set together with an assignment of a strictly
positive integer to each element of the set. There is a natural definition of the
union of two sets with multiplicities. Note that the roots of a polynomial form a
set with multiplicities in an obvious way.

The following elementary result is left to the reader. (The proof of an equivalent
result is given in [2], Proposition (3.4).)

Proposition. Any finite set of complex numbers with multiplicities can be written
uniquely as a union of q-strings, any two of which are in general position.

4.8. The following result gives the precise condition under which a tensor product
of evaluation representations is irreducible.

Theorem. A tensor product KΠl(αι)® ~ ® Vnr(
ar) is irreducible if and only if the

q-strings S^a^ ),..., Snr(ar) are in general position.

We begin by proving this result in the case r = 2. We shall change notation and
consider Vm(d)® Vn(b). By Corollary (4.3), there is no loss of generality in assuming
that m ̂  n.

We recall from [8] that, as a representation of Όq(sl2\

In fact, the highest weight vector Ωp in the component Vm+n-2p of Vm®Vn is
given by

P

ΐ = 0

(To verify this, it is enough to check that Ωp has the correct weight and is annihilated
by e + .) One checks that, for p>Q,Ωp is annihilated by x*ί if and only if

b= m+r

a

In this case, it follows from

that h-i'Ωp is also annihilated by XQ and has the same weight as Ωp\ it must
therefore be a scalar multiple of Ωp. It follows easily that Ωp is annihilated by x£
and is an eigenvector of hk for all k < 0. Similar arguments deal with the case k ̂  0.

This proves that Vm(a) ® Vn(b) has a subrepresentation not containing its highest
component if and only if

_nm + n-2p + 2~~ — q
a

for some 0 < p ̂  n. The tensor product has a proper subrepresentation containing
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the highest component if and only if its dual

(Vm(a)®Vn(b))* S Vn(q2b)® Vm(q2ά)

has a subrepresentation not containing the highest component. By the previous
argument, this is the case if and only if

for some 0 < p ̂  n.
Combining these two results with the example in Subsect. (4.7), we see that

Vm(ά) ® Vn(b) is reducible if and only if the strings Sm(ά) and Sn(b) are not in general
position, proving the theorem in the case r = 2.

4.9. More detailed arguments prove the following result.

Proposition. Let V = Vm(a}® Vn(b\ 0 < p ̂  min{m, n}. If b/a = q

±(>n+n-2v+2\ then
V has a unique proper subrepresentation W. In fact:

(a) // b/a = q>»+»-ip+\ we have

and, as a representation of Uq(sl2\

^£F m + Λ _ 2 p Θ

(b) Ifb/a = q-(m+n-2p+2\ we have

and, as a representation of Uq(sl2),

W~ V 6δV Φ ΦFYV = y m + nW y m + n-2^ ™Vm + n

We omit the details.
The preceding proposition admits a simple pictorial description. When the

^-strings Sm(a) and Sn(b) are not in general position, there are two ways of producing
two new strings which are in general position:

(i) The intersection of the two strings, together with the two nearest neighbour
elements, is discarded.

(ii) The union of Sm(a) and Sn(b), regarded as sets with multiplicities, may be
decomposed into the union of two strings in general position (see Proposition
(4.7)). The two strings are simply the set-theoretic union and intersection of Sm(α)
and Sn(b).

In part (a) of the proposition, W corresponds to the two strings produced by
operation (i) and the quotient V/W to those produced by operation (ii). In part
(b), the reverse in true.

Remark. It follows from the preceding proposition that, if Vm(d) ® Vn(b) is reducible,
it is not isomorphic to Vn(b) ® Vm(a\
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4.10. We now turn to the general case of Theorem (4.8). Suppose first that some
pair of strings Sn.(fl£) and Sn.(dj) is not in general position, and assume for a
contradiction that the tensor product Vnι(a^ ® ® Vnr(ar) is irreducible. It follows
from Corollary (4.3) that the tensor product is unchanged, up to isomorphism, by
any permutation of the factors. If we choose a permutation which leaves the ίth

and 7th factors adjacent and use the results of Subsect. (4.8), we obtain the required
contradiction.

The converse depends on the following

Lemma. Suppose that the strings SΠl(0j), 1 rg z ̂  r, are in general position and that

HI ^ n2 ̂  ••• ^ nr. Then ^(fli)® ••• ® Vnr(ar) *5 generated by the tensor product of
the highest weight vectors in the Vn.(a^.

Assuming this result for the moment, the proof of Theorem (4.8) is completed
as follows. Let VN, N = ]Γ n{, be the highest component of V = Vnι(aί) ® ® VΛr(ar)
as a representation of Uq(sl2\ and assume that the g-strings Sπι(flι), ...,Snr(αr) are
in general position. By Corollary (4.3), we may assume that nl ^ ••• rg nr without
loss of generality. By the lemma, V has no proper subrepresentation containing
VN. On the other hand, if W is a subrepresentation of V not containing VN9 then
its annihilator W° is a proper subrepresentation of

containing its highest component. But this contradicts the lemma, since the strings
$nι(q2al\...,Snr(q2a1) are in general position.

The proof of the lemma is by induction on r. The case r = 2 was proved in
Subsect. (4.8). We note first that V is generated by Ω' ® vnr, where Ω' is the tensor
product of the highest weight vectors in V — ̂ (α^® ••• ® Vnr-ι(a

r-ι) This is an
easy consequence of Proposition (3.1) and part (i) of Proposition (4.4), together
with the induction hypothesis that V = U Ω'.

We now prove, by induction on i, that β'® t^et/ β for l^ ί^n r , where
Ω = Ω1 ® vt. For ί = 0 there is nothing to prove, and the case i = nr establishes the
lemma.

Assuming that β'O^et/ β, with i > 0, consider the equations
k-l

for k ̂  1, which follow from Proposition (4.4) (ii). Hence, using Proposition (4.2),

fc-l

where br = arq"r 2i and dp>r_ 1 is the eigenvalue of ψp acting on Ω'. More generally,
let bj = ajqnj for 1 ̂ j < p and let dpj be the eigenvalue of ψp acting on the tensor
product of the highest weight vectors in Vn^(al\...,Vn.(aj\ Then, iterating the
above computation, we find

(β'®ϋί)=
j
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(with e~ acting in the (j + l)th position), where
k- l

p=0

and we have set d0 0 = 1, dp^ = 0 for p > 0. We shall prove that, under the hypo-
thesis that the ^-strings Sn 1 (a^),...,Snr(ar) are in general position, the matrix
A = (^kj)ι<k<r,o<j<r-\ is invertible. It follows from equations (*) that Ω'®vi+ί

is a linear combination of the elements x~ -(Ωf (x) vt) for 1 £Ξ k ̂  r, and this completes
the induction step.

Our assertion is a consequence of the following formula:

det A = φl"J ( Π bj}( Π (bk ~ q-2*'bj)\
\j=l /\j<k J

Indeed, since the bj are non-zero, det A = 0 only if

for some j < k. If k < r, this is equivalent to

which contradicts the fact the Snj(aj) and Snk(ak) are in general position. If k = r,
we have

aj = qnj+Λr~2iar

again contradicting general position, since i > 0.
To prove the determinant formula, we first note that if bj+ί = q~~2njbj for

7^1, the jth and (j — l)th columns of A differ only by a factor qnj.
The proof that

proceeds by induction on fe, using the relations

and

which follow from the definition of AkJ and Proposition (4.4) (iii).
For k — 1, we have to prove

which follows from the fact that

Assuming the result for fe, we have

some
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This completes the induction r sp.
If k>j is any pair of indices for which bk = q~2njbp there is a permutation σ

of { 1, 2, . . . , r} such that σ(r) — r and σ(k) = σ(j) + 1 . Let Ω'σ be the result of applying
σ to the factors in Ω', ana define Vσ and V'σ similarly. By the general position
assumption, there is an isomorphism V -> V'σ of representations of Uq(L(sl2)), and
we may assume that it sends Ω' to Ω'σ. Hence, there is an isomorphism V-+Vσ

which takes Ω' ®vt to Ω'σ®^>i for all i. It follows that

{χ- (Ω'®vi)9...9χ-(Ω'®υi)}

is linearly dependent if and only if

is linearly dependent. The first condition holds if and only if det A = 0, and the
second if and only if del Aσ = 0, where Aσ is the matrix obtained by applying σ
to the parameters al9 — ar and nl9...,nr. This implies that bk — q~2njbj is a root
of det A if and only if bσ(k) — q~2nσ(J)bσ(j} is a root of det^σ, which is true by the
first part of the argument.

This accounts for the second product in the formula for det A. The first product
arises from the fact that the/11 column of A is divisible by bj+ί, and the remaining
factor by counting degrees and identifying the coefficient oϊb^b^ -b^m det A.

The proof of the lemma, and hence that of Theorem (4.8), is now complete.

Remark. As q->ΐ, det A becomes a Vandermonde determinant. See [1], Sect. 4,
for the analogous role played by classical Vandermonde determinants in the
representation theory of a [fine Lie algebras.

4.11. It is now a simple natter to write down all finite-dimensional irreducible
representations of Uq(sl2).

Theorem. Every finite-dime^ sional irreducible representation ofUq(sl2) of type (1, 1)
is isomorphic to a tensor product of evaluation representations. Two such tensor
products are isomorphic if and only if one is obtained from the other by permuting
the factors in the tensor prodi ?ί.

Proof. Let V be a finite-dimensional irreducible representation of Uq(sl2) of type
(1, 1) and let P be its associated polynomial. By Proposition (4.7), the set of roots
of P can be written as a union of g-strings in general position, say Sπι(αι), . . . , Snr(ar).
By Theorem (4.8), the representation

M*l)® ®M*r)

is irreducible, and by Proposition (4.3) its associated polynomial is P. Hence,

K^KJαO® ®M<α
The last statement in the theorem follows from the fact that the decomposition

of the set of roots of a polynomial into ^-strings in general position is unique (up
to the order of the strings).
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5. Trigonometric Solutions of the QYBE

In this section, we compute the solutions of the quantum Yang-Baxter equation
associated to the finite-dimensional irreducible representations of Uq(sl2\ restrict-
ing ourselves to the type (1,1) case for simplicity.

5.1. The quantum Yang-Baxter equation (QYBE) is

Here, R(u) is a function of weC with values in End(K(χ)F), for some finite-
dimensional vector space K, and R12 = #®ideEnd(K(χ) V® V] etc. If V is a
finite-dimensional irreducible representation of Uq(sl2\ there is an associated
solution of the QYBE. In this section we shall compute all such solutions.

5.2. The connection between the QYBE and quantum affine algebras depends on
the following observation, which follows immediately from the defining relations
(2.3).

Proposition. There is a one-parameter group of automorphisms τλ, Λe(C, of the Hopf
algebra Uq(sl2) such that

τλ(xf) = ekλx^ τλ(hk) = ekλhk, τλ(K) = K, τλ(C) = C.

Definition. For any representation V of Uq(sl2) and any le<C, the pull-back of V by
the automorphism τλ is denoted by V(λ).

Note that V(λ) is not necessarily an evaluation representation. If Vm(d) is an
evaluation representation, we have

5.3. We have seen in Theorem (4.8) that a tensor product of evaluation representa-
tions is generically irreducible. The same is true for the representations V(λ).

Proposition. Let V and W be finite-dimensional irreducible representations ofUq(sl2)
with highest weight vectors Ωv and Ωw, and let A,μe(C. Then'.

(i) the tensor products V(λ) ® W(μ) are irreducible except for a finite set of values
of λ — μ (modulo integer multiples of 2πi);

(ii) the unique intertwining operator

I(V, λ\ W, μ): W(μ) ® V(λ) -> V(λ) ® W(μ)

which maps ΩW®ΩV to ΩV®ΩW is a rational function of eλ~μ with values in

The proof is almost identical to that of Proposition (5.1) in [2].

Definition. Let V be a finite-dimensional irreducible representation ofUq(sl2). Then
the R-matrix associated to V is the function R(λ — μ) with values in End(K(x) V)
given by

where σeEnd(K(g) V) is the switch of the two factors.
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Theorem. The R-matrix associated to a finite-dimensional irreducible representation
of Uq(sl2) is a solution of the QYBE.

See the proof of Theorem (5.5) in [2].

Remark. A (matrix- valued) function of AeC is said to be trigonometric if it is a
rational function of ecλ for some ceCx . By part (ii) of the proposition, the R-matrix
in the theorem is a trigonometric solution of the QYBE.

5.4. Let

by any finite-dimensional irreducible representation of Uq(sl2). The intertwining
operator I(V9λ'9 V,μ) can be computed as the product of k2 intertwining operators
of the form I(Vm, α; Vn9 b), each of which effects an interchange of nearest neighbours.

If Ωp is a highest weight vector for Uq(sl2) in Vn ® Vm of weight m + n — 2p9 it
is easy to see that (e+®l)Ώp is also a highest weight vector. Hence, we may
assume that

for 0<p^min{m,n}. Similarly, we may choose highest weight vectors Ω'p in
Vm® Vn such that

Let Pp Vn®Vm-*Vm®Vm be the unique homomorphism of representations of
Uq(sl2) such that

and

Pp(Ωr) = 0 if r^p.

Then, we can write

m'm{m,n}

/EE/(K m ,α;K n ,b) = £ cpPp

p = 0

for some cpe(C.
Consider the equations

I(e; Ωp) = eϊ I(Ωp).

Using Theorem (2.3) and Proposition (4.2), this becomes

Now, from Subsect. (4.8) we recall that, iϊa/b = q

m+n~2P+2

9 then e+ Ώp = Q. Hence,

(K®e+)Ώp= -qm + n-2p+2(e+®l) Ωp.

This gives
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and hence
min{m,n} p- 1 / _ i m + „-2j\

Theorem. The R-matrix associated to the representation

of Uq(sl2) is given by

R(λ-μ) =

The order of the factors in the product is such that the (ij)-term appears to the left
of the (i'Jf)-term if and only if

i>i' or i = i' and ;'</.

Remark. Write x = a/b and clear denominators on both sides of the QYBE (5.1)
satisfied by the R-matrix associated to Vm(d) ® Vn(b). Both sides of the equation
are then polynomials in x. It is clear that the constant terms, and also the highest
order terms, in the R-matrix give (constant) solutions of the QYBE. These solutions
have been written down by Kirillov and Reshetikhin [9].

Remark. The formula for I(Vm,a; Vn,b) was first obtained by M. Jimbo in [6].
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